Metallic nanostructures are widely studied because of their peculiar optical properties. They possess characteristic
absorbance spectra with a peak due to plasmonic resonance. This feature is directly dependent on the nanostructures
shape, size, distribution and environment surrounding them. This makes them good candidates for a variety of
applications, such as localized surface plasmon resonance sensing (LSPR), surface-enhanced Raman scattering (SERS)
and photovoltaics. A well established technique used to create nanoisland on flat substrates is performing a thermal
treatment after the deposition of a thin metal film. While the most widely investigated metal in this context is gold, we
have extended our investigation to palladium, which is interesting for sensing applications because it has an excellent
hydrogen absorption ability. The morphological properties of the nanoisland depend mainly on the starting thickness of
the deposited layer and on the annealing parameters, temperature and duration. The deposition and annealing process has
been investigated, and the resulting samples has been tested optically and morphologically in order to optimize the
structures in view or their application for sensing purposes.
|