The thermoelectric power generation device can take out electric energy from thermal energy directly. In order to transform a difference of temperature into electric power efficiently, it is common to make the thermoelement of N-type and P-type into pi structure. Since the thermoelectric power of an element was small, much pi structures needed to be connected with series, but when a large number were connected with series, there was a problem that internal resistance will become large.
In this study, we propose a new multilayer π-type structure sandwiched between an insulating layer using a metal direct bonding technology. By using this technique, significantly lowered layered structure the electrical resistance of the joint portion, because it can be produced by laminating at least one hundred sheets at a time, even when using a metal material having low Seebeck effect, a sufficiently practical level. It can boost the voltage, a possible cost reduction of the device itself. Further, since the laminated π type structure fabricated. Each interface is tightly bonded by eutectic reaction, it is possible to use a structure having a power generation function.