The development of group-III nitride materials has started a new era of GaN-based high-power devices, which have achieved a remarkable progress since then. However, the current large gap between theoretical performance predictions based on material properties and device physics on one side and practically achievable device figures of merit on the other requires a deeper understanding of the complex heterostructures, their inherent electrical fields, doping properties, interface quality and crystal defects.
In this study, we will present the nano-scale correlation of structural, electronic and optical properties of a GaN-based lateral p-n+ superjunction and the two-dimensional electron gas (2DEG) of a lateral AlGaN/GaN field-effect transistor by cathodoluminescence directly performed in a scanning transmission electron microscope.
|