PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966701 (2015) https://doi.org/10.1117/12.2229403
This PDF file contains the front matter associated with SPIE Proceedings Volume 9667, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966702 (2015) https://doi.org/10.1117/12.2199841
Silicon Photonics is an emerging field of research and technology, where nano-silicon can play a fundamental role. Visible light emitted from reverse-biased p-n junctions at highly localized regions, where avalanche breakdown occurs, can be used to realize a visible electro-optical sources in silicon by means of light-emitting diodes (Si-LEDs) is reviewed by characterizing the spectral distribution. Regarding applications, a monolithic optoelectronic integrated circuit (OEIC) for on-chip optical interconnection based on standard CMOS technology is discussed. Although there are some of the present challenges with regard to the realization of suitable electro-optical elements for diverse integrated circuit applications, the type of silicon light source can be further developed into be a Si-based optical short-distance on-chip optical interconnect applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966703 (2015) https://doi.org/10.1117/12.2199851
Present report deals with the optical tuning of electrical properties of PZT thin film based photodetector (PD). Lead Zirconium Titanate (PZT) thin film has been fabricated over epitaxially matched Strontium Titanate (STO) substrate using Pulsed Laser Deposition technique. Fine aluminium inter digital electrodes were patterned over PZT film to study the response of the PD. The photo response has been investigated by tuning the optical properties of the incident laser beam. The response was found to be modified according to the incident laser intensity and the distance between sample and laser. Moreover, PZT based photo detector was found to be highly sensitive towards small variation in the optical properties of the incident light. The intrinsic properties of the PZT thin film including its ferroelectric properties make it a novel material for the fabrication of UV based photo detector. The response of the PZT based Photodetector was found to be about 152 at a distance of 10cm between the PD and the UV laser of wavelength 365nm. The response time and recovery time were found to be 60 msec each which are much faster for UV detection as compared to other photodetectors. Moreover, a stable response was also observed on the repetitive UV sensing for the fabricated PZT based Photodetector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966704 (2015) https://doi.org/10.1117/12.2224774
Analog phase shifters are investigated with a periodic structure that includes Barium Strontium Titanate ferroelectric thin film varactors in shunt or serial connection to the coplanar waveguide transmission line. The phase shift is achieved by applying a DC bias to the varactors and changing the reactance in the circuit. The goal of this paper is to characterize the shunt capacitive varactors regarding the voltage dependence of the capacitance, loss tangent, and insertion losses at different bias voltages. Quality factor analysis is also conducted taking the parasitic effects into account. Repeated measurements show that the capacitance of a single cell is tuned from 0.8pF to 0.2pF under a DC bias of 0-10V while the loss tangent is kept under 0.01 in the frequency range of 0-40GHz. Insertion loss is tuned from -4dB to less than -0.6dB from 0 to 10V with a Figure of Merit of 14 degrees/dB at 10GHz and the total quality factor of the unit cell is around 6.7 to 10 at 10GHz with matched port impedance. By cascading 10-25 single unit cells, the phase shift is expected to reach 360 degrees with minimum insertion loss.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966705 (2015) https://doi.org/10.1117/12.2220421
A resonant circuit combining a 3D inductor with the barium strontium titanate thin film varactor, is presented in this work. The filter was fabricated using a 3D inductor fabrication process. The modeling of the filter was examined using the Advanced Design System (ADS). The measurement results showed that the resonant frequencies were around 10 GHz and correlated to different number of turns of 3D inductor. The inductances extracted from the equivalent circuit varied from 0.28 nH to 0.37 nH.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966706 (2015) https://doi.org/10.1117/12.2199850
ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966707 (2015) https://doi.org/10.1117/12.2199655
New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966708 (2015) https://doi.org/10.1117/12.2197768
Smartphone camera system has the capability of being integrated into powerful field-sensing tools, capturing data and sharing these data with computing servers or cloud experts. The purpose of this work is to implement a wavefront sensor based on the smartphone platform, which has many potential applications in thin-films and bio-related sensing areas. To overcome problems caused by traditional wavefront curvature sensing setups, distorted micro-gratings are designed and introduced into the system in the dual role of both beam splitter and defocuser. The new design is capable of capturing two images of different levels of defocus in a single shot, which are then used as the input data to reconstruct the wavefront. Through testing with generated known spherical wavefronts, the smartphone based wavefront sensor has demonstrated decent system resolution and wavefront sensing accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 966709 (2015) https://doi.org/10.1117/12.2197841
We demonstrate the design, fabrication and testing of miniature steerable optical sources that are capable of beaming photons with spin and orbital angular momentum through coupling nanoscale emitters to plasmonic waveguide and antenna structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670A (2015) https://doi.org/10.1117/12.2197988
The method of building micro-structures on the surface of certain materials could build a regular structure on the surface of the material to ensure the consistency of the material surface hydrophobic properties. In this paper, the all-optical method has been applied to produce two-dimensional surface relief grating on the surface of fluorine-containing azobenzene polymer film by using this method as an approach combined with the material’s properties of photoresponsive and low surface energy. The hydrophobic property of the final “two dimensional surface relief grating” has also been tested. Period combinations of 500nm×500nm, 500nm×600nm, 600nm×700nm, 700nm×800nm and the other eleven has been used to fabricate two-dimensional surface relief grating and their final results have been compared. The results show that, for the same period of grating, the contact angle becomes larger with the increase of the modulation depth. However, the contact angle becomes smaller as the grating period increases. Above all, the period and modulation depth of two-dimensional grating have a great impact on the hydrophobicity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670B (2015) https://doi.org/10.1117/12.2197989
The analysis of initial phase of diffraction wave of grating mask is based on rigorous coupled-wave analysis method. In this paper, the general diffraction analysis numerical code based on the rigorous coupled-wave analysis (RCWA) is written by MATLAB software to calculate the 0th refraction wave of grating mask. Since large measurement errors will occur while measuring the grove shape by AFM, the method of measuring the initial phase of diffraction wave was proposed and the feasibility of this method has also been verified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670C (2015) https://doi.org/10.1117/12.2199639
With the demanding requirements for light source, light emitting diodes (LED) attracts more and more attention because of its inherent advantages such as low power consumption, high reliability and longevity. However, there are two disadvantages for LED, one is the low light extraction efficiency resulting from the total internal reflection, and the other is the relative large scattered angle. In order to improve the light extraction efficiency and collimate the out-coupling light, a sub-micron Fresnel lens array is introduced and investigated in this paper. The focal length of the proposed Fresnel lens is 3μm and the minimum width of the outmost ring is about 150nm. To calculate and analyze the light extraction efficiency and the scattered angle of LED with such Fresnel lens array structure, we optimize the parameters of the Fresnel lens, such as the depth of the Fresnel lens array structure and the thickness of the p-type gallium nitride layer by using the finite difference time domain method (FDTD). By comparing the discussed patterned GaN-based LED with that traditional flat LEDs, it can be found that significant enhancement factor of the light extraction efficiency, which is improved by 3.5 times, can be obtained and the scattered angle at half maximum can be decreased 50° from 60° with this novel Fresnel lens structure. It will be expected that the proposed sub-micron structure can find wide applications in LEDs industry.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670D (2015) https://doi.org/10.1117/12.2199835
With the intrinsic advantages of high diffraction efficiency, signal to noise ratio, wavelength and angular selectivity, and low scattering and absorption, volume phase holographic grating (VPHG) has been widely used for spectroscopy, telecommunications, astronomy and ultra-fast laser sciences. The transmission VPHG combined with on-axis imaging lenses can be used in the Raman spectroscopic imaging, which enables a spectrometer to work at high resolution over a wide field of view, and compresses the configuration to achieve very little vignetting. The subject of this paper is to design a kind of transmission VPHG used in Raman Spectrometer with high diffraction efficiency theoretically. According to the Bragg condition and the coupled wave theory, the diffraction efficiency of transmission VPHG recorded on dichromated gelatin (DCG) has been optimized by using G-solver software, which is applicable to the visible waveband ranging from 0.46μm to 0.70μm. The effects of the recording and reconstruction setup parameters, the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d), and the polarization state of reconstruction beams on the diffraction efficiency properties of the gratings are analyzed at the same time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670E (2015) https://doi.org/10.1117/12.2197676
Only the displacement along the radar line of sight can be got in Ground Based Synthetic Aperture Radar (GBSAR). In order to extract high-precision three-dimensional displacement field of research area, in this article, we research deeply the method which integrates both three-dimensional laser scanning and GBSAR techniques. It is proved that high precision three-dimensional displacement field information can be extracted with this method through analyzing case and assessing the accuracy of three-dimensional displacement field. The method has a good practical value.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670F (2015) https://doi.org/10.1117/12.2197604
Ground-Based Synthetic Aperture Radar interferometry (GBInSAR) has generated movement with sub-millimeter accuracy in line-of-sight(LOS) direction, and it can provide movement images with high spatial and temporal resolution. Though the fluctuation of atmospheric environment affects interferometric phases strongly, GBInSAR can be used for deformation measurement after removing the interference phase and transforming the displacement from LOS direction to radial and tangential. This paper provides a comparison of different atmospheric disturbance correction techniques. We made an experiment of deformation measurement about Geheyan Dam on Qingjiang to estimate the movement caused by atmosphere. In the experiment, displacement information of the dam was obtained by IBIS-L system and atmospheric parameters (humidity, temperature and barometric pressure) were collected from the weather station located on the dam. The collection process lasted for several days. By processing and analysis the data of a whole day without equipment malfunction, the results show an atmospheric delay of 15mm when the system located 1000m away from the target dam and atmospheric correction should be reinforced somehow for most Ground-Based InSAR applications. Then three correction algorithms are presented in order to weaken the influence from atmospheric disturbance. The techniques respectively based on the atmospheric parameters, Ground Control Points(GCP) and distribution model are quantitively compared using a reference dataset gotten by inverted perpendicular lines. And the accuracy of each method are finally drawn. It could be seen that the atmospheric disturbance be weaken by the three methods with reliable results and error of the technique based on distribution model was less than 2mm with the highest reliability. This analysis is followed by a discussion of the advantages and the limitations of each technique.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Donghui Shen, Bin Xie, Liang Zong, Congyue Zhang, Lingling Yu
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670G (2015) https://doi.org/10.1117/12.2199627
According to the characteristics of high order asphere[1] and relative aperture, in order to improve the detection accuracy, a new optical compensation system is designed in this paper. The compensation system introduces conic asphere as splitter surface, greatly reducing the difficulty of the assembly. The comparison between the test results and the data from the three-dimensional profiler of Taylor Hobson, shows that test results are reliable.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume International Workshop on Thin Films for Electronics, Electro-Optics, Energy, and Sensors, 96670T (2015) https://doi.org/10.1117/12.2214838
In this paper a fabrication method of ionic polymer-metal composite for deformation sensors is proposed. In this method, the Nafion film is sandwiched in between the electrodes made by foils of cheaper metal. Then, the IPMC is covered by protecting coating in order to keep the solution in the Nafion membrane from evaporation so as to derive stable operation performance when it works in dry air environment. Based on the Nernst equation, the electrical potential difference between two electrodes is determined by the ion concentration difference in the clearance inside and near the electrodes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.