PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 9702, including the Title Page, Copyright information, Table of Contents, Introduction, and the Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We propose a photoacoustic imaging system composed of a flexible bundle of thin hollow-optical fibers that enables endoscopic diagnosis. The hollow-fiber bundle involves 37 fibers with an inner diameter of 100 μm and the total diameter of the bundle is 1.2 mm. A laser beam for photoacoustic excitation is scanned at the input end of fiber bundle and therefore, no scanning mechanism is necessary at the distal end. In addition, owing to the small numerical aperture of hollow optical fibers, a high resolution image is obtained without using a micro-lens array at the end. By using the fiber bundle probe, photoacoustic imaging of blood vessels in the ovarian membrane of fish were successfully obtained with a laser fluence of around 2.8 mJ/cm2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Ophthalmic Viscosurgical Devices (OVDs) in clinical setting are a major health risk factor for potential endotoxin contamination in the eye, due to their extensive applications in cataract surgery for space creation, stabilization and protection of intraocular tissue and intraocular lens (IOL) during implantation. Endotoxin contamination of OVDs is implicated in toxic anterior syndrome (TASS), a severe complication of cataract surgery that leads to intraocular damage and even blindness. Current standard methods for endotoxin contamination detection utilize rabbit assay or Limulus amoebocyte lysate (LAL) assays. These endotoxin detection strategies are extremely difficult for gel-like type devices such as OVDs. To overcome the endotoxin detection limitations in OVDs, we have developed an alternative optical detection methodology for label-free and real-time sensing of bacterial endotoxin in OVDs, based on fiber-optic Fourier transform infrared (FO-FTIR) transmission spectrometry in the mid-IR spectral range from 2.5 micron to 12 micron. Endotoxin contaminated OVD test samples were prepared by serial dilutions of endotoxins on OVDs. The major results of this study revealed two salient spectral peak shifts (in the regions 2925 to 2890 cm^-1 and 1125 to 1100 cm^-1), which are associated with endotoxin in OVDs. In addition, FO-FTIR experimental results processed using a multivariate analysis confirmed the observed specific peak shifts associated with endotoxin contamination in OVDs. Thus, employing the FO-FTIR sensing methodology integrated with a multivariate analysis could potentially be used as an alternative endotoxin detection technique in OVD.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for
applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions
can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic
techniques.
Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a
hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic
material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid.
Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale
production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal
stress to the device during processing.
For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper
will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process,
where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination
with laser welding of optical transparent micro-fluidic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Medicine as well as biology increasingly rely on the use of cutting‐edge physics and engineering, in order to pursue the next generation nanomedical applications and to address fundamental questions in the life sciences. Central to this task is the study of micro- and nano systems, focusing on how engineered systems combined with natural ones can advance sensing, medicine, and our understanding of how biological systems work. My research addresses these important questions with state‐of‐the‐art biosensor technologies, capable of detecting single biomolecules and their dynamics; and resolving the kinetics of biomolecular systems on timescales ranging from few nanoseconds to several hours
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We demonstrate ultra-sensitive near-infrared (NIR) fiber-optic gas sensors enhanced by metalorganic framework (MOF) Cu-BTC (BTC=benzene-1,3,5- tricarboxylate), which is coated on a single-mode optical fiber. For the first time, we obtained high-resolution NIR spectroscopy of CO2 adsorbed in MOF without seeing any rotational side band. Real-time measurement showed different response time depending on the concentration of CO2, which is attributed to the complex adsorption and desorption mechanism of CO2 in Cu-BTC. The lowest detection limit of CO2 we achieved is 20 ppm with only 5-cm long Cu-BTC film.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension.
Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope.
Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section.
Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An attenuated-total-reflection (ATR), mid-infrared spectroscopy system that consists of hollow optical fibers, a trapezoidal multi-reflection ATR prism, and a conventional FT-IR spectrometer has been developed to measure blood glucose levels. Owing to the low transmission loss and high flexibility of the hollow-optical fiber, the system can measure any sites of the human body where blood capillaries are close to the surface of mucosa, such as inner lips. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. The results of in-vivo measurement of human inner lips showed the feasibility of the proposed system, and the measurement errors were within 20%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In previous works a minimally invasive laser-assisted technique for vascular repair was presented. The technique rests on the photothermal adhesion of a biocompatible and bioresorbable patch containing Indocyanine Green that is brought into contact with the site to be repaired. Afterward the use of NIR millisecond-long light pulses generates a strong welding effect between the patch and the underlying tissue and in turn the repair of the wound. This technique was shown to be effective in animal model and provides several advantages over conventional suturing methods. Here we investigate and discuss the optical stability of the ICG-biopolymeric patches and the photothermal effects induced to the irradiated tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In phacoemulsification-based cataract surgery, a corneal incision is made and is then closed by hydration of the wound lips, or by suturing. We developed a system for sealing such an incision by soldering with a semiconductor disk laser (λ=1.9μm), under close temperature control. The goal was to obtain stronger and more watertight adhesion. The system was tested on incisions in the corneas of 15 eyes of pigs, in-vivo. Optical Coherent Tomography (OCT) and histopathologic examination showed little thermal damage and good apposition. The measured average burst pressure was 1000±30mmHg. In the future, this method wound may replace suturing of corneal wounds, including in traumatic corneal laceration and corneal transplantation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this study, we demonstrate a handheld motion-compensated micro-forceps system using common-path swept source optical coherence tomography with highly accurate depth-targeting and depth-locking for Epiretinal Membrane Peeling. Two motors and a touch sensor were used to separate the two independent motions: motion compensation and tool-tip manipulation. A smart motion monitoring and guiding algorithm was devised for precise and intuitive freehand control. Ex-vivo bovine eye experiments were performed to evaluate accuracy in a bovine retina retinal membrane peeling model. The evaluation demonstrates system capabilities of 40 um accuracy when peeling the epithelial layer of bovine retina.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A dual-core hollow fiber has two separate cores for propagation of light. Such a fiber can have some good applications in laser surgery. The dual-core guide can transmit an infrared laser beam for cutting or ablation while a visible laser beam is simultaneously transmitted as a pilot or aiming beam. The traditional fabrication procedure for a dual-core hollow fiber involves chemical vapor deposition (CVD) growth on silica tubing of an inner cladding layer followed by the deposition of a low index polymer on the outside of the tubing. This will provide a hollow structure that has a clad-core-clad tube. This work provides an alternative approach which involves nesting of two hollow waveguides to establish a dual-core hollow fiber. An Ag/AgI hollow glass fiber is fabricated for transmitting CO2 laser. Another silica glass tube is selected carefully so that its inner diameter is just slightly larger than the outer diameter of the Ag/AgI hollow fiber. The outer surface of the as-selected glass tubing is coated with a low refractive index polymer. The Ag/AgI hollow fiber was inserted into the polymer coated silica glass tubing to establish an air or silicone oil gap between the two tubes. A visible laser beam is transmitted through the outer tube’s core. The CO2 laser beam is transmitted through the inner Ag/AgI hollow fiber. The dual-core hollow fibers show good transmission for both the red aiming beam and the CO2 laser. Therefore this structure can be a good candidate for laser surgery applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper presents a new all-fiber probe for laser induced thermal ablation of solid tumor cells that integrates a beam delivery fiber with nanostructured surface to shape the laser irradiation pattern and a chirped grating to allow real-time monitoring of the temperature profile. A theoretical model of the sensor to study the temperature profile recovery algorithm and experimental validations using phantoms are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper compares two different approaches to design an innovative probe with optimized heated area for
laser ablation of solid tumors: micro-patterning of the fiber delivery tip, and exploitation of the dissipation
of plasmonic waves at the metal-dielectric interface. Both probes integrate a fiber Bragg grating for real-
time monitoring of the obtained temperature increase to provide feedback to surgeons in practical applications.
Experimental characterizations carried out using liver phantoms and ex-vivo porcine livers have demonstrated
that both approaches can be used for the devised application, although further optimizations and tests are still
necessary before clinical assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fibers and Sensors: Theory, Design and Realization
We report on improved spatial uniformity of sensor grating arrays in offset and multicore fibers. We show improvement over conventional side writing in such fibers, in which cores offset from the center of the fiber exhibit grating strength variations due to lensing at the fiber surface. Such strength variations can degrade the performance of sensing systems that rely on continuous scattering from offset cores along a fiber. Our improved system uses multicore fibers whose coating is UV transparent and applies index matching materials to mitigate lensing aberrations. We show that it is capable of continuously inscribing gratings over any length of fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hollow glass waveguides (HGWs) have been researched extensively for the efficient transmission of radiation over a
broad spectral range spanning from the visible region to the far-IR. One such HGW film structure consists of a metallic
substrate with overlaying multilayer dielectric thin film stack of alternating high and low refractive index films. The
optical properties of such multilayer thin film stacks are well established and provide a method for developing photonic
bandgap fibers with exceptionally low attenuation losses at a desired wavelength. Transmission losses can be minimized
in multilayer waveguides through two main approaches; either maximizing the number of alternating layer pairs or
maximizing the index contrast between adjacent films. In practice, it has been shown that for liquid-phase deposition-based
procedures, the former approach leads to compounding surface and interface roughness, negating the low-loss
advantage of a multilayer waveguide. Thus, this research focuses on maximizing index contrast between adjacent
dielectrics in an attempt to minimize the number of films required to achieve acceptable transmission characteristics both
in theory and in practice. In this study, multilayer waveguides are fabricated using three dielectric materials: silver
iodide, lead sulfide, and cyclic olefin copolymer. Through exploitation of their high index contrast, these materials are
used to develop low-film-count multilayer waveguides designed for enhanced transmission at both Er:YAG and CO2
laser wavelengths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP’s in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP’s available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Diverging beam illumination is widely used in many optical techniques especially in fiber optic applications and coherence phenomenon is one of the most important properties to consider for these applications. Until now, people have used Monte Carlo simulations to study the backscattering coherence phenomenon in collimated beam illumination only. We are the first one to study the coherence phenomenon under the exact diverging beam geometry by taking into account the impossibility of the existence for the exact time-reversed path pairs of photons, which is the main contribution to the backscattering coherence pattern in collimated beam. In this work, we present a Monte Carlo simulation that considers the influence of the illumination numerical aperture. The simulation tracks the electric field for the unique paths of forward path and reverse path in time-reversed pairs of photons as well as the same path shared by them. With this approach, we can model the coherence pattern formed between the pairs by considering their phase difference at the collection plane directly. To validate this model, we use the Low-coherence Enhanced Backscattering Spectroscopy, one of the instruments looking at the coherence pattern using diverging beam illumination, as the benchmark to compare with. In the end, we show how this diverging configuration would significantly change the coherent pattern under coherent light source and incoherent light source. This Monte Carlo model we developed can be used to study the backscattering phenomenon in both coherence and non-coherence situation with both collimated beam and diverging beam setups.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental “bench” laboratory studies to clinical patient “bedside” diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Low-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective layer has been developed. B-NCD layers with different boron doping level were investigated. The boron level, expressed as the boron to carbon (/[C]) ratio in the gas phase, was: 0, 2000, 5000 or 10000 ppm. B-NCD layers were grown by chemical vapor deposition (CVD). The sensing Fabry-Perot interferometer, working in the reflective mode, was connected to the source and to the optical processor by single-mode fibers. Superluminescent diodes with Gaussian spectral density were used as sources, while an optical spectrum analyzer was used as an optical processor. The design of the sensing interferometer was optimized to attain the maximum interference contrast. The experiment has shown that B-NCD thin layers can be successfully used in biophotonic sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A focus of research in cell physiology is the detection of Ca2+, NADH, FAD, ATPase activity or membrane potential, only to name a few, in muscle tissues. In this work, we report on a biofluorometer using ultraviolet light emitting diodes (UV-LEDs), optical fibers and two photomultipliers (PMTs) using synchronized fluorescence detection with integrated background correction to detect free calcium, Ca2+, in cardiac muscle tissue placed in a horizontal tissue bath and a microscope setup. Fiber optic probes with imaging optics have been designed to transport excitation light from the biofluorometer's light output to a horizontal tissue bath and to collect emission light from a tissue sample of interest to two PMTs allowing either single excitation / single emission or ratiometric, dual excitation / single emission or single excitation / dual emission fluorescence detection of indicator dyes or natural fluorophores. The efficient transport of light from the excitation LEDs to the tissue sample, bleaching effects of the excitation light in both, polymer and fused silica-based fibers will be discussed. Furthermore, a new approach to maximize light collection of the emission light using high NA fibers and high NA coupling optics will be shown. Finally, first results on Ca2+ measurements in cardiac muscle slices in a traditional microscope setup and a horizontal tissue bath using fiber optic probes will be introduced and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We demonstrate detection of liquid analyte refractive index by using a hollow-core photonic Bragg fiber. We apply this fiber sensor to monitor concentrations of commercial cooling oil. The sensor operates on a spectral modality. Variation in the analyte refractive index modifies the bandgap guidance of a fiber, leading to spectral shifts in the fiber transmission spectrum. The sensitivity of the sensor to changes in the analyte refractive index filling in the fiber core is found to be 1460nm/Refractive index unit (RIU). By using the spectral modality and effective medium theory, we determine the concentrations of commercial fluid from the measured refractive indices with an accuracy of ~0.42%. The presented fiber sensor can be used for on-line monitoring of concentration of many industrial fluids and dilutions with sub-1%v accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report the simplification and development of biofunctionalization methodology based on one-step 1-ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC)-mediated reaction. The dual-peak long period grating (dLPG) has been demonstrated its inherent ultrahigh sensitivity to refractive index (RI), achieving 50-fold improvement in RI sensitivity over a standard LPG sensor used in low RI range. With the simple and efficient immobilization of unmodified oligonucleotides on sensor surface, dLPG-based biosensor has been used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM with the advantages of label-free, real-time, and ultrahigh sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Brachytherapy and neurological procedures can benefit from real-time estimation of needle-tissue interaction forces, specifically for robotic or robot-assisted procedures. Fiber Bragg Grating Sensors provide advantages of very small size and electromagnetic immunity for use in measurement of the forces directly at the needle tip. This has advantages compared to measurements at the needle shaft which require extensive models of the friction between needle and tissues with varying depth. This paper presents the measurement of tip forces for a hollow needle and compensation for bending when encountering regions of varying stiffness in phantoms with multiple layers prepared using Polydimethylsiloxane.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper presents the development and application of an approach for sensorizing a surgical robotic instrument for two degree-of-freedom (DOF) lateral force sensing. The sensorized instrument is compatible with the da Vinci® Surgical System and can be used for skills assessment and force control in specific surgical tasks. The sensing technology utilizes a novel layout of four fiber Bragg grating (FBG) sensors attached to the shaft of a da Vinci® surgical instrument. The two cross-section layout is insensitive to error caused by combined force and torque loads, and the orientation of the sensors minimizes the condition number of the instrument’s compliance matrix. To evaluate the instrument’s sensing capabilities, its performance was tested using a commercially available force-torque sensor, and showed a resolution of 0.05N at 1 kHz sampling rate. The performance of the sensorized instrument was evaluated by performing three surgical tasks on phantom tissue using the da Vinci® system with the da Vinci Research Kit (dVRK): tissue palpation, knot tightening during suturing and Hem-O-Lok® tightening during knotless suturing. The tasks were designed to demonstrate the robustness of the sensorized force measurement approach. The paper reports the results of further evaluation by a group of expert and novice surgeons performing the three tasks mentioned above.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Optical coherence tomography (OCT) is a versatile imaging technique and has great potential in tissue characterization for breast cancer diagnosis and surgical guidance. In addition to structural difference, cancerous breast tissue is usually stiffer compared to normal adipose breast tissue. However, previous studies on compression optical coherence elastography (OCE) are qualitative rather than quantitative. It is challenging to identify the cancerous status of tissue based on qualitative OCE results obtained from different measurement sessions or from different patients. Therefore, it is critical to develop technique that integrates structural imaging and force sensing, for quantitative elasticity characterization of breast tissue. In this work, we demonstrate a quantitative OCE (qOCE) microsurgery device which simultaneously quantifies force exerted to tissue and measures the resultant tissue deformation. The qOCE system is based on a spectral domain OCT engine operated at 1300 nm and a probe with an integrated Febry-Perot (FP) interferometric cavity at its distal end. The FP cavity is formed by the cleaved end of the lead-in fiber and the end surface of a GRIN lens which allows light to incident into tissue for structural imaging. The force exerted to tissue is quantified by the change of FP cavity length which is interrogated by a fiber-optic common-paths phase resolved OCT system with sub-nanometer sensitivity. Simultaneously, image of the tissue structure is acquired from photons returned from tissue through the GRIN lens. Tissue deformation is obtained through Doppler analysis. Tissue elasticity can be quantified by comparing the force exerted and tissue deformation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High temperature mechanical strength and reliability of optical fibers have become important subjects as optical fibers
are increasingly used for harsher environments. Theories and models of fiber mechanical properties established for
traditional telecommunications applications may need to be validated for applications at elevated temperatures. In this
paper, we describe the test setup for high temperature tensile strength of fiber and report initial results of dynamic tensile
strength of polyimide coated optical fiber at 300 and 350ºC for different heating time intervals. The results are compared
with room temperature strength data, data available in the literature, and our earlier work on thermogravimetric analysis
(TGA) weight loss of the polyimide coating and the observations on surface morphology at elevated temperatures.
Interesting observations are discussed and possible explanations are proposed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
During emergency medical situations where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. In particular, the anatomical, visual and time-sensitive challenges presented in these scenarios, such as in trauma, require a skilled provider in order to successfully place the tube into the trachea. Complications during ETI such as repeated attempts, failed intubation or accidental intubation of the esophagus can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. To investigate potential characteristics to exploit as a feedback mechanism, our study examined the spectral properties of the trachea tissue to determine whether a unique spectral profile exists. In this work, hyperspectral cameras and fiber optic sensors were used to capture and analyze the reflectance profiles of tracheal and esophageal tissues illuminated with UV and white light. Our results show consistent and specific spectral characteristics of the trachea, providing foundational support for using spectral properties to detect features of the trachea.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have studied the method to improve the illumination efficiency in DFE with optical illumination design software. We have showed the result of illumination efficiency according to the change of geometrical shape in distal tip of plastic optical fiber (POF). We simulated the illumination efficiency in the case of the polished POF distal tip and the unpolished one, respectively using optical illumination system design software. We obtained the illumination efficiency was increased by about 46 percent in the polished distal tip more than in the unpolished distal tip when a light emitting diode (LED) was directly excited to the distal tip of POF. In order to demonstrate the simulated results, we showed the polishing fabrication of the distal tip in POF and have measured the illumination efficiency of the polished POF using LED. The measured results showed that illumination efficiency was increased by about 23 percent in the polished distal tip more than in the unpolished distal tip of POF. We have demonstrated the optimized geometrical shapes of the POF for minimization of the illumination loss. We have suggested the method to improve the illumination efficiency by 69 percent for a single fiber illumination delivery system of DFE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We demonstrate fiber-optic sensor applications to full-range complex optical coherence tomography (OCT). To extend imaging range in OCT, real value or interferogram measured from an interferometer is needed to convert into complex value. For the purpose, various treatments such as mechanical, electro-optical, optical and programming based methods have been exploited in the interferometer. To make complex signal in fiber-optic interferometer, we propose vibrationbased optical phase shifting method. The proposed method utilizes optical fiber sensors that are for the detection of vibration using optical fiber. When coiled fiber was exposed to vibration, interferogram presents fringe shift without periodicity variations, which means that vibration induces phase shift in the interferometer. Therefore, intentionally generated vibration could be applicable to controlling of the optical phase shift and retrieval of the complex signal. As a result, the vibrations applied to coiled fiber were able to remove mirror image in Fourier domain. This result proved the feasibility of the proposed method on the extending of optical imaging range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fiber-based cylindrical light diffusers are often used in photodynamic therapy to illuminate a luminal organ, such as the esophagus. The diffusers are often made of plastic and suffer from short diffusion lengths and low transmission efficiencies over a broad spectrum. We have developed FibranceTM, a glass-based fiber optic cylindrical diffuser which can illuminate a fiber from 0.5 cm to 10 meters over a broad wavelength range. With these longer illumination lengths, a variety of other medical applications are possible beyond photodynamic therapy. We present a number of applications for Fibrance ranging from in situ controllable illumination for Photodynamic Therapy to light guided anatomy highlighting for minimally invasive surgery to mitigating hospital acquired infections and more.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.