Paper
14 February 2012 fMRI alignment based on local functional connectivity patterns
Di Jiang, Yuhui Du, Hewei Cheng, Tianzi Jiang, Yong Fan
Author Affiliations +
Abstract
In functional neuroimaging studies, the inter-subject alignment of functional magnetic resonance imaging (fMRI) data is a necessary precursor to improve functional consistency across subjects. Traditional structural MRI based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily consistently located relative to anatomical structures due to functional variability across subjects. Although spatial smoothing commonly used in fMRI data preprocessing can reduce the inter-subject functional variability, it may blur the functional signals and thus lose the fine-grained information. In this paper we propose a novel functional signal based fMRI image registration method which aligns local functional connectivity patterns of different subjects to improve the inter-subject functional consistency. Particularly, the functional connectivity is measured using Pearson correlation. For each voxel of an fMRI image, its functional connectivity to every voxel in its local spatial neighborhood, referred to as its local functional connectivity pattern, is characterized by a rotation and shift invariant representation. Based on this representation, the spatial registration of two fMRI images is achieved by minimizing the difference between their corresponding voxels' local functional connectivity patterns using a deformable image registration model. Experiment results based on simulated fMRI data have demonstrated that the proposed method is more robust and reliable than the existing fMRI image registration methods, including maximizing functional correlations and minimizing difference of global connectivity matrices across different subjects. Experiment results based on real resting-state fMRI data have further demonstrated that the proposed fMRI registration method can statistically significantly improve functional consistency across subjects.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Di Jiang, Yuhui Du, Hewei Cheng, Tianzi Jiang, and Yong Fan "fMRI alignment based on local functional connectivity patterns", Proc. SPIE 8314, Medical Imaging 2012: Image Processing, 831415 (14 February 2012); https://doi.org/10.1117/12.911077
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image registration

Functional magnetic resonance imaging

Distance measurement

Feature extraction

Computer simulations

Image processing

Matrices

RELATED CONTENT

Improved PCB image stitching algorithm based on enhanced ORB
Proceedings of SPIE (September 11 2024)
Explicit rigid and similarity image registration
Proceedings of SPIE (March 10 2006)
Fast surface-fitting algorithm for 3D image registration
Proceedings of SPIE (September 14 1993)
Multifeature mutual information
Proceedings of SPIE (May 12 2004)

Back to Top