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Abstract. Cellular mechanosensation mechanisms have been impli-
cated in a variety of disease states. Specifically in renal tubules, the
primary cilium and associated mechanosensitive ion channels are hy-
pothesized to play a role in water and salt homeostasis, with relevant
disease states including polycystic kidney disease and hypertension.
Previous experiments investigating ciliary-mediated cellular mecha-
nosensation have used either fluid flow chambers or micropipetting to
elicit a biological response. The interpretation of these experiments in
terms of the “ciliary hypothesis” has been difficult due the spatially
distributed nature of the mechanical disturbance—several competing
hypotheses regarding possible roles of primary cilium, glycocalyx, mi-
crovilli, cell junctions, and actin cytoskeleton exist. I report initial data
using optical tweezers to manipulate individual primary cilia in an
attempt to elicit a mechanotransduction response—specifically, the
release of intracellular calcium. The advantage of using laser tweezers
over previous work is that the applied disturbance is highly localized.
I find that stimulation of a primary cilium elicits a response, while
stimulation of the apical surface membrane does not. These results
lend support to the hypothesis that the primary cilium mediates trans-
duction of mechanical strain into a biochemical response in renal
epithelia. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

any types of epithelial cells within an organism, upon ter-
inal differentiation, grow a single nonmotile cilium on their

ree �apical� surface.1 This organelle, related to the bacterial
agellum, protrudes several microns into the lumen, is en-
ased by the cell membrane, and is composed of a central
xoneme containing nine microtubule doublets anchored to
he mother centriole. Although its existence and microscopic
tructure has been known for over four decades, its functions
re not well explored and have come under intense investiga-
ion with the recent demonstration that bending the cilium
nduces a release of intracellular calcium.2 The physiological
ole of the primary cilium in humans is inferred by experi-
ents linking defects in the cilium and its cellular anchor, the

asal body, to several human pathophysiological phenotypes,
ncluding Kartagener syndrome,3 polycystic kidney disease,4

ephronophthisis,5 Bardet-Biedl syndrome,6 and Meckel-
ruber syndrome.7

Epithelial tissue provides a functional barrier between “in-
ide” and “outside.” Often just one cell layer thick, epithelial
ayers are distinguished from other types of tissue due to di-
ected transport of solutes �salts, glucose, etc.� through the

ddress all correspondence to: Andrew Resnick, Cleveland State University,
epartment of Physics, 2121 Euclid Avenue, Cleveland, Ohio 44115. Tel: 216-
87-2437; E-mail a.resnick@csuohio.edu
ournal of Biomedical Optics 015005-
monolayer, which is accomplished by coordinated action of
many apical and basolateral membrane transporter proteins.8

The study of epithelial tissue can be used to gain understand-
ing of the regulatory systems within an organism—for ex-
ample, total body salt and water content as regulated by the
kidney.9 Mechanosensation, in the context of renal epithelial
tissue, refers to the hypothesis that homeostatic mechanisms
can regulate total body content of a substance by measuring
both concentration �ligand-receptor binding� and volumetric
flow rate �possibly by fluid flow induced shear stress�.10

A complete model of ciliary-mediated mechanosensation
and downstream mechanotransduction signaling events in the
collecting duct has not yet been developed.11 The initial event
is taken to be the opening of a mechanosensitive ion channel
�e.g., polycystin-2 �Ref. 12�, transient receptor potential vanil-
loid �TRPV�-4 �Ref. 13�� in response to ciliary bending,
which allows a small number of extracellular Ca�� ions into
the cytosol. This local increase in Ca�� concentration in turn
may open ryanodine receptors �shown in Madin-Darby canine
kidney �MDCK� cells12�, 1,4,5-triphosphate �IP3�-sensitive
Ca�� receptors �shown in pancreatic acinar cells14�, or per-
haps other mechanisms,15 with a resultant release of large
amounts of Ca�� �calcium-mediated calcium release� into the
cytosol. Many regulatory processes are mediated by Ca��,
including vertebrate left–right asymmetry,16 cellular growth

1083-3668/2010/15�1�/015005/8/$25.00 © 2010 SPIE
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nd apoptosis,17 and G-protein-coupled signaling pathways.18

he cytosolic calcium is then resequestered within the endo-
lasmic reticulum �ER�, and the cycle may begin again upon
estimulation of the primary cilium.

Relevant Previous Work
everal different types of observations indicate that the pri-
ary cilium of renal and other epithelial cells can transduce

n externally applied mechanical signal to a intracellular sig-
aling pathway.10,12,19–21 In most previously published
xperiments,22–25 the mechanical stimulation was acute steady
hear stress applied in the form of forced fluid flow over a
onfluent monolayer of epithelial cells. Cellular readouts un-
er these conditions were increases in cytosolic Ca2+ and de-
reases in stimulated cyclic adenosine monophosphate
cAMP� levels. In other, more recent experiments,10,26,27 gen-
ler stresses in the form of orbital shaking were applied over-
ight to epithelial monolayers. In one experiment using
haking,26 trafficking of the angiotensin receptor type 1 to the
pical surface was enhanced. This, combined with the results
f another experiment showing that cilia-mediated flow sens-
ng modulates transepithelial sodium flux,10 suggests the pos-
ibility that ciliary mechanosensation plays a role in flow-
ependent enhancement of proximal tubular salt and fluid
eabsorption. Last, in another experiment, ciliary mecha-
osensation by mild shaking affected retention of the tran-
cription factor signal transducers and activators of transcrip-
ion protein 6 �STAT6� in the cilium and prevention of
ranslocation to the nucleus,27 thus suggesting, together with
ther data, that the cilium serves as sensor for orienting cell
ivision along the tubular axis.28

Even so, experiments have yet to unequivocally demon-
trate an essential role of the primary cilium in mechanosen-
ation. While the biological sequellae have been carefully
tudied, the initial mechanical stimulation has received much
ess attention. The question of the role of the primary cilium
n transducing a biological response to physiologically rel-
vant mechanical stimulation currently remains open, with
everal alternative pathways proposed.29,30 Fluid flow experi-
ents, by their nature, apply a shear stress over the entire

pical surface of the cells, thus applying a force to �for ex-
mple� the actin microvilli brush border,31 the glycocalyx,32

nd the apical membrane, which is mechanically coupled to
he cytoskeleton.33 Additional questions regarding the appro-
riate magnitude and dynamics of the stimulation also exist.
or example, there is no reason to assume that an applied
teady stress will produce the same downstream signaling
vents as an applied unsteady stress. Within the kidney, the
ow is clearly unsteady,34 while experimental conditions ap-
ly steady stimulation. A few previous experiments10,22,35 ap-
ear to show that the force-response curve is not graded �i.e.,
he mechanotransduction pathway is either activated or not�,
ut others may show a graded response.2

Aim of the Study
first attempt at disentangling the various problems of ex-

erimental interpretation is reported here. An experiment was
erformed to appy a highly localized disturbance directly to a
ndividual primary cilium. Laser tweezers36 were used to
ring a micrometer-sized object directly into contact with a
ournal of Biomedical Optics 015005-
primary cilium. The time-varying concentration of cytosolic
Ca++ was used as a cellular readout to indicate whether a
physiologically relevant response has occurred as a way to
directly connect this work with previous reports. Additional
work was performed to demonstrate that a primary cilium
could be manipulated directly by the tweezer beam. The re-
sults presented here represent an initial study to localize an
applied force to the primary cilium as a way to clarify its
putative role in the mechanosensitive processes. The work
here also provides justification to further develop the method-
ology and quantitatively study the effects of magnitude and
dynamics in mechanosensation and mechanotransduction.

4 Methods
4.1 Cell Culture
Experiments were carried out with a mouse cell line derived
from the cortical collecting duct �mCCD 1296 �d�� of a het-
erozygous offspring of the Immortomouse �Charles River
Laboratories, Wilmington, Massachusetts�. The Immorto-
mouse carries as transgene a temperature-sensitive SV40 large
T antigen under the control of an interferon-� response ele-
ment. Cells were maintained on collagen-coated Millicell-CM
inserts �Millipore Corp, Billerica, Massachusetts� to promote
a polarized epithelial phenotype. Cells were grown to conflu-
ence at 33 °C, 5% CO2 and then maintained at 37 °C, 5%
CO2 to enhance differentiation. The growth medium consisted
of the following �final concentrations�: Dulbecco’s Modified
Eagle Medium �DMEM� w/o glucose and Ham’s F12 at a 1:1
ratio, 5 mM glucose, 5 �g /ml transferrin, 5 �g /ml insulin,
10 ng /ml epithelial growth factor �EGF�, 4 �g /ml dexam-
ethasone, 15 mM 4-�2-hydroxyethyl�-1-
piperazineethanesulfonic acid �HEPES�, 0.06% NaHCO3,
2 mM L-glutamine, 10 ng /ml mouse interferon-�, 50 �M
ascorbic acid 2-phosphate, 20 nM selenium, 5% fetal bovine
serum �FBS�. For differentiation, FBS, insulin, and
interferon-� were omitted from the apical medium and insu-
lin, EGF, and interferon-� from the basal medium. The cells
developed cilia and became fully differentiated �from tran-
sepithelial electrophysiology; see Ref. 10� after 2 weeks of
culture in differentiation conditions.

Figure 1.

Fig. 1 En face view of terminally differentiated mCCD monolayer.
Scale bar is 5 microns. Arrows indicate primary cilia, which grow
perpendicular to the cell surface. Typically, between 50% to 80% of
cultured cells contain a primary cilium. Inset is a magnified and
contrast-enhanced section showing the middle cilium.
January/February 2010 � Vol. 15�1�2
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An en face image of the cultured cells after complete dif-
erentiation is shown in Fig. 1.

.2 Calcium Fura-2 Protocol
he protocol follows that from Nauli.12 A stock solution of
mM Fura-2AM was first prepared, consisting of 1 mg Fura-

AM into 1 mL dispersant solution, consisting of 20 wt%
luronic F-127 in 80 wt% dimethyl sulfoxide �DMSO�. The
ells were incubated with the stock solution diluted down to
�M at 37 °C for 30 min. The monolayer was washed three

imes with DMEM to remove excess Fura-2AM and the insert
laced into a 60-mm culture dish with DMEM �phenol red
ndicator omitted, 1 mM probenecid added�, which was then
laced within the microscope incubation chamber. The illumi-
ator source was a Lambda DG-4 switchable source that al-
ernately illuminated the cells with 340-nm and 380-nm light,
orresponding to the different absorption peaks of Ca��-free
nd Ca��-bound states of Fura-2. A dichroic filter cube
Chroma filter set 71000A� within the microscope was used to
lluminate and detect the Fura-2.

.3 Optical Tweezers
ee Fig. 2. The source was a Crystalaser IRCL-0.5-W-1064, a
iode-pumped Nd:YAG continuous-wave single-mode laser
roviding 0.5-W optical power from a 10-W electrical power
upply. The optical tweezer breadboard layout was con-
tructed using Linos Microbench optomechanical mounts.
chromatic doublets were used for the beam expansion. The
rst lens has a 10-mm focal length, while the second has a
00-mm focal length. Both lenses were antireflection coated
or 1064 nm. The focal lengths were chosen simply for con-
enience: the distance between the entrance port of the micro-
cope and the objective lens is 140 mm, and the laser beam
as expanded a factor of about 6� to fill the aperture. The
bjective lens used was a Leica 63� NA 0.9 U-V-I HCX long
orking distance plan apochromat dipping objective with a
.2-mm working distance. The tweezer couples into the mi-
roscope through an existing lateral port. A side-looking
064-nm dichroic mirror �Chroma� mounted within the fluo-
escence turret provides the ability to perform normal transil-
umination microscope viewing while the tweezers are oper-
ting. A KG-1 IR cutoff filter �Newport� was permanently
nstalled within the imaging path above the fluorescence turret
o attenuate the Nd:YAG beam during alignment and trapping

ig. 2 Laser tweezer apparatus. The laser tweezer is coupled into the
uorescence turret via a side-look mirror and is located outside the

ncubation chamber.
ournal of Biomedical Optics 015005-
operations. The small amount of leakage from the backscat-
tered tweezer light through the two dichroic filters allows ob-
servation of the tweezer spot by a camera during alignment
and operation. The trapping beam was used to apply a force to
individual cells by moving the microscope stage; the trapping
beam does not move.

4.4 Microscopy

Imaging and manipulations of terminally differentiated epi-
thelial monolayers were carried out using a Leica DM 6000
upright microscope equipped with a heated and CO2 con-
trolled incubation chamber �Solent Scientific�. Calcium imag-
ing was performed using a Princeton Instruments 512 EM-
CCD camera and a Sutter Instruments Lambda DG-4
switchable source. Bright-field images and optical trap moni-
toring was performed by a Point Grey Instruments “Flea”
camera. Calcium images were acquired using MetaFluor, and
typical exposure times were 300 ms. Image pairs were ac-
quired every 10 s and analyzed using MetaFluor Analyst.
Monolayers were found to be viable for up to 4 h, “viability”
defined here as a Ca�� response to adensosine triphosphate
�ATP� stimulation, and in addition, maintenance of transepi-
thelial resistance.

4.5 Microscope Sample Stage

Because of the nature of the experiments presented here, I
present some information regarding the sample stage. The
motion in z �along the optical axis� was controlled by the
Leica microscope, a microstepper motor with a resolution of
0.015 �m. A display allows quantitative control of the z-stage
displacement. Motion in x and y was accomplished by use of
a motorized Prior stage �H101A ProScanII� with a minimum
step size of 0.01 �m.

4.6 Tweezer Characterization

A complete characterization of the trap stiffness is beyond the
scope of this paper. Rather, the relevant information is simply
that the force applied to a cilium is within a physiologically
relevant range. Two methods were used to assess the maxi-
mum applied force: holding a sphere and moving the stage,37

and holding a sphere in an applied flow via a flow chamber.36

Polystyrene microspheres suspended in phosphate-buffered
saline �PBS� were used. A microsphere was trapped far from a
surface, and the sample stage moved at a slowly increasing
velocity until the sphere fell out of the trap. The trapping
force is then �approximately� given by the Stokes drag force.
This method correlated well with the alternative method,
holding a sphere stationary in the presence of applied steady
flow created by a digitally controlled peristaltic pump �Is-
matec REGLO ISM 834�. It should be noted that use of long
tubes of small diameter connecting the pump to the chamber
caused the flow within the flow chamber to be steady rather
than rectified. Both measurements indicated the trap strength
of a 2-�m-diam latex sphere in PBS of approximately
210 pN. This is in the range of forces within a renal tubule,38

indicating that a trapped sphere can be used to apply a physi-
ologically relevant force to a cilium.
January/February 2010 � Vol. 15�1�3
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.7 Calcium Imaging and Trapping
n example ratiometric image is shown in Fig. 3. With
etafluor running and acquiring images, the filter turret was
anually rotated from the Fura-2 cube to the tweezer cube

nd the illumination changed to bright field.
Observing the trapped particle and monolayer with the

lea camera, the trapped particle was rubbed either against the
pical surface or against the primary cilium of a single cell
everal times before returning the microscope back to calcium
maging configuration. A consequence of this procedure is
hat a few frames during the time course contain artifacts of
he Nd:YAG illumination and are consequently omitted from
he presented data. It should be noted that the combination of
he dichroic mirror and the KG-1 filter did not completely
liminate the backscattered trapping illumination. This is due
o the extreme sensitivity of the CCD array.

.8 Sample Size
ultiple measurements were performed on multiple monolay-

rs. Each experimental result presented here represents results
btained on four different confluent monolayers �with passage
umbers between 42 and 54�, each monolayer used up to five
imes �contingent on monolayer viability�, and each daily in-
ividual experimental run was performed on three different
ells from a single confluent monolayer. This sample size,
ombined with the clonal nature of the cell line, indicates the
esults obtained are robust.

Results
.1 The Tweezers Can Directly Trap a Cilium

with Sufficient Force to Move It
here are two ways the optical tweezers can be used to apply
force to a primary cilium. One way is to trap a small object

e.g., microsphere� and, using the object, push against the
ilium. A second way is to directly trap the cilium and move
he cell, causing a deformation in the cilium to occur. The
dvantage of the first method is that the trapping force, and
hus the force applied to the cilium, can be calculated much

ig. 3 Example ratiometric Fura-2 image. This image represents the
atio of two images, one acquired using 340-nm excitation and the
ther using 380-nm excitation. The circled cell is the one that was
anipulated with the laser tweezer. Scale bar is 5 microns.
ournal of Biomedical Optics 015005-
more accurately. The advantage of the second is that the twee-
zers apply a force to the cilium without any sort of material
contact occurring. The disadvantage of the first method is that
downstream signaling effects could be caused by the physical
contact between trapped object and cilium rather that the ap-
plied stress itself. The disadvantage of the second method is
that the applied force is known much less accurately, due to
lack of detailed knowledge of the optical properties of the
cilium, the high aspect ratio �length/diameter �20� of the
cilium, and the fact that a cilium is anchored at one end to the
cell. Because use of a trapped particle to deform a primary
cilium will allow for the possible confounding effects of
physical contact, I attempted to directly trap a primary cilium
with the optical tweezers and cause the cilium to deform.
Given the small diameter of the cilium �0.2 �m�, it was ex-
pected that any trapping force would be small, possibly insuf-
ficient to cause ciliary deformation. Example results are
shown in Fig. 4.

These images are taken from a video sequence and show
that a primary cilium can be stably trapped and held in the
trap with sufficient force to allow for significant deformation.
Using published data for the mechanical stiffness of the pri-
mary cilium,25 applying the trap to the distal tip of the cilium,
and measuring the maximal deflection of the cilium tip from
acquired images allowed the deformed cilium to be modeled
as a homogeneous cylindrical cantilevered beam38 and thus
estimate the applied force. Using this data, the applied force
was estimated to be approximately 1 pN. Based on perfused
tubule data,35 this is not a physiologically relevant force. Con-
sequently, trapped particles were used to apply mechanical
disturbances to cilia for the remainder of this study.

5.2 Trapping Does Not Damage the Monolayer
It is important to note that confluent monolayers represent a
functional entity that is highly sensitive to even small changes
in individual constituent cells.39 Specifically, loss of, or dam-
age to, a single cell is sufficient to render the entire monolayer
nonfunctional. Even though the trapping wavelength was cho-
sen to minimize absorption and photodamage,40 because
monolayer integrity is so different from apoptosis of isolated

(b)(a)

(c)

Fig. 4 Optically trapped cilium. Scale bar is 5 microns. Arrow indi-
cates the cilium. Frame �d� is a subtraction of frame �c� from frame �a�
and clearly indicates that the cilium can be moved directly by the
optical trap in spite of the submicron dimensions of the cilium.
January/February 2010 � Vol. 15�1�4
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ells, it was necessary to determine that the trapping laser did
ot irreparably damage the monolayer, either directly through
hotodamage and heating, or indirectly by heating the apical
edium. The trapping laser was trained on a single cell and

eld in place for several minutes, representing a much longer
xposure than occurs for trapping and stimulation. The mono-
ayer �still within the culture well� was then placed into a
oltohmeter �World Precision Instruments Endohm chamber�,
hich showed that the transepithelial resistivity remained un-
isturbed �monolayer resistance was typically
to 2 k� · cm2; Ref. 10��. There was evidence that the trap-

ing beam heated the medium, as seen by the appearance of
arge-scale convective motion, which would bring cellular de-
ris from elsewhere into the field of the view of the camera.
owever, no flow-induced biological effects were observed

as verified by Ca+ ratiometic imaging�. The induced flow did
ot appear to damage the viability of the monolayer either,
lso verified by transepithelial electrophysiology. Conse-
uently, although the tweezer beam may induce biological
ffects, the readouts chosen here are not affected.

.3 Applying the Tweezer Directly to the Cell
Membrane Does Not Elicit a Calcium
Response

wo procedures were performed to ascertain whether applica-
ion of the tweezer beam would result in the release of intra-
ellular Ca++. The trapping beam was applied directly to the
pical cell membrane, far from the primary cilium. For one set
f experiments, the trap was held steady in one position for a
inute. For other experimental runs, the cells were moved in

n oscillatory fashion for one minute, keeping the trap far
rom the primary cilium. The time scale was chosen based on
ow-type stimulation, in which the release of intracellular cal-
ium occurs very rapidly upon onset of flow.12 An example
race of the measured fluorescence ratio is shown in Fig. 5.
he graph shows no significant change in the concentration of
ytosolic Ca�� mechanotransduction pathways. This demon-
trates that the optical trap, in itself, does not cause the release
f intracellular Ca++.

.4 Physical Contact of a Trapped Particle Against
the Cell Membrane Does Not Elicit a Calcium
Response

n another experiment, a trapped particle was pushed into
hysical contact with the apical surface of a cell �far from a
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ig. 5 Ratiometric Fura-2 trace of a region containing a cell stimu-
ated by the laser tweezer beam. An apical region of a cell, far from
he primary cilium, was illuminated by the trapping laser. Scale bar
ndicates the time of illumination. Ratiometric image acquisition was
aused during tweezer stimulation.
ournal of Biomedical Optics 015005-
cilium�. Because the axial intensity gradient is approximately
five times less than the radial gradient for an NA 0.9 beam,41

the estimated maximum downward force exerted on the mem-
brane was 50 pN. The actual force applied was likely substan-
tially lower, corresponding to an observed bead displacement
of approximately 1 micron, based on z-axis displacement of
the microscope stage while maintaining the bead in optical
focus. This experiment was performed to more closely emu-
late the micropipetting technique of Praetorius and Spring2

and Sanderson and Dirksen.42 The trapped particle was sinu-
soidally oscillated along the surface for one minute. The re-
sults of the Fura-2 images are shown in Fig. 6.

Interestingly, stimulation of the apical surface by physical
contact did not induce the release of calcium into the cytosol,
indicating that any mechanotransduction apparatus is not
likely located indiscriminately along the apical surface. One
important and relevant distinction between this result and the
contrary result reported by Sanderson et al.43 is the magnitude
of applied force; Sanderson’s work reported pushing a mi-
cropipette 6 �m into the cell membrane, while the deforma-
tion reported here is substantially less.

It should be noted that the null results obtained here and
earlier collectively imply that any induced forces caused by
motion of the microscope stage are also insufficient to pro-
voke intracellular Ca++ release.
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Fig. 7 Ratiometric Fura-2 trace of a region containing a cell stimu-
lated by a trapped particle. Here, a primary cilium was manipulated
as Fig. 7, and the Fura-2 trace was calculated over a region of several
cells. Scale bar indicates time and duration of stimulation. The small
spike is an artifact of the experimental procedure.
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Fig. 6 Ratiometric Fura-2 trace of a region containing a cell stimu-
lated by a trapped particle. The trace was calculated based on a re-
gion of several cells. An apical region of a single cell, far from the
primary cilium, was stimulated by a trapped particle for 1 min. Scale
bar indicates duration of stimulation. Ratiometric image acquisition
commenced upon cessation of stimulation.
January/February 2010 � Vol. 15�1�5
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.5 Pushing a Trapped Microsphere against
the Cilium Correlates with the Release
of Intracellular Ca++

ere, a trapped microsphere was brought into contact with the
ilium once, with a typical Fura-2 trace shown in Fig. 7.
learly, contact with the primary cilium did elicit a response.
ased on the trap characterization data and the size of the

rapped particle,37 the applied force was not more than
00 pN. The interpretation is that a localized force applied
irectly to the primary cilium elicited release of intracellular
a++, in agreement with previous reports.2 This result, taken
ith the lack of intracellular calcium release when a force is

pplied elsewhere on the apical surface, implies that the pri-
ary cilium is the seat of mechanosensation in renal epithelia.

.6 ATP Applied Apically Did Elicit Intracellular Ca++

Release �Not Due to Flow�

s a final control, ATP was acutely applied to the apical me-
ia. This was regularly done as a way to check the overall
iability of the monolayer, as ATP is a potent agonist of Ca��

elease. Using a syringe and micropositioner, a small volume
several microliters, representing a sub 0.1% change in apical
olume� of ATP in DMEM was added to the apical surface.
he final ATP concentration, after addition to the apical sur-

ace, was approximately 1 mM, well in excess of the binding
onstant. The Ca�� trace �Fig. 8� shows the characteristic
esponse due to the presence of P2-purinergic receptors.44 It is
mportant to note that this response was not due to flow in-
uced by the addition of agonist; this was verified by adding
MEM alone at the same rate of application �results not

hown�.

Discussion
.1 Magnitude of Applied Force
he specific deformation state of the cilium �and resultant
lastic strain energy� is highly dependent on the distribution
f load along the length as well as the mechanical properties
f the cilium. While very little detailed experimentation to
easure the physical properties of the cilium has been

erformed,38 preliminary results indicate that the cilium can
e adequately modeled as a homogeneous slender cantile-
ered cylinder with a free end and a built-in end, and with a
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ig. 8 Ratiometric Fura-2 trace of a region containing cells stimulated
y apical addition of 2 mM ATP. Scale bar indicates time of addition
f solution. The small spike is an artifact of the experimental
rocedure.
ournal of Biomedical Optics 015005-
bending modulus of 31 pN*�m2 �Ref. 25�. To simplify inter-
pretation of the experimental results presented here, the force
was consistently applied as close to the free end of the cilium
as possible. Numerical solution of this system has been per-
formed, and preliminary results have been presented
elsewhere.38 Those prior results provided much of the justifi-
cation for the experimental work presented here.

6.2 Stimulation of the Apical Surface
There exists a sizable body of evidence that the molecular
origin of mechanosensation may not be related to the primary
cilium �see, for example, Refs. 32 and 45�. It is important to
note that this evidence is predicated on fluid flow stimulation
of epithelia—that is, the applied force was distributed over the
entire apical surface. If direct stimulation of the apical mem-
brane can induce a release of intracellular Ca��, one interpre-
tation would be that mechanosensation is not strictly mediated
by the primary cilium, and that mechanosensitive proteins ex-
ist indiscriminately on the apical membrane.33 However, the
experimental results indicate that direct stimulation of the api-
cal surface, with or without physical contact with the mem-
brane, does not elicit an intracellular Ca�� release. These re-
sults indicate that in principal cells of the cortical collecting
duct, the apical membrane does not participate in mechan-
otransduction.

6.3 Statistical Significance of Results
The various Fura-2 curves were obtained for multiple experi-
ments, performed on multiple cells within multiple confluent
monolayers. Thus, the results presented are robust against
cell-to-cell variations as well as variations of the amount of
Fura-2 dye loaded into the cell. Pharmacological manipula-
tions allowing quantitative conversion of the dual-wavelength
ratio to calcium concentration46 were not performed at the
time due to effects of calcium deprivation on the integrity of
the monolayer.47

6.4 Effects of Applying a Localized Disturbance
The major difference between previous reports and the results
reported here is the use of a method that applies a highly
localized disturbance—the spatial extent of the applied distur-
bance is on the order of a square micron or less. Conse-
quently, this experimental method does not suffer form any
ambiguity about where the applied forces act. The results pre-
sented here, taken together, tell a compelling story—it is pos-
sible to apply a localized force directly to a primary cilium
using laser tweezers, the magnitude of this force can generally
exist within a physiologically relevant range, and application
of a localized force directly to a primary cilium elicits a
physiological response, as previous reports indicate. This re-
port also presents preliminary data that apical force sensing
occurs only via the primary cilium, and that the mechanosen-
sitive apparatus is not indiscriminately located on the apical
surface. One possible explanation between the null results re-
ported here and positive results reported by other groups is
that the actin-integrin force sensing apparatus occurs on the
basolateral surface, which can be stimulated when the entire
monolayer is subjected to shear stress on the apical surface.

At this time, the apparatus is not able to directly trap a
cilium �or bead� while simultaneously performing Fura-2 ra-
January/February 2010 � Vol. 15�1�6
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iometric imaging due to both beamlines sharing the fluores-
ence turret. Consequently, one remaining potential ambiguity
s that the cilium-mediated response was obtained by physical
ontact of a trapped particle onto the cilium, rather than a
echanosensation mechanism. Even so, the data presented

ere is sufficient to distinguish between cilum-mediated
echanotransduction and alternative hypotheses.

Conclusion
his study presents evidence that a physiologically relevant
echanical force applied directly to the cilium elicits the re-

ease of intracellular Ca++, while forces of similar magnitude
pplied indiscriminately to the apical surface do not. Trapped
eads were used to provide the mechanical stimulus.

The importance of this study as compared to previous ex-
eriments is that the force was applied locally, rather than
ndiscriminately over the apical surface. Thus, this study is
ble to discriminate between alternate hypotheses of mecha-
osensation, whereas previous studies were not able to. Spe-
ifically, the results presented here indicate that the molecular
rigin of epithelial mechanosensation lies with the primary
ilium, and not with, for example, the glycocalyx or brush
order.

Future Work
n the near future, the microscope will be outfitted with a
uadrant photodiode �Phresh Photonics SiQu50-M�, which
ill be used to determine the detailed trap characteristics of a
irectly trapped cilium. This will allow a measurement of the
orce-response curve, as well as allow in situ measurements of
he mechanical properties of the primary cilium. Additional
ork to apply an oscillatory force is also planned. Last, work
as begun trying to perform Fura-2 imaging �and fluorescence
maging in general� while concurrently trapping, and this will

ore definitively spatially and temporally localize the mecha-
otransduction.
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