PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9608, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
After a ten year’s expedition through the Solar system Europe’s comet chaser Rosetta arrived at comet 67 P/Churyumov- Gerasimenko in August 2014. Less than 100 kilometers from the nucleus the eleven orbiter payload instruments started to map and characterize the comet in great detail. In November 2014 Philae was the first robotic subsystem ever that landed on a cometary surface performing in situ measurements with ten instruments. The mission’s scientific program following the deployment of Philae is determined by the activity of the comet, which will increase as 67P approached perihelion in August 2015. This paper is a review article. It introduces the mission goals and profile. It gives an overview of some of the preliminary results of the mission. Selected results gained during the pre-landing phase of the subsystem Philae and the comet’s escort phases are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Gabriele E. Arnold, Fabrizio Capaccioni, Gianrico Filacchione, Stéphane Erard, Dominique Bockelee-Morvan, Maria Antonietta Barucci, Maria Cristina De Sanctis, Ernesto Palomba, Maria Teresa Capria, et al.
VIRTIS aboard ESA’s Rosetta mission is a complex imaging spectrometer that combines three unique data channels in one compact instrument to study nucleus and coma of comet 67P/Churyumov-Gerasimenko. Two of the spectral channels are dedicated to spectral mapping (-M) at moderate spectral resolution in the range from 0.25 to 5.1 μm. The third channel is devoted to high resolution spectroscopy (-H) between 2 and 5 μm. The VIRTIS-H field of view is approximately centered in the middle of the -M image. The spectral sampling of VIRTIS-M is 1.8 nm/band below 1 μm and 9.7 nm/band between 1-5 μm, while for VIRTIS-H λ/Δλ= 1300-3000 in the 2-5 μm range. This paper describes selected findings during the pre-landing phase of Philae’s robotic subsystem and the comet’s escort phase as well as prospects of further observations. The preliminary results include studies of surface composition, coma analyses, and temperature retrieval for the nucleus surface-coma system demonstrating the capability of the instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used.
A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort.
We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus’ geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 – 1.2 μm – surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus’ surface studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Oleg Korablev, Andrey Ivanov, Anna Fedorova, Yurii K. Kalinnikov, Alexei Shapkin, Sergey Mantsevich, Nikita Viazovetsky, Nadezhda Evdokimova, Alexander V. Kiselev
We introduce a pencil-beam infrared AOTF spectrometer for context assessment of the surface mineralogy in the vicinity of a planetary probe or a rover analyzing the reflected solar radiation in the near infrared range. One application is the ISEM (Infrared Spectrometer for ExoMars) instrument to be deployed on the mast of ExoMars Rover planned for launch in 2018. A very similar instrument LIS (Lunar Infrared Spectrometer) is planned to be flown on Russian Luna-25 (Luna Globe Lander) and Luna-27 (Luna Resource Lander) missions in 2018 and 2021 respectively. On the lunar landers the instrument will be mounted at a robotic arm (Luna-25) or at a dedicated mast (Luna-27). The instrument covers the spectral range of 1.15–3.3 μm with the spectral resolution of ~25 cm-1 and is intended to study mineralogical and petrographic composition of the uppermost layer of the regolith. Both the Mars and the Moon instruments target waterbearing minerals, phyllosilicates, sulfates, carbonates in the vicinity of the Mars rover, and H2O ice and hydroxyl in the vicinity of lunar lander. The optical scheme includes entry optics, the TeO2 AOTF, and a Peltier-cooled InAs detector. To cover the extended spectral range the AOTF is equipped with two piezotransducers. At present the qualification prototype of the instrument is being characterized. The requirements, instrument optics, and different aspects of its characterization, including low-temperature survival validation is described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The middle-infrared (MIR) echelle spectrometer is one channel of the Atmospheric Chemistry Suite (ACS) package dedicated for the studies of the Martian atmosphere on board ExoMars Trace Gas Orbiter (TGO) planned for launch in 2016. The MIR channel of ACS is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.3–4.2 μm with the resolving power of ~50,000. MIR is dedicated to sensitive measurements of trace gases. The MIR channel consists of entry optics, an echelle spectrometer with a 140x250 mm grating and two-mirror collimator, two secondary steerable gratings, and a cryogenically cooled MCT detector array with proximity optics. The spectrometer operates in high orders of diffraction, allowing to acquire up to 17 orders at one detector frame, and to cover simultaneously ~300-nm spectral interval within the spectral range. The mechanism allows moving the secondary grating with a characteristic time of ~0.1 s. This concept is novel for space application. The instrument is a complete block with power and data interfaces, and the overall mass of 12 kg. The protoflight model of MIR is completed, integrated within the ACS suite, and is undergoing tests at the spacecraft.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Alexander Trokhimovskiy, Oleg Korablev, Yurii K. Kalinnikov, Anna Fedorova, Alexander V. Stepanov, Andrei Yu. Titov, Ilia Dziuban, Andrei Patrakeev, Franck Montmessin
The near-Infrared echelle-AOTF spectrometer is one channel of the Atmospheric Chemistry Suite (ACS) package dedicated for the studies of the Martian atmosphere on board ExoMars Trace Gas Orbiter planned for launch in 2016. The near-infrared (NIR) channel of ACS is a versatile spectrometer for the spectral range of 0.7–1.6 μm with a resolving power of <20,000. The NIR channel is intended to measure the atmospheric water vapor, aerosols, airglows, in nadir, in solar occultation, and on the limb. The science goals of NIR are basically the same as for SPICAM IR channel presently in flight on board Mars Express ESA orbiter, but it offers significantly better spectral resolution. The instrument employs the principle of an echelle spectrometer with an acoustooptical tunable filter (AOTF) as a preselector. The same principle was employed in SOIR, operated on Venus Express ESA mission in 2006-2014, and in RUSALKA, operated onboard ISS in 2009-2012. The NIR channel of ACS consists of entry optics, the AOTF, a Littrow echelle spectrometer, and an electrically cooled InGaAs detector array. It is a complete block with power and data interfaces, and the overall mass of 3.2 kg. The protoflight model of NIR is completed, calibrated, integrated within the ACS suite, and is undergoing tests at the spacecraft.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Alexander V. Rodin, Imant I. Vinogradov, Victor V. Barke, Artem Yu. Klimchuk, Oleg V. Benderov, Vladimir S. Semenov, Yury V. Lebedev, Dmitry V. Churbanov, Maxim V. Spiridonov, et al.
A compact, lightweight multichannel laser and heterodyne spectrometer is under development for the ExoMars-2018 landng platform. The instrument is aimed at sensitive measurements of the ambient atmosphere composition, isotopic ratios and structure, both in situ and on the open path by direct Sun observations. Begin the abstract two lines below author names and addresses. The abstract summarizes key findings in the paper. It is a paragraph of 250 words or less. For the keywords, select up to 8 key terms for a search on your manuscript's subject.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Probing Extra-terrestrial World: from Asteroids to Cosmos
Infrared sensor system is a major concern for inter-planetary missions in order to investigate the nature and the formation processes of planets and asteroids. Since it takes long time for the communication of inter-planetary probes, automatic and autonomous functions are essential for provisioning observation sequence including the setup procedures of peripheral equipment. Robotics technology which has been adopted on HAYABUSA2 asteroid probe provides functions for setting up onboard equipment, sensor signal calibration, and post signal processing. HAYABUSA2 was launched successfully in 2014 for the exploration of C class near-Earth asteroid 162173 (1999JU3). An optical navigation camera with telephoto lens (ONC-T), a thermal-infrared imager (TIR), and a near infrared spectrometer (NIRS3) have been developed for the observation of geology, thermo-physical properties, and organic or hydrated materials on the asteroid. ONC-T and TIR are used for those scientific purposes as well as assessment of landing site selection and safe descent operation onto the asteroid surface for sample acquisition. NIRS3 is used to characterize the mineralogy of the asteroid surface by observing the 3-micron band, where the particular diagnostic absorption features due to hydrated minerals appear. Modifications were required in order to apply robotics technology for the probe due to the difference of operation on satellites from robot operation environment. The major difference is time line consideration, because the standardized robotics operation software development system is based on event driven framework. The consistency between the framework of time line and event driven scheme was established for the automatic and autonomous operation for HAYABUSA2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The conventional measurements of the speed of light were performed before the early twentieth century. Only few used extraterrestrial sources and got the result with large uncertainty. We design a transmitter to modulate the rays from the local infrared light source and the extraterrestrial sources simultaneously into pulses. Both are received by a distant receiver. We have the white light travelling exactly along the path of the starlight pulses for calibration. It is found that the travel times of Aldebaran and Capella pulses are longer than that of Vega pulses. The results indicate that the speeds of starlights are different.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA), project has been operating airborne astronomy flights from Palmdale, California since 2011. The observatory consists of a modified 747sp aircraft with a 2.5meter telescope in the tail section. In addition to observing flights out of Palmdale, Ca. this airborne observatory has been able to take advantage of its mobility to observe in the southern hemisphere (New Zealand), to perform multi-wavelength observations of the Super Novae (SN 2014b) in 2014, and to intersect the track of a Pluto Occultation in the southern hemisphere just a few weeks prior to the New Horizons mission fly by of the planet in summer 2015. Science results, observatory operations, current instrument status and participation in future instrument developments, over the lifetime of the observatory will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We discuss an algorithmic approach for detecting spatially stationary, dim signals in cluttered optical data. In the problem considered here, cluttered scene backgrounds are substantially more intense than sensor noise and signal variations from scene anomalies of interest. As a result, clutter estimation and rejection algorithms are performed prior to implementing signal detection schemes. Even then, stationary residual clutter may be spatially similar to, and have intensities much greater than, those of the signals of interest. This poses an extreme challenge for the automated detection of low-contrast scene anomalies, and detectors based solely on spatial properties of the optical scene generally fail. In our newly developed signal detection algorithm, we exploit not only the structure of the dim signals of interest, but also the time-lapsed residual clutter. By examining the properties and statistics of both the signals of interest and the signals we wish to reject, Toyon has developed an algorithm for the automated detection of low-contrast signals in the presence of high-intensity clutter. We discuss here the developed signal detection algorithm and results for overcoming the challenges inherent to heavily cluttered optical data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report on model predictions of angular effects of fractional intensity modulation of light that is diffusely scattered from a vibrating surface, and compare these to experimental data for a few common materials. We show the predicted and observed effects of the time dependent properties of the BRDF of the material on detected fractional modulation. We suggest a few practical commercial applications of this type of measurement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Vibration waveforms in materials appear in video as a minuscule fluctuation in the light scattered into the camera. By inferring from processed video how vibrational energy propagates through an article to be inspected, we may detect local material anomalies. We report progress in developing measurement protocols and technologies to perform standoff nondestructive inspection of materials for defects using video image processing. In particular we show promising results from a protocol that conforms to relatively inexpensive hardware.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present progress being made in the passive optical remote detection of ground surface vibration. With proper design, minute seismic surface waves may be captured using remote visible imagery. The utility of subband steerable filters to the detection of surface vibrations in the absence of inherent image contrast is demonstrated. Detections with the filters are shown with laboratory data and compared to Fourier transform results over a range of surface vibrational amplitudes. We present an analysis of the optical measurements of ground surfaces performed during the passing of nearby trains with discussion of the hardware, software, and detection clutter sources. Results from optical remote sensing are interpreted using additional accelerometer measurements and image processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This work addresses image degradation introduced by lossy compression techniques and the effects of such degradation on signal detection statistics for applications in fast-framing (<100 Hz) IR image analysis. As future space systems make use of increasingly higher pixel count IR focal plane arrays, data generation rates are anticipated to become too copious for continuous download. The prevailing solution to this issue has been to compress image data prior to downlink. While this solution is application independent for lossless compression, the expected benefits of lossy compression, including higher compression ratio, necessitate several application specific trades in order to characterize preservation of critical information within the data. Current analyses via standard statistical image processing techniques following tunably lossy compression algorithms (JPEG2000, JPEG-LS) allow for detection statistics nearly identical to analyses following standard lossless compression techniques, such as Rice and PNG, even at degradation levels offering a greater than twofold increase in compression ratio. Ongoing efforts focus on repeating the analysis for other tunably lossy compression techniques while also assessing the relative computational burden of each algorithm. Current results suggest that lossy compression techniques can preserve critical information in fast-framing IR data while either significantly reducing downlink bandwidth requirements or significantly increasing the usable focal plane array window size.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Calibration and Data Processing for IR Feature Extraction
In this work, a fast calculation method of the scattered radiance for scenario involving both the earth surface and the earth-limb regions is proposed. The single scattering equation of typical two-stream approximate is adapted to compute atmospheric radiative transfer under the spherical-parallel atmosphere assumption. With specified atmospheric profiles, spectral band and observation geometry, a two-dimensional (2-D) matrix of the scattered radiance varying with incident zenith and viewing zenith angles are then calculated. Finally, the earth disk images are generated for different spectral bands by interpolating the calculated radiance matrices. Simulation results of multispectral earth disk images for space-based earth observation sensors are presented to demonstrate the usefulness of the proposed technique for high fidelity scene generation where both the earth surface and the earth-limb regions are observed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The validation of models of global climate change and accurate measurement of the atmosphere and surface temperatures require that orbital sensors have low drift rates, and are monitored or regularly recalibrated by accepted standards. Phase change materials (PCM), such as those that make up the ITS-90 standard, are the basis for international commerce and have been suggested for monitoring and recalibration of orbital temperature sensors. Space Dynamics Laboratory (SDL) and its partners have been developing miniaturized phase change reference technologies that could be deployed on an orbital blackbody for nearly a decade. A significant part of this effort has been the exploration of the behavior of gallium (Ga) and its eutectics, gallium-tin (GaSn) and gallium-indium (GaIn) in conditions expected to be encountered in this application. In this paper, these behaviors are detailed and an example of a hardware design that could be used as an infrared blackbody calibration monitor is presented. To determine if and how microgravity will affect the behavior of Ga, the authors conducted an experiment on the International Space Station (ISS) and compared the observed phase change temperature with earth-based measurements. This paper also provides a brief description of the experiment hardware, microgravity considerations, and the pre-flight, flight and post-flight data analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Improving the precision of ground-based astronomical observations is an objective of both current (e.g. PanSTARRS1) and future (e.g. Dark Energy Survey and the Large Synoptic Survey Telescope) sky surveys. An important element of this effort is to determine the optical attenuation imposed by the atmosphere. We have obtained atmospheric extinction observations from narrowband photometry (typically 10 nm bandwidth) at central wavelengths of 380 nm, 488 nm, 500 nm, 585 nm, 656 nm, 675 nm and 840 nm. The passbands were selected to measure the continuum component (predominantly from Rayleigh and aerosol scattering) of atmospheric attenuation, and to avoid molecular absorption features in the atmosphere. We compare these atmospheric extinction observations with predictions from MODTRAN5, a commonly used computer model of atmospheric optical transmission. The MODTRAN5 calculations were informed by a satellite-based determination of atmospheric ozone on the night of observations. We also adjusted the MODTRAN5 predictions of Rayleigh scattering to account for the difference between the default pressure and that measured at the observatory on the night of observations. We find excellent agreement across all passbands between the pressureadjusted MODTRAN5 extinction model and the observations, within our typical extinction uncertainty of 0.013 mag/airmass, but only if we exclude any aerosol scattering component in the MODTRAN5 model. Even though this is a very limited test, with observations of a single star for a single night, the fact that we obtain excellent agreement between extinction measurements and the MODTRAN5 model, with no adjustable fit parameters, bodes well for exploiting MODTRAN5 to increase the precision of ground-based flux measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Thermal Earth Resource Monitoring Instrument (THERMI) has been designed to meet stringent Landsat heritage requirements with reduced size, weight and power (SWaP). The instrument design provides Earth resource monitoring through the use of two long-wave infrared bands that measure the land surface temperatures. These bands are especially valuable for monitoring water resources and water use. Instrument subsystems, including electronics, cryocooler, thermal management, optical telescope assembly, focal plane module, in-flight calibrator, and scene select mirror were studied and conceptually designed to reduce overall THERMI SWaP. Reductions in SWaP make it possible for THERMI to fit on a small satellite bus with room available for an additional optical instrument. Since mission cost historically correlates well with mass and power on-orbit, it is expected that significant cost savings will result from the predicted SWaP reductions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Using such THz camera, one can see a temperature difference on the human skin if this difference is caused by different temperatures inside the body. Because the passive THz camera is very expensive, we try to use the IR camera for observing of such phenomenon.
We use a computer code that is available for treatment of the images captured by commercially available IR camera, manufactured by Flir Corp. Using this code we demonstrate clearly changing of human body skin temperature induced by water drinking. Nevertheless, in some cases it is necessary to use additional computer processing to show clearly changing of human body temperature. One of these approaches is developed by us. We believe that we increase ten times (or more) the temperature resolution of such camera.
Carried out experiments can be used for solving the counter-terrorism problem and for medicine problems solving. Shown phenomenon is very important for the detection of forbidden objects and substances concealed inside the human body using non-destructive control without X-ray application. Early we have demonstrated such possibility using THz radiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Raytheon Vision Systems (RVS) has developed an efficient method to measure MTF on Visible through MWIR small pixel FPAs. The measured data was obtained using an advanced but low cost test set with sub μm target projection on the FPA and real time display of the LSF as the slit is walked through focus. The test set is commercially procured, maintained and calibrated, provides target and filter holders and a light source. The analysis summary includes references from simplified MTF published analysis tools and a list of artifacts to be aware of when measuring MTF. The SWIR and MWIR detectors have a Mesa structure geometry for improved MTF performance and the Visible has state of the art crosstalk control to provide excellent MTF performance. The modeled data is compared to measured tilted slit MTF measured data and shows close agreement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
New large scale foundry processes continue to produce reliable products. These new large scale devices continue to use industry best practice to screen for failure mechanisms and validate their long lifetime. The Failure-in-Time analysis in conjunction with foundry qualification information can be used to evaluate large format device lifetimes. This analysis is a helpful tool when zero failure life tests are typical. The reliability of the device is estimated by applying the failure rate to the use conditions. JEDEC publications continue to be the industry accepted methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001”) is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment’s accuracy, repeatability and precision of the measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We demonstrate a cavity-enhanced photodetector at the telecommunication wavelength of λ = 1.3 μm based on a resonant tunneling diode (RTD). The cavity-enhanced RTD photodetector consists of three integral parts: First, a Ga0.89In0.11N0.04As0.96 absorption layer that can be grown lattice-matched on GaAs and which is light-active in the near infrared spectral region due to its reduced bandgap energy. Second, an Al0.6Ga0.4As/GaAs double barrier resonant tunneling structure (RTS) that serves as high gain internal amplifier of weak electric signals caused by photogenerated electron-hole pairs within the GaInNAs absorption layer. Third, an optical distributed Bragg reflector (DBR) cavity consisting of five top and seven bottom alternating GaAs/AlAs mirror pairs, which provides an enhanced quantum efficiency at the resonance wavelength. The samples were grown by molecular beam epitaxy. Electro-optical properties of the RTDs were studied at room temperature. From the reflection-spectrum the optical resonance at λ = 1.29 μm was extracted. The current-voltage characteristics were studied in the dark and under illumination and a wellpronounced photo-response was found and is attributed to accumulation of photogenerated holes in the vicinity of the RTS. The maximum photocurrent was found at the optical resonance of 1.29 μm. At resonance, a sensitivity of S = 3.97 × 104 A/W was observed. From the sensitivity, a noise equivalent power of NEP = 1.18 × 10-16 W/Hz1/2, and a specific detectivity of D∗ ≅ 6.74 × 1012 cm Hz1/2/W were calculated. For a single absorbed photon a photocurrent of ISP = 50 pA was determined.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid-wavelength and long-wavelength quantum well infrared photodetector, and 320x256 pixels long-wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NEΔT of the 8.8μm cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We evaluate the limiting efficiency of full and partial solar spectrum harvesting via the process of internal photoemission in Au-semiconductor Schottky junctions. Our results based on the ab initio calculations of the electron density of states (e-DOS) reveal that the limiting efficiency of the full-spectrum Au converter based on hot electron injection is below 4%. This value is even lower than previously established limit based on the parabolic approximation of the Au electron energy bands. However, we predict limiting efficiency exceeding 10% for the hot holes collection through the Schottky junction between Au and p-type semiconductor. Furthermore, we demonstrate that such converters have more potential if used as a part of the hybrid system for harvesting high- and low-energy photons of the solar spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The production of integrated electronic circuits provides examples of the most advanced fabrication and assembly approaches that are generally characterized by large-scale integration of high-performance compact semiconductor elements that rely on rigid and essentially planar form factors. New methods of fabricating semiconductor membranes of nanoscale thickness with intrinsic mechanical flexible features are beginning to provide a set of means to lift these constraints by engendering deformable, three-dimensional device configurations that are difficult to achieve with bulkscale materials while retaining capacities for high (or altogether new forms of) electronic and/or optoelectronic performance. Together with enabling means of deterministic assembly realized via the advancing technology of transferprinting, these light-weight nanomembrane elements can be distributed over large areas on a soft, bendable, and even biocompatible secondary substrates with high throughput and yields to realize interesting new functionalities in technology. Exemplary cases include: large-area integrated electro-optical systems laminated onto curvilinear or other 3-D surfaces for use in sensing and imaging with capacities for accommodating demanding forms of mechanical flexure; and unconventional hybrid systems for lighting and photovoltaic energy conversion that provide a potentially transformational approach to supplant current technologies with high performance, low cost alternatives. Taken together, the results of recent research efforts illustrate important opportunities for exploiting advances in materials in synergy with physical means of patterning, fabrication and assembly. In this review, we explore several exemplary applications taken from this work, and specifically highlight scalable approaches to high performance integrated systems for low cost energy technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
It has recently been proposed that designing selective emitters with photonic crystals (PhCs) or plasmonic metamaterials can suppress low-energy photon emission, while enhancing higher-energy photon emission. Here, we will consider multiple approaches to designing and fabricating nanophotonic structures concentrating infrared thermal radiation at energies above a critical threshold. These are based on quality factor matching, in which one creates resonant cavities that couple light out at the same rate that the underlying materials emit it. When this quality-factor matching is done properly, emissivities can approach those of a blackbody, but only within a selected range of thermal photon energies. One potential application is for improving the conversion of heat to electricity via a thermophotovoltaic (TPV) system, by using thermal radiation to illuminate a photovoltaic (PV) diode. In this study, realistic simulations of system efficiencies are performed using finite-difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) to capture both thermal radiation and PV diode absorption. We first consider a previously studied 2D molybdenum photonic crystal with a commercially-available silicon PV diode, which can yield TPV efficiencies up to 26.2%. Second, a 1D-periodic samarium-doped glass emitter with a gallium antimonide (GaSb) PV diode is presented, which can yield efficiencies up to 38.5%. Finally, a 2D tungsten photonic crystal with a 1D integrated, chirped filter and the GaSb PV diode can yield efficiencies up to 38.2%; however, the fabrication procedure is expected to be more challenging. The advantages and disadvantages of each strategy will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
As the intrinsic electrostatic limit, space charge limit (SCL) for photocurrent is a universal phenomenon which is fundamental important for organic semiconductors. We will demonstrate SCL breaking by a new plasmonic-electrical concept. As a proof-ofconcept, organic solar cells (OSCs) comprising metallic planar and grating electrodes are studied. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating incorporated inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties. The plasmonic-electrical concept will open up a new way to manipulate both optical and electrical properties of semiconductor devices simultaneously.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Semiconductor materials are well suited for power conversion when the incident photon energy is slightly larger than the bandgap energy of the semiconductor. However, for photons with energy significantly greater than the bandgap energy, power conversion efficiencies are low. Further, for photons with energy below the bandgap energy, the absence of absorption results in no power conversion. Here we describe photon detection and power conversion of both high energy and sub-bandgap photons using hot carrier effects. For the absorption of high-energy photons, excited electrons and holes have excess kinetic energy, which results in the generation of hot electrons and holes. Energy is typically lost through a thermalization process between the carriers and the lattice. However, collection of carriers before thermalization allows for reduced power loss. Devices consisting of a three-layer stack (transparent conductor – insulator – metal) can be used to generate and collect these hot carriers. Alternatively, when a semiconductor is used, photons with energy below the semiconductor bandgap energy generally do not generate electrons and holes; however, hot carrier collection is still possible in semiconductor devices with a metal layer when a Schottky junction is formed at the semiconductor-metal interface. Such structures enable IR detection based on sub-bandgap photon absorption. Combining these concepts, hot carrier generation and collection and be exploited over a large range of incident wavelengths spanning the UV, visible, and IR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President’s Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Information about the spatial distribution of urban surface emissivity is essential for surface temperature estimation. The latter is critical in many applications, such as estimation of surface sensible and latent heat fluxes, energy budget, urban canopy modeling, bio-climatic studies and urban planning. This study proposes an estimation of urban surface emissivity, which is primarily based on spectral mixture analysis. The urban surface is assumed to consist of three fundamental land cover components, namely vegetation, impervious and soil that refer to the urban environment. Due to the complexity of the urban environment, the impervious component is further divided into two land cover components: high-albedo and low-albedo impervious. Emissivity values are assigned to each component based on emissivity distributions derived from the Landsat8. Following the proposed method, by combining the fraction of each cover component with a respective emissivity value, an overall emissivity for a given pixel is estimated. The methodology is applicable to visible and near infrared satellite imagery. Therefore it could be used to derive emissivity maps from most multispectral satellite sensors. The proposed approach was applied to Landsat8 multispectral data for the city of Darkhan-Uul, Mongolia. Emissivity, as well as land surface temperature maps in the spectral region of 10.6 - 11.2 μm (Landsat8 band 10) and 11.5-12.5 (Landsat8 band 11) were derived.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose a novel model for the fire evolution, applicable to its spread in mountains, with low-height fuel. Fire propagates along contours of equal elevation on steep terrains. The wind outside the mountain does not conserve on the inside slopes at fuel height. The local wind depends on micro-climatic environment, influenced additionally by the fire itself.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We examine the propagation of the Yarnell Hill Fire in Arizona, June 28 -- July 3, 2013 to assess the nature of its complexity. We identify the critical fire growth that starts about 35 hours after the fire initiation. In a time span of three hours, the fire area is doubled. Within the following four hours, the direction of fire turns by about 180 degrees. An hour later, a pyrocumulonimbus cloud is observed above the fire area. To monitor complex fires, we propose implementation of an IR instrument to scrutinize fire remotely for behaviors, such as vortices and rotation, arising from combustion events, terrain characteristics, and outside influences. We propose a small reconnaissance plane circling to the side and above the fire area to search for anomalies in fire propagation and atmosphere during the fire consolidation during the initial 45 hours. Ideally, the observing instrument would be sensitive in IR region at about 4.5 microns where carbon oxide emits and water transmits the radiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.