Practical Applications of Infrared Thermal Sensing and Imaging Equipment

Third Edition

Tutorial Texts Series

- Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Third Edition, Herbert Kaplan, Vol. TT75
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Y. Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Logic-based Nonlinear Image Processing, Stephen Marshall, Vol. TT72
- The Physics and Engineering of Solid State Lasers, Yehoshua Kalisky, Vol. TT71
- Thermal Infrared Characterization of Ground Targets and Backgrounds, Second Edition, Pieter A. Jacobs, Vol. TT70
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuveer Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Diffractive Optics-Design, Fabrication, and Test, Donald C. O'Shea, Thomas J. Suleski, Alan D. Kathman, and Dennis W. Prather, Vol. TT62
- Fourier-Transform Spectroscopy Instrumentation Engineering, Vidi Saptari, Vol. TT61
- The Power- and Energy-Handling Capability of Optical Materials, Components, and Systems, Roger M. Wood, Vol. TT60
- Hands-on Morphological Image Processing, Edward R. Dougherty, Roberto A. Lotufo, Vol. TT59
- Integrated Optomechanical Analysis, Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Vol. TT58
- Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloux, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
- Image Performance in CRT Displays, Kenneth Compton, Vol. TT54
- Introduction to Laser Diode-Pumped Solid State Lasers, Richard Scheps, Vol. TT53
- Modulation Transfer Function in Optical and Electro-Optical Systems, Glenn D. Boreman, Vol. TT52
- Uncooled Thermal Imaging Arrays, Systems, and Applications, Paul W. Kruse, Vol. TT51
- Fundamentals of Antennas, Christos G. Christodoulou and Parveen Wahid, Vol. TT50
- Basics of Spectroscopy, David W. Ball, Vol. TT49
- Optical Design Fundamentals for Infrared Systems, Second Edition, Max J. Riedl, Vol. TT48
- Resolution Enhancement Techniques in Optical Lithography, Alfred Kwok-Kit Wong, Vol. TT47
- Copper Interconnect Technology, Christoph Steinbrüchel and Barry L. Chin, Vol. TT46
- Optical Design for Visual Systems, Bruce H. Walker, Vol. TT45
- Fundamentals of Contamination Control, Alan C. Tribble, Vol. TT44
- Evolutionary Computation: Principles and Practice for Signal Processing, David Fogel, Vol. TT43
- Infrared Optics and Zoom Lenses, Allen Mann, Vol. TT42
- Introduction to Adaptive Optics, Robert K. Tyson, Vol. TT41
- Fractal and Wavelet Image Compression Techniques, Stephen Welstead, Vol. TT40
- Analysis of Sampled Imaging Systems, R. H. Vollmerhausen and R. G. Driggers, Vol. TT39
- Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Valery Tuchin, Vol. TT38
- Fundamentos de Electro-Óptica para Ingenieros, Glenn D. Boreman, translated by Javier Alda, Vol. TT37
- Infrared Design Examples, William L. Wolfe, Vol. TT36
- Sensor and Data Fusion Concepts and Applications, Second Edition, L. A. Klein, Vol. TT35
- Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Second Edition, Herbert Kaplan, Vol. TT34
- Fundamentals of Machine Vision, Harley R. Myler, Vol. TT33

Practical Applications of Infrared Thermal Sensing and Imaging Equipment

Third Edition

Herbert Kaplan

Tutorial Texts in Optical Engineering Volume TT75

Bellingham, Washington USA

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/24/2013 Terms of Use: http://spiedl.org/terms

Library of Congress Cataloging-in-Publication Data

Kaplan, Herbert.

Practical applications of infrared thermal sensing and imaging equipment / by Herbert Kaplan. — 3^{rd} ed.

p. cm. — (Tutorial texts) Includes bibliographical references. ISBN 978-0-8194-6723-2

1. Thermography. 2. Infrared imaging. 3. Infrared detectors. 4. Infrared equipment.

5. Thermography. 6. Infrared technology. I. Title.

TA1570.K37 2007 621.36'2—dc22

2007004303

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright © 2007 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

Introduction to the Series

Since its conception in 1989, the Tutorial Texts series has grown to more than 70 titles covering many diverse fields of science and engineering. When the series was started, the goal of the series was to provide a way to make the material presented in SPIE short courses available to those who could not attend, and to provide a reference text for those who could. Many of the texts in this series are generated from notes that were presented during these short courses. But as stand-alone documents, short course notes do not generally serve the student or reader well. Short course notes typically are developed on the assumption that supporting material will be presented verbally to complement the notes, which are generally written in summary form to highlight key technical topics and therefore are not intended as stand-alone documents. Additionally, the figures, tables, and other graphically formatted information accompanying the notes require the further explanation given during the instructor's lecture. Thus, by adding the appropriate detail presented during the lecture, the course material can be read and used independently in a tutorial fashion.

What separates the books in this series from other technical monographs and textbooks is the way in which the material is presented. To keep in line with the tutorial nature of the series, many of the topics presented in these texts are followed by detailed examples that further explain the concepts presented. Many pictures and illustrations are included with each text and, where appropriate, tabular reference data are also included.

The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, and micromachining. When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the processes and technologies under discussion.

It is my goal to maintain the style and quality of books in the series, and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

> Arthur R. Weeks, Jr. University of Central Florida

Contents

List of Figures	xiii
List of Tables	xvii
List of Acronyms and Abbreviations	xix
Preface	xxi

Part I: Basics and Instrument Overview

Chapter 1	Introduction	3
1.1	Overview of This Text	3
1.2	Reasons for Using IR Instruments	3
1.3	Advantages of Noncontact Thermal Measurement	4
1.4		5
1.5	Evolution of IR Cameras	6
Chapter 2	Basics of Noncontact Thermal Measurements	9
2.1	Heat Transfer and Radiation Exchange Basics	9
	2.1.1 Heat and temperature	9
	2.1.2 Converting temperature units	9
	2.1.3 Three modes of heat transfer	10
	2.1.4 Conduction	10
	2.1.5 Convection	11
	2.1.6 Radiation	12
	2.1.7 Radiation exchange at the target surface	13
	2.1.8 Specular and diffuse surfaces	14
	2.1.9 Transient heat exchange	14
2.2	Infrared Measurement Problem	15
	2.2.1 Noncontact thermal measurements	16
	2.2.2 Target surface	16
	2.2.3 Transmitting medium	20
	2.2.4 Measuring instrument	22
2.3	Thermal Scanning and Imaging Instruments	25
	2.3.1 Line scanning	25
	2.3.2 Two-dimensional opto-mechanical scanning	26

	2.3.3	Infrared	focal plane array (IRFPA) cameras	27
	2.3.4	IRFPA	letectors	28
	2.3.5	Pyroelee	ctric vidicon thermal imagers	29
Chapter 3		0	nstrument to the Application	33
3.1			nometers (Point-Sensing Instruments)	33
3.2			as—Qualitative and Quantitative	37
	3.2.1		ance parameters of quantitative cameras	39
		3.2.1.1	Total field of view (TFOV) and instantaneous	
			field of view (IFOV)	40
			Temperature sensitivity: MRTD or MRT	40
		3.2.1.3	Imaging spatial resolution and instantaneous FOV	41
		3.2.1.4	Measurement spatial resolution (IFOVmeas	
			or MFOV) for opto-mechanically scanned imagers	43
		3.2.1.5	Measurement spatial resolution (IFOVmeas	
			or MFOV) for FPA imagers	45
		3.2.1.6		45
2.2	3.2.2		ance parameters of qualitative cameras	46
3.3		•	g Software	46
3.4	Therm	ial Image	Fusion Techniques	48
Chapter 4		iments O		49
4.1			l Classification of Instruments	49
4.2			ufacturers	50
4.3			nstruments	50
	4.3.1		nsors (radiation thermometers)	50 50
			Infrared thermocouples and probes	- 10
		1212	Doutshis houd hold in stars and a	
			Portable hand-held instruments	51
		4.3.1.3	On-line monitoring and control	51 52
	137	4.3.1.3 4.3.1.4	On-line monitoring and control Special instruments	51 52 52
		4.3.1.3 4.3.1.4 Line sca	On-line monitoring and control Special instruments nners	51 52 52 53
	4.3.2 4.3.3	4.3.1.3 4.3.1.4 Line sca Infrared	On-line monitoring and control Special instruments nners cameras (thermal imagers)	51 52 52 53 54
		4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers)	51 52 52 53 54 54
		4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers)	51 52 52 53 54
		4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring	51 52 53 54 54 55
4.4	4.3.3	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras	51 52 53 54 54 55 56
4.4	4.3.3 Therm	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3 al Imagin	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras g Diagnostic Software	51 52 53 54 54 55 56 57
4.4	4.3.3	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3 hal Imagir Quantita	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras g Diagnostic Software tive thermal measurements of targets	51 52 53 54 54 55 56
4.4	4.3.3 Therm 4.4.1	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3 mal Imagir Quantita Detailed	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras g Diagnostic Software	51 52 53 54 54 55 56 57 58
4.4	4.3.3 Therm 4.4.1 4.4.2	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3 al Imagir Quantita Detailed Image re	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras g Diagnostic Software tive thermal measurements of targets processing and image diagnostics	51 52 53 54 54 55 56 57 58 59
4.4	4.3.3 Therm 4.4.1 4.4.2 4.4.3	4.3.1.3 4.3.1.4 Line sca Infrared 4.3.3.1 4.3.3.2 4.3.3.3 al Imagir Quantita Detailed Image ro Image c	On-line monitoring and control Special instruments nners cameras (thermal imagers) Cameras, nonmeasuring (thermal viewers) Cameras, measuring (thermographic imagers) Performance comparisons of FPA measuring cameras og Diagnostic Software tive thermal measurements of targets processing and image diagnostics ecording, storage, and recovery	51 52 52 53 54 54 55 56 57 58 59 59

-		IR Sensing and Imaging Instruments	63
5.1		action: The Thermal Behavior of the Target	63
	5.1.1		64
		Reflectance difference	64
		Transmittance difference	64
	5.1.4		64
		Mass transport difference	65
	5.1.6	e	65
	5.1.7	1	65
	5.1.8	Induced heating difference	65
		Energy conversion difference	65
	5.1.10	Direct heat transfer difference	65
	5.1.11	Learning about the target environment	66
5.2	Prepara	ation of Equipment for Operation	66
	5.2.1	Calibration and radiation reference sources	66
		5.2.1.1 Checking calibration	67
		5.2.1.2 Transfer calibration	67
	5.2.2	Equipment checklist	68
	5.2.3	Equipment checkout and calibration	68
	5.2.4	Batteries	68
5.3	Avoidi	ng Common Mistakes in Instrument Operation	68
	5.3.1		69
	5.3.2		69
	5.3.3	Setting the correct emissivity	69
	5.3.4	Filling the IFOV meas for accurate temperature	
		measurements	70
	5.3.5	Aiming normal to the target surface	71
	5.3.6	Recognizing and avoiding reflections from external	
		sources	71
	5.3.7	Avoiding radiant heat damage to the instrument	72
		Using IR transmitting windows	72
5.4		portance of Operator Training	72
	5.4.1	Training programs and certification	72

Part II: Instrument Applications

Chapter 6	Introduction to Applications	77
Chapter 7	Plant Condition Monitoring and Predictive Maintenance	79
7.1	Introduction	79
7.2	Electrical Findings	80
	7.2.1 High electrical resistance	80
	7.2.2 Short circuits	80

ix

	7.2.3 Open circuits	82
	7.2.4 Inductive currents	83
	7.2.5 Energized grounds	83
	7.2.6 Condition guidelines	84
7.3	Mechanical Findings	85
	7.3.1 Friction	85
	7.3.2 Valve or pipe blockage/leakage	86
	7.3.3 Insulation within the plant or facility	87
7.4	Miscellaneous Applications	87
	7.4.1 Rebar location	88
	7.4.2 Condenser air in-leakage	88
	7.4.3 Containment spray ring headers	88
	7.4.4 Hydrogen igniters	88
	7.4.5 Effluent thermal plumes	89
	7.4.6 Gas leak detection	89
	7.4.7 Seal failures	89
Chapter 8	Buildings and Infrastructure	91
8.1	Introduction	91
8.2	Measuring Insulating Properties	92
8.3	Considering the Total Structure	92
8.4	Industrial Roof Moisture Detection	93
8.5	Subsurface Leaks and Anomalies	94
8.6	Thermal Image Fusion Benefit	96
8.7	Thermographic Inspection of Our Aging Infrastructure	96
Chapter 9	Materials Testing	97
9.1	Materials Testing—IR Nondestructive Testing	97
9.2	Failure Modes and Establishment of Acceptance Criteria	99
9.3	Selecting the Right IR Imaging System	99
9.4	Pulsed Heat Injection Applications	101
	9.4.1 New signal-based technique simplifies image	
	interpretation	103
	9.4.2 Case study: Boiler tube corrosion thinning assessment	103
9.5	Infrastructure NDT	106
Chapter 10	Product and Process Monitoring and Control	107
10.1	Evolution of Noncontact Process Control	107
10.2	Full Image Process Monitoring	109
	Product Monitoring of Semiconductors	110
	Steel Wire Drawing Machine Monitoring	110
	Glass Products Monitoring (Spectral Considerations)	112
	Full Image Process Control	112
10.7	Closing the Loop—Examples	114

Chapter 11	Night Vision, Security, and Surveillance	117
- 11.1	Introduction	117
11.2	Comparing Thermal Imagers with Image Intensifiers	118
11.3	Homeland Security and other Nonmilitary Applications	118
	11.3.1 Aerial-, ground-, and sea-based search and rescue	118
	11.3.2 Firefighting and first response	118
	11.3.3 Space and airborne reconnaissance	119
	11.3.4 Police surveillance and crime detection and security	119
	11.3.5 Driver's aid night vision	120
	11.3.6 New thermal image fusion applications	121
	11.3.7 New military applications	121
Chapter 12	Life Sciences Thermography	123
12.1	Introduction	123
12.2	Thermography as a Diagnostic Aid in the Early Detection	
	of Breast Cancer	123
12.3	Veterinary Medicine	124
12.4	Biological and Threat Assessment Applications	124
Appendix A	Commercial Instrument Performance Characteristics	127
Appendix B	Manufacturers of IR Sensing and Imaging Instruments	145
Appendix C	Table of Generic Normal Emissivities of Materials	149
Appendix D	A Glossary of Terms for the Infrared Thermographer	155

List of Figures

Figure	Description	Page
2.1	Conductive heat flow	11
2.2	Convective heat flow	12
2.3	Infrared in the electromagnetic spectrum	13
2.4	Radiative heat flow	13
2.5	Radiation impinging on a surface	14
2.6	Three sets of characteristics in making IR measurements	17
2.7	Blackbody curves at various temperatures	17
2.8	Spectral distributions of a blackbody, graybody,	
	and non-graybody	19
2.9	Components of energy reaching the measuring instrument	19
2.10	Aiming the instrument to avoid point reflections	20
2.11	Infrared atmospheric transmission for a 10-meter path	
	at sea level (50% relative humidity)	21
2.12	Spectral characteristics of glass samples (percent transmission,	
	absorption, and reflectance)	21
2.13	Transmission of IR transmitting materials	22
2.14	Components of an IR radiation thermometer	23
2.15	Typical IR radiation thermometer schematic	24
2.16	Response curves of various IR detectors	25
2.17	(a) The addition of a scanning element to a radiation thermo-	
	meter for single line scanning. (b) Eliminating the scanning	
	element – the substitution of a linear FPA detector for	
	the single element detector	26
2.18	Infrared line scanner schematic and scanner operation	27
2.19	Infrared opto-mechanical scanning imager	27
2.20	Infrared focal plane array camera schematic	28
2.21	Pyrovidicon camera tube schematic	29
3.1	Instrument speed of response and time constant	34
3.2	Instrument FOV determination	35
3.3	Fields of view of IR radiation thermometers	36
3.4	Measuring temperature of polyethylene	38
3.5	Measuring temperature of polyester	38
3.6	TFOV and IFOV of an IR camera	41

Figure	Description	Page
3.7	Test setup for MRTD measurement and MRTD curve	42
3.8	Test setup for MTF measurement	42
3.9	MRTD and MTF for a system rated at 1 mrad	44
3.10	Test setup for slit response function	44
3.11	Hole response method for determination of IFOVmeas	
	(MFOV) for FPA-based cameras	45
3.12	Plot of hole response function for an FPA-based camera	
	where MFOV is measured at 8.2 mrad	46
5.1	Measuring target effective emissivity	70
5.2	Quick calculation for target spot size and IFOV calculation	71
7.1	Excessive heating of a connecting clip due to deterioration	81
7.2	Overheating at a switchyard disconnect due to high contact	
	resistance	81
7.3	Disastrous failure of leaking isolator	82
7.4	Fusion of a visible and thermal image of a complex	
	electrical panel	83
7.5	Overheated pump motor at right caused by lubricant	
	deterioration	86
7.6	Abnormally functioning steam trap shown on the left side	87
7.7	Gas leak in valve appears as a black cloud on the thermogram	89
7.8	Leaking seal in a joint between a gas turbine and a steam	
	boiler	90
8.1	Thermogram of a building showing the effects of air	
	exfiltration	92
8.2	Thermogram of a building showing the effects of insulation	
	deficiencies	93
8.3	Thermogram of a roof with moisture saturation	95
8.4	Roof thermogram with heated interior showing insulation	
	differences and no water saturation	95
8.5	Photo and thermogram of a radiantly heated floor	95
8.6	Insulation void on visibly featureless wall is pinpointed using	
	thermal image fusion	96
9.1	Example of steady-state, active (heat injection) IRNDT for	
	occlusion and void detection	99
9.2	Three-view thermogram of a cable section with electrical	
	current used as the active heat source	100
9.3	Basis for time-resolved IR radiometry (TRIR)	101
9.4	Configuration for pulsed thermography	103
9.5	Examples of IRNDT images using thermal wave injection—	
	see text for descriptions	104
9.6	Results of thermal image reconstruction on a graphite epoxy	
	sample	104

Figure	Description	Page
9.7	In-situ thermogram of a boiler tube section indicating areas	
	of thinning due to corrosion	105
9.8	Thermogram of a new section of boiler tubing not yet put	
10.1	into service—no thinning indicated	105
10.1	Three methods of accomplishing process control	108
10.2	Typical configuration for multisensor process control	108
10.3	Electrolytic tankhouse scan where interelectrode shorts	
	appear as hot spots	109
10.4	Quadrant display of a device under test showing	
	(a) unpowered radiance, (b) powered radiance, (c) emissivity,	
	and (d) "true temperature"	111
10.5	Wire drawing machine capstan thermograms showing	
	(a) proper cooling, and (b) improper cooling	111
10.6	Using the same imager with different filters to measure	
	temperatures of the filaments (top thermogram) and	
	the glass envelope (bottom thermogram)	113
10.7	Thermal image process control using a line scanner	
	and set points	114
10.8	Full image process control using a line scanner and	
	multiple zones: (a) before implementation of full image	
	process control; (b) after implementation of full image process	
	control	115
11.1	Thermogram of a vessel at sea at night in fog $(8-12 \mu\text{m})$	119
11.2	Thermogram of an intruder at night $(8-12 \mu m)$	120
11.3	Hidden compartment in a vehicle	120
11.4	Driver's thermal image compared to visible image	121
11.5	Thermogram of freeway traffic at night $(8-12 \mu m)$	122
11.6	(a) Visible, (b) thermal, and (c) fused images with smoke	122
11.7	View of a military helicopter from the ground	122
12.1	Sample breast thermograms of three patients:	
	(a) normal, (b) fibrosystic changes, and (c) early stage	
	malignant tumor	124
12.2	Confirmed inflammations at two different locations on	
	a dog's back	124
12.3	Thermographic results of SARS screening:	
	(a) normal subject, and (b) febrile subject	125
A-1	Target and instrument background	156

List of Tables

Table	Description	Page
2.1	Temperature conversion chart	30
6.1	Industrial applications of thermal sensing and imaging instruments by industry	77
6.2	Industrial applications of thermal sensing and imaging instruments by discipline	78
7.1	Classification of electrical faults	84
7.2	Compensating for wind effects	85

List of Acronyms and Abbreviations

ANSI	American National Standards Institute
ASHRAE	American Society of Heating, Refrigerating, and
	Air-Conditioning Engineers
ASNT	American Society for Nondestructive Testing
ASTM	American Society for Test and Measurement
BCD	binary coded decimal
BST	barium-strontium-titanate
dc emf	direct current electromagnetic force
emf	electromagnetic force
EPRI	Electric Power Research Institute
FLIR	forward-looking infrared
FOV	field of view
FPA	focal plane array
HRSG	heat recovery steam generator
IFOV	instantaneous field of view
IFOVmeas or MFOV	measurement IFOV or measurement spatial resolution
IR	infrared
IRFPA	infrared focal plane array
IRNDT	infrared nondestructive testing
IVD	intervertebral disk disease
LWIR	long-wave infrared region
MFOV	see IFOVmeas
MRT	minimum resolvable temperature
MRTD	minimum resolvable temperature difference
MTF	modulation transfer function
MWIR	mid-wave infrared region
NDE	nondestructive evaluation
NEI	noise equivalent irradiance
NETD	noise equivalent irradiance noise equivalent temperature difference
NETD NIR	noise equivalent irradiance
NETD NIR NIST	noise equivalent irradiance noise equivalent temperature difference near infrared National Institute of Standards and Technology (U.S.)
NETD NIR	noise equivalent irradiance noise equivalent temperature difference near infrared

PCMCIA PI	Personal Computer Memory Card International Association proportional plus integral
PID	proportional plus integral plus differential
QWIP	quantum well infrared photodetector
SRF	slit response function
SWIR	short-wave infrared region
TE	thermoelectric
TFOV	total field of view
TLV	thermal light valve
TRIR	time-resolved infrared radiometry
TSR	thermographic signal reconstruction
VDC	volts DC

Preface

The mapping of infrared (IR) energy radiated from the surface of natural and manufactured objects makes it possible to detect and recognize objects in the dark and under adverse weather and atmospheric conditions. Quantification of this energy allows users (thermographers) to determine the temperature and thermal behavior of objects.

Infrared thermal sensing and imaging instruments make it possible to measure and map surface temperature and thermal distribution passively and nonintrusively. In addition to the passive measurement of temperature distribution, thermographers have learned to use active or "thermal injection" techniques to study and evaluate the structural integrity of materials and fabricated bonds.

The purposes of this text are:

- To familiarize potential users of commercial IR sensing and imaging instruments with IR measurement and analysis basics;
- To provide the practical information needed for users to select the instrument most appropriate for their application;
- To describe how to perform valid and successful measurements in a variety of applications;
- To serve as a reference to help thermographers examine the validity of new applications.

This text is presented in two parts.

Part I begins with a review of temperature, heat, and heat transfer, with emphasis on radiative heat transfer and its relationship to IR radiation and measurement basics. Physical laws (equations) are presented in terms of their practical importance to the measurement mission.

This is followed by a review and discussion of the characteristics and performance parameters of IR sensing and imaging instruments, including a review of thermal imaging diagnostic software. A discussion of equipment operation follows, including guidelines for making successful measurements.

Part I concludes with a section on training and training programs, highlighting the importance of formal operator training and certification.

What's New?

The second edition of this text was published in 1999, and since that time many improvements have taken place in instrumentation performance and versatility. For example, the almost total replacement of opto-mechanically scanned imagers with focal plane array (FPA)-based "staring" imagers has reduced the size, increased the ruggedness, and improved the spatial resolution of IR cameras, all of which have changed thermographers' expectations of camera performance.

Thus, this third edition reviews these many changes and how they impact the way thermographers operate, deploy, calibrate, and test the new instruments. In addition, the instruments that have been made essentially obsolete are reviewed as part of the historical evolution of the technology.

Part II introduces typical applications for thermal sensing and imaging instruments. Several chapters present various applications areas and discuss typical solutions to measurement problems.

The applications are grouped into logical categories following the guidelines established by SPIE's evolving Thermosense series of meetings, held annually since 1978.

In an attempt to classify these applications into logical categories by industry and discipline, the Thermosense symposia usually devote at least one session to each of the following categories:

- 1. Plant Condition Monitoring and Predictive Maintenance
- 2. Buildings and Infrastructure
- 3. Materials Evaluation Infrared Nondestructive Testing
- 4. Process Monitoring and Control
- 5. Night Vision, Security, and Surveillance
- 6. Life Sciences Thermography
- 7. Research and Development (R&D)

The first six classifications are self-explanatory; the seventh is a catch-all to include the introduction of new instrumentation or experimental techniques. Papers on subjects classified as "R&D" one year will often be included in one of the other classifications in subsequent years as the instrumentation or techniques mature. Although these classifications have evolved somewhat over the years, they represent reasonable subdivisions. Therefore, the chapters in Part II are organized in general accordance with these classifications.

To assist the user in instrument selection, Appendix A contains a tabulation of currently available instruments by category and manufacturer, including a digest of performance characteristics and features. Appendix B is a current index of manufacturers' websites, addresses, and phone numbers.

The text also includes quick reference charts and tables to aid the user in on-site measurements (Appendix C) and a glossary of IR/thermography terms (Appendix D).

I would like to acknowledge the contributions of the following organizations for providing data and background for this text:

American Risk Consultants Corp. **Bales Scientific** General Motors Powertrain Goodyear Corp. Barnes Engineering Div. **Electric Power Research Institute** Electrophysics, Inc. FLIR Systems, Inc. Fluke Thermography Infrared Thermal Imaging, Inc. ISI Group, division of Mine Safety Appliances Honeywell Corp. Linear Laboratories, Safetytek Corp. Magnavox Electro-optical Systems Meditherm Mikron Infrared Mine Safety Appliances Corp. Quantum Focus Instruments Raytek, Inc., a Fluke company Raytheon Corp. SI Termografia Infrarroja Thermal Wave Imaging, Inc. Toledo Edison Waterfall Solutions

I would like to express my thanks to Rob Spring, P.E., of Snell Infrared, for his dedication to training in our technology, and for applying his instructor's eye to the expert review of this third edition.

I would also like to express my thanks to Paul Zayicek of Electric Power Research Institute's NDE Center for his professionalism, his vigorous promotion of IR thermography, his many contributions to the body of knowledge in thermography, and for reviewing the second edition of this text (1999).

Finally, I would like to express my appreciation to Ron Lucier of FLIR Systems Inc. for his careful and conscientious review of the first edition of this text (1993), and for his many contributions to the first and subsequent editions.

> Herbert Kaplan Boynton Beach, Florida January 2007