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Abstract. Quantitative phase imaging (QPI) is a label-free technique that provides optical path length
information for transparent specimens, finding utility in biology, materials science, and engineering. Here,
we present QPI of a three-dimensional (3D) stack of phase-only objects using a wavelength-multiplexed
diffractive optical processor. Utilizing multiple spatially engineered diffractive layers trained through deep
learning, this diffractive processor can transform the phase distributions of multiple two-dimensional
objects at various axial positions into intensity patterns, each encoded at a unique wavelength channel.
These wavelength-multiplexed patterns are projected onto a single field of view at the output plane of the
diffractive processor, enabling the capture of quantitative phase distributions of input objects located at
different axial planes using an intensity-only image sensor. Based on numerical simulations, we show that
our diffractive processor could simultaneously achieve all-optical QPI across several distinct axial planes
at the input by scanning the illumination wavelength. A proof-of-concept experiment with a 3D-fabricated
diffractive processor further validates our approach, showcasing successful imaging of two distinct phase
objects at different axial positions by scanning the illumination wavelength in the terahertz spectrum.
Diffractive network-based multiplane QPI designs can open up new avenues for compact on-chip phase
imaging and sensing devices.
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imaging.
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1 Introduction
Quantitative phase imaging (QPI) stands as a powerful label-
free technique capable of revealing variations in optical path
length caused by weakly scattering samples.1–3 QPI enables
the generation of high-contrast images of transparent specimens,
which are difficult to observe using conventional bright-field
microscopy. In recent years, various QPI methodologies have
been established, including, e.g., off-axis imaging methods,4,5

phase-shifting methods,6,7 and common-path QPI techniques.8,9

These methods have been instrumental in conducting precise
measurements of various cellular dynamics and metabolic
activities covering applications in, e.g., cell biology,10,11 pathol-
ogy,12–14 and biophysics,15 such as the monitoring of real-time
cell growth and behavior,16,17 cancer detection,18,19 pathogen
sensing,20,21 and the investigation of subcellular structures and
processes.22 In addition, QPI also finds applications in materials
science and nanotechnology, which include characterizing thin
films, nanoparticles, and fibrous materials, revealing their
unique optical and physical attributes.23–25*Address all correspondence to Aydogan Ozcan, ozcan@ucla.edu
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Predominantly, QPI systems are employed to extract quanti-
tative phase information within a two-dimensional (2D) plane
by utilizing a monochromatic light source and sensor array.
Given that standard optoelectronic sensors are limited to
detecting only the intensity of light, advanced approaches
utilizing customized illumination schemes and interferometric
techniques,26–28 combined with digital postprocessing and
reconstruction algorithms, are employed to convert the intensity
signals into quantitative phase images. Building on the founda-
tions of 2D QPI approaches, tomographic QPI and optical
diffraction tomography methods have also expanded QPI’s
capabilities to encompass volumetric imaging.29–32 These tech-
niques typically capture holographic images from multiple illu-
mination angles, which allows for the digital reconstruction of
the refractive index distribution across the entire three-dimen-
sional (3D) volume of the sample.

The digital postprocessing techniques in QPI and phase
tomography systems have witnessed a paradigm shift, primarily
attributed to the recent advancements in the field of artificial
intelligence. Specifically, the efficiency of feed-forward neural
networks utilizing the parallel processing power of graphics
processing units (GPUs) has markedly increased the speed
and throughput of image reconstruction in QPI systems.33–35

These deep-learning-based approaches facilitated solutions to
various complex tasks of QPI, such as segmentation and clas-
sification,36–38 as well as inverse problems including phase

retrieval,33,35,39–44 aberration correction,45,46 depth-of-field exten-
sion,47,48 and cross-modality image transformations.14,49

Additionally, deep-learning-based techniques have also been
used to enhance 3D QPI systems by improving the accuracy
and resolution of 3D refractive index reconstructions, utilizing
methods such as physical approximant-guided learning,50 recur-
rent neural networks,51 neural radiance fields,52 alongside the
reduction of coherent noise through generative adversarial
networks.53 However, the complexity of digital neural networks
employed in these reconstruction techniques requires substantial
computational resources, leading to lower imaging frame rates
and increased hardware costs and computing power. These
challenges become further intensified in 3D QPI systems due
to the necessity of processing a larger set of interferometric
images for 3D reconstructions.

Here, we introduce an all-optical, wavelength-multiplexed
QPI approach that utilizes diffractive processing of coherent
light to obtain the quantitative phase distributions of multiple
phase objects distributed at varying axial depths. As illustrated
in Fig. 1, our approach employs a diffractive optical processor
that is composed of spatially engineered dielectric diffractive
layers, optimized collectively via deep learning.54–64 Following
the deep-learning-based design phase, these diffractive elements
are physically fabricated to perform task-specific modulation of
the incoming optical waves, converting the phase profile of each
of the phase-only objects located at different axial planes into
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Fig. 1 Schematic and working principle of multiplane QPI using a wavelength-multiplexed diffrac-
tive processor. Illustration of a wavelength-multiplexed diffractive multiplane QPI processor. The
diffractive QPI processor is composed of K diffractive layers, which are jointly optimized using
deep learning to simultaneously perform phase-to-intensity transformations for M phase-only ob-
jects that are successively positioned along the axial direction (z), while also routing QPI signals of
these objects to the designated wavelength channels at the same output FOV.
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a distinct intensity distribution at a specific wavelength within
its output field of view (FOV). These wavelength-multiplexed
intensity distributions can then be recorded, either simultane-
ously with a multicolor image sensor equipped with a color filter
array or sequentially using a monochrome detector by scanning
the illumination wavelength to directly reveal the object phase
information through intensity recording at the corresponding
wavelength.

Based on this framework, we conducted analyses through
numerical simulations and proof-of-concept experiments.
Initially, we examined how the overlap of input objects at differ-
ent axial positions affects the quality of the diffractive output
images and all-optical quantitative phase information retrieval.
Our results demonstrated that this diffractive QPI framework
could achieve near-perfect QPI for phase objects without spatial
overlap along the optical axis. Furthermore, even when the input
objects are entirely overlapping along the axial direction, our
diffractive processor could effectively reconstruct the quantita-
tive phase information of each input plane with high fidelity
and minimal cross talk among the imaging channels. Beyond
numerical analyses, we also experimentally validated our ap-
proach by designing and fabricating a diffractive multiplane
QPI processor operating at the terahertz spectrum. Our exper-
imental results closely aligned with the numerical simulations,
confirming the practical feasibility of diffractive processors in
retrieving the quantitative phase information of specimens
across different input planes.

The presented diffractive multiplane QPI design incorporates
wavelength multiplexing and passive optical elements, enabling
the rapid capture of quantitative phase images of specimens
across multiple axial planes. This system’s notable compact-
ness, with an axial dimension of <60 mean wavelengths (λm)
of the operational spectral band, coupled with its all-optical
phase recovery capability, sets it apart as a competitive analog
alternative to traditional digital QPI methods. Additionally, the
scalable nature of our design allows its adaptation to different
parts of the electromagnetic spectrum by scaling the feature size
of each diffractive layer proportional to the illumination wave-
length of interest. Our presented framework paves the way for
the development of new phase-imaging solutions that can be
integrated with focal plane arrays operating at various wave-
lengths to enable efficient, on-chip imaging and sensing devices,
which can be especially valuable for applications in biomedical
imaging/sensing, materials science, and environmental analysis,
among others.

2 Results

2.1 Design of a Wavelength-Multiplexed Diffractive
Processor for Multiplane QPI

Figure 1 presents a diagram of our diffractive multiplane QPI
design that is based on wavelength multiplexing. In this setup,
multiple transparent samples, which are axially separated, are
illuminated by a broadband spatially coherent light. This broad-
band illumination can be regarded as a combination of plane
waves at distinct wavelengths fλ1; λ2;…; λMg, organized in
order from the longest to the shortest wavelength. Here, M rep-
resents the number of spectral channels as well as the number
of phase objects/input planes, as each wavelength channel is
uniquely assigned to a specific input plane. The illumination
fields, denoted as sw (w ∈ f1,2;…;Mg), propagate through
multiple phase-only transmissive objects, each exhibiting a

unique phase profile fΨwg at the corresponding input plane
Pw. As the illumination light encounters the sample at each
plane, it undergoes a phase modulation of ejΨw , resulting in mul-
tispectral optical fields fiwg at the input aperture of the diffrac-
tive processor. The wavelength-multiplexed QPI diffractive
processor consists of several modulation layers constructed
by dielectric materials, where each layer is embedded with
spatially designed diffractive features that have a lateral size of
∼λM∕2 with a trainable/optimizable thickness, covering a phase
modulation range of 0 to 2π for all the illumination wavelengths.
These diffractive layers, along with the input and output planes,
are interconnected through optical diffraction in free space (air).

The complex fields iw, resulting from the stacked input
planes along the axial (z) direction, are modulated by the
diffractive optical processor to yield output fields {ow}, i.e.,
ow ¼ Dfiwg. The intensity variations of these output fields
are then captured by a monochrome image sensor, which se-
quentially records the QPI signals across the illumination wave-
lengths. The resulting optical intensity measurements at each
illumination wavelength, noted as Dw, can be expressed as

Dw ¼ jowj2: (1)

Considering that the optical intensity Dw recorded by the sen-
sor is influenced by both the power of the illumination and the
output diffraction efficiency, we used a straightforward normali-
zation approach60,65 to counteract potential fluctuations caused
by power variations and achieve consistent QPI performance.
This involves dividing the output measurements (Dw) into
two zones: an output signal area S and a reference signal area
R. Here, R is designated as a one-pixel wide border surround-
ing the edges of Dw. This border is further segmented into M
subsections, each labeled as Rw (w ∈ f1,2;…;Mg). A given
Rw acts as a reference signal (Refw) for the wavelength channel
λw, i.e.,

Refw ¼ 1

NðRwÞ
X

ðx;yÞ∈Rw

Dwðx; yÞ; (2)

where NðRwÞ denotes the total number of image sensor pixels
located within Rw. Finally, the output quantitative phase image
fΦwg of the wavelength multiplexed diffractive processor can
be obtained through a simple normalization step,

Φw ¼ Dw

Refw
: (3)

Once the training of our diffractive multiplane QPI processor
successfully converges, all the output quantitative phase images
Φw obtained at different wavelengths λw are expected to
approximate the phase profiles of the input objects ΨwðλwÞ,
which can be written as

Φw ≈ΦðGTÞ
w ¼ ΨwðλwÞ; (4)

where the ground-truth phase images ΦðGTÞ
w are defined, without

loss of generality, as the object phase distributions ΨwðλwÞ at
the corresponding wavelength λw. Based on the above formu-
lation, our diffractive multiplane QPI processor is optimized
to act as an all-optical transformer that simultaneously performs
two tasks:
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1. A space-to-spectrum transformation that encodes spatial
information of input objects at different axial positions into
different spectral channels.

2. A phase-to-intensity transformation that converts phase
information of input objects into intensity distributions within
the output FOV. This approach facilitates the reconstruction
of multiplane quantitative phase information using solely a
single output FOV.

To optimize/train our diffractive multiplane QPI processor,
we compiled a training data set of 110,000 images containing
55,000 handwritten images and 55,000 custom-designed gra-
ting/fringe-like patterns.66 During training, to form each multi-
plane object, M images were randomly chosen from these
110,000 training images without replacement and encoded into
the phase channels (Ψw) of the M object planes. For this phase
encoding, we adopted an assumption that all the object planes
are composed of the same material and an identical range of
material thickness variations. This assumption ensures that these
different object planes, regardless of their individual axial posi-
tions, induce a similar magnitude of phase modulations on the
incoming complex fields, thereby better mirroring the real-
world scenarios encountered in multiplane imaging systems.
Based on this assumption, we chose to have the thickness profile
hðx; yÞ of each phase-only object plane to be confined within
the same dynamic range of [0, HtrλM], where Htr stands for
the thickness range parameter used during the training, defined
based on the shortest wavelength λM . Following this notation,
for the w’th object plane, the maximum phase modulation φtr;w
of the incoming field at wavelength λw can be written as

φtr;w ¼ 2π

λw
ðnoðλwÞ − 1ÞHtrλM; (5)

where noðλwÞ denotes the refractive index of the object material
at λw. Accordingly, we also define a phase contrast parameter
αtr;w ¼ φtr;w

π to represent the maximum phase contrast of objects
at wavelength λw, i.e.,

αtr;w ¼ 2

λw
ðnoðλwÞ − 1ÞHtrλM: (6)

As a result, the phase modulation values in each object plane
are confined to a range of (0, αtr;wπ). Without loss of generality,
in our numerical analyses, we chose Htr ¼ 0.6 and a constant
material refractive index (no) of 1.5 for all λw. As a result,
the phase contrast parameter values αtr;w vary according to
the operational wavelength, peaking at the shortest wavelength
λM , where αtr;M ¼ Htr ¼ 0.6. Error backpropagation and
stochastic gradient descent were employed to optimize the
thickness of the diffractive layers by minimizing a custom loss
function L defined based on the mean-squared error (MSE)
between the diffractive output quantitative phase images and
their ground truth across all the wavelength channels, i.e.,
L ¼ 1

Nw

PNw
w¼1 MSEðΦðGTÞ

w ;ΦwÞ. More information about the
training process is provided in the Appendix.

To numerically demonstrate the feasibility of our diffractive
system, we devised several diffractive multiplane QPI process-
ors, focusing on the impact of input object lateral overlap—
where the FOVs of the input objects located at different
axial planes overlap in the x and y directions. The occurrence
of lateral overlap, resulting in nonuniform illumination, can

deteriorate the quality of QPI reconstructions. To explore the
dynamics between adjacent input phase objects during image
reconstruction and assess our design’s capability of handling
laterally overlapping objects at different axial planes, we
adapted our training models to various assumptions about the
lateral separation between different axial planes. These five
input phase objects were uniformly distributed on the circum-
ference of a circle with a radius of r from the center, as shown in
Fig. S1 in the Supplementary Material. A maximum lateral
separation distance R was set as ∼94.5λm, ensuring that the
input FOVs are not distributed out of the boundary of a diffrac-
tive layer. Building on this, we developed and trained six
distinct diffractive designs by adjusting the lateral separation
distance (r) of the input planes across various values spanning
f0; 0.2R; 0.4R; 0.6R; 0.8R;Rg, as illustrated in Fig. 2(a). These
different configurations of input object arrangements, which
cover the condition of a complete spatial overlap (r ¼ 0) of
objects to a complete lateral separation (r ¼ R), enabled us to
investigate the impact of r on the system’s QPI performance.
Apart from the varying input lateral separations, these diffrac-
tive multiplane QPI designs share identical input specifica-
tions, featuring the same number of input planes M ¼ 5 with
NðΨÞ

x × NðΨÞ
y ¼ 14 × 14. All the diffractive designs are com-

posed of 10 diffractive layers, where each diffractive layer has
600 × 600 trainable diffractive features. The entire diffractive
volume spans an axial length of ∼56.2λm and a lateral size of
∼262.5λm, forming a compact system that can be monolithically
integrated with a complementary metal–oxide–semiconductor
image sensor. At the output plane of these diffractive designs, a
monochrome image sensor with a pixel size of ∼5.2λm × 5.2λm
is assumed. A unit magnification is selected between the object/
input plane and the monochrome output/sensor plane, resulting in
the same size of the output signal region S as the input FOV for
each axial plane. After their deep-learning-based optimization,
the thickness profiles of the diffractive layers for each of the six
designs are depicted in Fig. S2 in the Supplementary Material.

2.2 Performance Analysis of Wavelength-Multiplexed
Diffractive Processors for Multiplane QPI

After the training stage, we first conducted blind testing of the
resulting diffractive processor designs through numerical simu-
lations. To evaluate the multiplane QPI performance of these
designs, we constructed a test set comprising 5000 phase-only
objects that were never used in the training process. These ob-
jects were synthesized by randomly selecting images from the
MNIST data set and encoding them into the phase channels of
the wth input object with a dynamic phase range of ½0; αtest;wπ�.
Mirroring the approach used during the training, the phase
ranges in the testing were derived from a thickness range of
½0; HtestλM�, consistent across the M input planes, where Htest

stands for the testing thickness range parameter. The corre-
sponding diffractive QPI output examples of the blind testing
results are visualized in Fig. 2(b). Here, the Pearson correlation
coefficient (PCC) was utilized to quantify the performance of
these diffractive processor designs.

From the observation of the output examples with
Htest ¼ Htr ¼ 0.6 shown in Fig. 2(b), it is evident that a large
lateral separation distance (r ¼ R) among different axial planes
ensures a decent reconstruction of inputs, yielding high-fidelity
output images. Conversely, a smaller lateral separation distance,
such as r ¼ 0.4R, results in diminished image contrast and the
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introduction of some imaging artifacts. We noted a consistent
degradation in the image quality as the input lateral separation
distance r was reduced from R to 0. This decrease in the QPI
performance can be attributed to two main factors.

1. Unknown sample-induced nonuniform illumination
from the neighboring input planes in front of the target axial
plane, and

2. phase disturbance when propagating through the axially
stacked input planes after the target planes.

When the testing thickness range is larger than the training
thickness range, i.e., Htest ¼ 1 > Htr, the output QPI results of
r ¼ 0 were found to be degraded. These output images can
hardly be recognized because of stronger phase perturbations
caused by the larger phase contrast at each object plane. On
the contrary, the output QPI measurements of r ¼ R still present
a good image fidelity at the output of the wavelength multi-
plexed diffractive QPI processor for Htest ¼ 1 > Htr. These
results highlight the diffractive design’s ability to process and
image phase-only objects with a larger thickness and higher
phase contrast beyond what was encountered during the training
phase, i.e., Htest > Htr.

We also evaluated the resulting PCC values in Fig. 3, which
reflects the examples shown in Fig. 2(b). As revealed in
Fig. 3(a), the design with complete lateral separation of inputs
(r ¼ R) achieved high output PCC scores across all the imaging
channels whenHtr ¼ Htr ¼ 0.6, reaching an average PCC value
of 0.993� 0.001, corroborating the observations from visual
inspections. When the input phase objects were completely
laterally overlapping (r = 0), the output PCC values dropped to
0.884� 0.016, whereas the reconstructed digit images could
still be discernible. When Htest increased to 1, as shown in
Fig. 3(b), the performance of the design with complete lateral
separation of inputs (r ¼ R) remains at a high level, showing an
average PCC value of 0.992� 0.001. However, when it comes
to the completely overlapping input objects (r ¼ 0), the PCC
scores reduced to 0.795� 0.075. The PCC values quantified
for the individual objects also showed that the axial planes
closer to the front in the spatial sequence exhibit better imaging
performance, revealing consistency with the previously shown
output images.

To further explore the impact of varying Htest on the QPI
performance, we extended our analysis across an array of Htest

values {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}, all tested against

m

m

0

m

te
st te
st

1

(λ1)
2

( 2)

m

t

3

( 3)
4

( 4)
5

( 5)
1

( 1)
2

( 2)
3

( 3)
4

( 4)
5

( 5)

0

(a)

(b)

Fig. 2 The lateral separation settings of the input objects and the blind testing results of the dif-
fractive multiplane QPI processors. (a) Input volume visualization for six different diffractive de-
signs under different input lateral separation distances (r ) spanning f0; 0.2R ; 0.4R; 0.6R ; 0.8R ;Rg.
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the same diffractive QPI model trained withHtr ¼ 0.6, as shown
in Fig. 3(c). It was found that the diffractive output QPI perfor-
mance peaked atHtest ¼ 0.4, with output PCC ¼ 0.996� 0.001
for r ¼ R, and PCC ¼ 0.917� 0.021 for r ¼ 0. Below this
peak, when Htest ¼ 0.2, a decrease in PCC was evident, dem-
onstrating the challenge of resolving significantly lower phase
contrast objects. In scenarios where the test thickness exceeded
the training range (Htest > Htr), our designs demonstrated some
decrease in performance, especially as Htest approached 1.8,
where the PCC for r ¼ R drops to 0.785� 0.139, and PCC
for r ¼ 0 drops to 0.646� 0.064. This decline can be attributed
primarily to two factors. First, significant phase contrast devia-
tions between the training and testing expose the diffractive
processor to unseen contrast levels, presenting generalization
challenges. Second, the inherently linear nature of our diffrac-
tive processor, except for the intensity measurements at the out-
put plane, faces approximation challenges under larger input

phase contrast values due to the increased contributions of
the nonlinear terms in the phase-to-intensity transformation
task. Overall, our diffractive processor designs present decent
generalization to various thicknesses and phase contrast values,
very well covering Htest ≤ 1 by using a fixed training thickness
range parameter Htr ¼ 0.6 in the training stage.

To shed more light on the impact of lateral separation, we
conducted additional analysis examining output PCC values
as a function of the input lateral separation distance (r). As
shown in Fig. S3a in the Supplementary Material, the three
curves correspond to different thickness range parameters Htest,
with values of {0.6, 1, 1.4}. A consistent trend of improved
image quality with increasing r was observed for all three
curves, indicating that a reduced overlap between objects leads
to a higher image fidelity for the output QPI reconstruction.
Additionally, to quantify the phase reconstruction accuracy,
we measured the phase mean absolute error (MAE) of our

test

t = 0.6

t = test = 0.6

t = 0.6, test =

(a)

(b)

(c)

Fig. 3 Impact of the input lateral separation and the input object thickness on multiplane QPI per-
formance. (a) PCC values of the resulting multiplane QPI measurements with H test ¼ 0.6 under
different input lateral separation distances (r ) spanning {0, 0.4R, R}. (b) The same as (a), except
for H test ¼ 1. (c) Average PCC values of the resulting multiplane QPI measurements as a function
of H test. These six curves refer to the blind testing performances of the six diffractive processors
trained under different input lateral separation distances (r ).
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diffractive outputs. As shown in Fig. S3b in the Supplementary
Material, the phase error for Htest ¼ Htr is consistently lower
compared to Htest > Htr. Specifically, at r ¼ R, the phase error
was 4.1% for Htest ¼ Htr ¼ 0.6, and it increased to 4.9% and
7.6% for Htest ¼ 1 and 1.4, respectively. Furthermore, the phase
error gradually decreased with increased lateral separation r. For
example, for Htest ¼ 0.6, the phase error reduces from 12.4% at
r ¼ 0 to 4.1% at r ¼ R. These findings demonstrate that our
diffractive design not only achieves low phase-error values,
but also maintains acceptable phase-imaging performance, even
in scenarios where objects overlap laterally.

2.3 Impact of Axial Separation of Input Object Planes
on the Multiplane QPI Performance

Beyond the lateral arrangement of the input phase objects, the
axial distance separating these input planes is another crucial

factor that influences the wavelength-multiplexed QPI perfor-
mance of our diffractive processors. To investigate this, we
expanded our analysis of the output QPI performance by
changing the input axial separation distance (Z) across
f128λm; 64λm; 32λm; 16λmg, as shown in Fig. 4. Here, the test-
ing thickness range parameter Htest was fixed at 0.6. Figure 4(a)
reveals that, when the axial distance decreases, the PCC
values of the laterally overlapping phase inputs (r ¼ 0) show
a drop from 0.884� 0.016 at Z ¼ 128λm to 0.802� 0.048 at
Z ¼ 16λm. This decrease is expected due to the limited axial
resolution of the diffractive QPI processor, leading to a degraded
multiplane QPI performance for smaller Z distances. The output
visualizations in Fig. 4(b) corroborate these findings, displaying
a noticeable decrease in image fidelity for multiplane QPI as
Z decreases. Conversely, in scenarios with laterally separated
inputs (r ¼ 0.8R), the PCC values remained consistently high
(around 0.993) even when the axial distance Z was reduced
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Fig. 4 Impact of the input axial separation on the output multiplane QPI performance. (a) Average
PCC values of the diffractive multiplane QPI processor outputs with different input lateral sepa-
ration distances (r ) covering f0; 0.2R ; 0.4R ; 0.8Rg and different input axial separation distances
(Z ) covering f128λm ; 64λm ; 32λm ; 16λmg. (b) The corresponding output examples of the diffractive
multiplane QPI results.
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to 16λm. When the input phase objects were partially overlap-
ping (e.g., for r ¼ 0.2R or 0.4R), the PCC values remained
stable when Z decreased. This suggests that the diffractive proc-
essor maintains its effectiveness in phase reconstruction with
laterally separated input phase objects, regardless of the axial
distance, Z. The output examples with varying distances further
reinforce this conclusion, showing high-quality reconstructions
across different axial separations. These observations under-
score the diffractive processor’s capability in multiplexed imag-
ing of phase objects, especially when the inputs are not laterally
overlapping.

2.4 Cross Talk among Imaging Channels

Ideally, our diffractive multiplane QPI processor should perform
precise phase-to-intensity transformations for each input plane
independently. However, accurately channeling the spatial
information of individual object planes into their respective
wavelength channels is challenging, as the features of the input
objects positioned in the axial sequence can perturb the wave
fields generated or modulated by the target object planes. This
results in complex fields that, upon entering the diffractive proc-
essor, contain intermingled information from different object
planes. Consequently, information from one object plane can
negatively impact the imaging process of another, especially
when the input phase objects laterally overlap, leading to cross
talk among the imaging channels associated with different
object planes. To delve deeper into the impact of this cross
talk among the channels, we conducted a numerical analysis
by individually testing each input sample plane across all five

wavelengths. By placing a phase object in one of the five object
planes and leaving the remaining planes vacant, we could di-
rectly assess how the phase information from one input plane,
corresponding to a specific output wavelength channel, affects
other output channels. From the visualization of the output
quantitative phase reconstructions shown in Fig. 5, it was clear
that when the inputs were laterally separated with r ¼ R, the
output images of the diffractive multiplane QPI processor at
the target wavelength aligned well with the ground-truth images,
and the signal leakage to the other wavelength channels was
negligible. This result highlighted the diffractive processor’s
proficiency in handling and mitigating cross talk between
different wavelength channels. However, as the input separation
distance decreased, for example, to r ¼ 0.4, a noticeable cross
talk was observed across the different channels. This challenge
became more pronounced when all the input objects were
coaxially aligned at the center without any lateral separation
(r ¼ 0), resulting in more significant cross talk as well as sub-
optimal quality of QPI reconstructions. These findings confirm
the diffractive processor’s capability to correctly route the sig-
nals and mitigate the cross talk effectively, while acknowledging
its limitations when the input objects present a notable lateral
overlap across different axial planes.

2.5 Lateral Resolution and Phase Sensitivity Analysis

To gain deeper insights into the diffractive multiplane QPI
processor’s capability to resolve phase images of input objects,
we further investigated the lateral imaging resolution of our
processor designs across different levels of input thickness
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Fig. 5 Cross-talk analysis of multiplane QPI under different input lateral separation distances.
Output image matrix demonstrating the cross talk from one input plane to the output wavelength
channels, represented by the off-diagonal images. Each row corresponds to a set of input (ground-
truth) phase objects alongside the resulting diffractive output images. The diagonal images
represent the diffractive output images at the target wavelengths.
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range. To standardize our tests, we created binary phase grating
patterns with a linewidth of 5.2λm, and selected the testing
thickness range parameter Htest from {0.2, 0.6, 1} and the input
lateral separation distance r from f0; 0.4R; Rg, as shown in
Fig. 6. The results in Figs. 6(a) and 6(b) show that the diffrac-
tive QPI processors with M ¼ 5 input planes effectively re-
solved the test phase gratings with a linewidth of 5.2λm for
both r ¼ 0 and r ¼ 0.4R, even with thickness ranges that were
different compared to the training thickness range, such as
Htest ¼ 0.2 < Htr or Htest ¼ 1 > Htr. In cases where r ¼ 0,
i.e., the test objects are positioned coaxially and exhibit com-
plete lateral overlap, the processor can still resolve the grating
patterns with Htest ¼ 1 or Htest ¼ 0.6, as shown in Fig. 6(c).
However, at a thinner thickness or a smaller testing phase
contrast level, e.g., Htest ¼ 0.2, the resolution of diffractive QPI
outputs became worse. The output examples revealed that the

diffractive processor under r ¼ 0 falls short in reconstructing
the last two input planes (i.e., P4 and P5). Our analyses revealed
that the diffractive multiplane QPI designs could clearly resolve
spatial phase features with a linewidth of at least 5.2λm across all
five input planes, particularly when the input phase object had
a thickness range parameter Htest > 0.2.

2.6 External Generalization Performance of
Wavelength-Multiplexed Diffractive Processors for
Multiplane QPI

The diffractive multiplane QPI processors reported so far were
trained on a data set that included handwritten digits and gra-
ting-like spatial patterns. To further assess how well our diffrac-
tive multiplane QPI processors generalize to different types of
spatial features, we conducted additional numerical analysis
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Fig. 6 Lateral resolution and phase sensitivity analysis for the diffractive multiplane QPI processor
designs. (a) Images of the binary phase grating patterns encoded within the phase channels of the
input object, along with the r ¼ R diffractive processor’s resulting output QPI signals (Φw ) at the
target input plane. The grating has a linewidth of 5.2λm , and the thickness range parameter ðH testÞ
of the input phase object is selected from {0.2, 0.6, 1}. (b), (c) The same as (a), except for r ¼ 0.4R
in panel (b) and r ¼ 0 in panel (c).
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using Pap smear microscopy images. These images have signifi-
cantly different spatial characteristics compared to our training
data set. In addition to this, we used various thickness range
parameters (Htest) including {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8} with an aim to examine the diffractive QPI processor’s
adaptability to new spatial features with previously unseen ob-
ject thicknesses or phase contrasts, covering both Htest > Htr

and Htest < Htr. These blinded test results are showcased in
Fig. 7(b), revealing a decent agreement between the diffractive
multiplane QPI results and the corresponding ground-truth
images. We also calculated the image quality metrics across
the entire Pap smear test data set [see Fig. 7(a)]. The average
PCC was calculated as 0.921� 0.004 when the testing thick-
ness range matched the training condition, i.e., Htest ¼
Htr ¼ 0.6. The QPI performance remained robust, with average
PCC values of >0.8 from Htest ¼ 0.2 to Htest ¼ 1.4, while
starting to exhibit more degradation when Htest > 1.4. When
Htest ¼ 1.8, the average PCC dropped to 0.540� 0.113.
Overall, these external generalization test results demonstrated
that our diffractive multiplane QPI design is not limited to spe-
cific object types or phase features but can serve as a general-
purpose multiplane quantitative phase imager for various kinds
of objects.

2.7 Output Power Efficiency of Diffractive Multiplane
QPI Processors

All our diffractive multiplane QPI processor designs presented
so far were optimized without considering the output power
efficiency, resulting in relatively low diffraction efficiencies,
mostly lower than 0.1%. When the output power efficiency
becomes a concern in a given diffractive processor design, an
additional diffraction efficiency-related loss term60,67,68 can be in-
troduced to the training loss function to balance the trade-off
between task performance and signal-to-noise ratio. We used
the same approach to achieve a balance between the QPI per-
formance and the diffraction efficiency of the diffractive proc-
essor (see the Appendix for details). In Fig. 8, we present a
comprehensive quantitative analysis of this trade-off between
the multiplane QPI performance and the output diffraction
efficiency. For this comparison, we used two designs with
r ¼ R and 0.4R (as shown in Fig. S2 in the Supplementary
Material), which initially exhibit output diffraction efficiencies
of 0.113� 0.022% and 0.042� 0.004%, alongside PCC values
of 0.993� 0.001 and 0.964� 0.021%, respectively—these are
corresponding to diffractive designs trained without any diffrac-
tion efficiency penalty terms. Maintaining the same structural
parameters and the same training/testing data set, we retrained
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Fig. 7 Results for testing the external generalization performance of the r ¼ R diffractive multi-
plane QPI processor design using blind testing images from a new data set composed of Pap
smear images. (a) PCC values of the diffractive multiplane QPI processor outputs as a function
of the input thickness range. (b) Examples of the ground-truth phase images at different input
planes, which are compared to their corresponding diffractive QPI output images.
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these wavelength-multiplexed diffractive multiplane QPI de-
signs from scratch; this time, we incorporated varying degrees
of diffraction efficiency penalty terms into the training loss func-
tions, resulting in diffractive designs that demonstrated signifi-
cantly enhanced output diffraction efficiencies. Figure 8(a)
depicts the resulting PCC values of these new designs in relation
to their output diffraction efficiencies. When compared to the
original r ¼ R design, these new designs showed an approxi-
mately 90-fold increase in the output diffraction efficiency,
which reached up to an efficiency of 10.2� 1.7%. This major
output diffraction efficiency enhancement was achieved with a
modest reduction in multiplane QPI performance, evidenced by
PCC values decreasing to 0.842� 0.023. Similarly, compared
to the original r ¼ 0.4R design shown in Fig. S2 in the
Supplementary Material, these new designs subjected to the
diffraction efficiency penalty showcased an improved diffrac-
tion efficiency of up to 10.3� 0.7%, with a marginal decrease
in the PCC values that reach up to 0.805� 0.042. Moreover,
from the observation of the output examples in Fig. 8(b), the

diffractive processors, even with enhanced output power effi-
ciencies of >10%, still effectively reconstruct multiplane QPI
images with a decent image quality. These results reveal that
by properly incorporating an efficiency-related loss term into
the optimization process, our wavelength-multiplexed diffrac-
tive multiplane QPI processors can be optimized to maintain
an effective balance between the QPI performance and power
efficiency, which is important for practical applications of the
presented framework. This training approach to boost the output
power efficiency was also used in our experimental proof-of-
concept demonstration, which will be reported next.

2.8 Experimental Validation of a Wavelength-
Multiplexed Diffractive Multiplane QPI Processor

We conducted an experimental demonstration of our diffractive
multiplane QPI processor using the terahertz part of the spec-
trum. Because of the larger wavelength of terahertz radiation,
the 3D fabrication and alignment of the resulting diffractive
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Fig. 8 Analysis of the trade-off between the imaging performance and the output diffraction effi-
ciency of diffractive multiplane QPI processors. (a) The PCC values of the diffractive multiplane
QPI outputs with various levels of diffraction efficiency penalty, plotted as a function of the output
diffraction efficiency values. Two sets of diffractive QPI designs using r ¼ R and r ¼ 0.4R were
trained and blindly tested. Specifically, purple markers (①, ②, ③ and ④) depict different r ¼ R de-
signs, where βEff ¼ 0 was used for① and βEff ¼ 100, ηthresh ¼ 1%, 5%, 10%were used for②, ③, and
④, respectively, in the training loss function [see Eqs. (15 and 16)]. Gold markers (①, ②, ③, and ④)
represent their counterparts using r ¼ 0.4R. (b) Visualization of the diffractive output fields pro-
duced by diffractive QPI processor designs with different input lateral separation distances and
various levels of diffraction efficiency-related penalty term.
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layers are easier compared to shorter wavelengths, such as IR
and visible parts of the spectrum. As illustrated in Fig. 9(a), we
created an input aperture to better control the illumination wave-
front. The experimental configuration includes two input planes
(P1 and P2), containing a phase-only object characterized by its
thickness range parameter, empirically set as Htest ¼ ∼0.7. This
setup serves as a proof-of-concept demonstration of our multi-
plane QPI system, wherein only one of two input planes con-
tains a phase object at any given time. In our experiments, a
diffractive multiplane QPI system composed of three phase-only
dielectric diffractive layers (L1 − L3) was employed. This dif-
fractive system converted the phase information of the input
planes (axially separated by 20 mm) into an intensity distribu-
tion, captured at the output plane, where each illumination

wavelength (λ1 ¼ 0.8 mm, λ2 ¼ 0.75 mm) was assigned to one
axial plane performing QPI using phase-to-intensity transforma-
tions at each wavelength. Structural details of this experimental
arrangement are provided in Fig. 9(a) and the accompanying
Appendix.

To optimize our experimental multiplane QPI design, we
synthesized objects to train the diffractive design through deep
learning. Our training data set comprised 10,000 binary images
of 4 pixels × 4 pixels, with each image featuring two random
pixels set to one and the remainder set to zero. These binary
images were encoded into phase-only objects with a phase range
of ½0; αtr;wπ�, where the phase contrast parameter values αtr;w
reached 0.94 at λ1 and 1 at λ2. These phase contrast values were
derived from the preset thickness range of ½0; Htrλ2�, where

π
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Fig. 9 Experimental setup and validation of the diffractive multiplane QPI processor for phase-to-
intensity transformations. (a) Illustration of a diffractive multiplane QPI processor composed of
three diffractive layers ðL1; L2; L3Þ to perform QPI operation on multiplane phase objects.
(b) Thickness profiles of the optimized diffractive layers (upper row) and the photographs of their
fabricated versions using 3D printing (lower row). (c) Photographs of the experimental setup, in-
cluding the fabricated diffractive QPI processor. (d) Numerically simulated and experimentally
measured intensity patterns at the output plane, compared with the ground-truth input objects,
successfully demonstrating experimental phase-to-intensity transformations.
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Htr ¼ Htest ¼ ∼0.7. Throughout the training process, for each
iteration, one input plane was designated for the placement
of the phase object, while the other was left vacant. The opti-
mized phase profiles of the diffractive layers are displayed in the
upper column of Fig. 9(b). After the training, the resulting dif-
fractive layers were 3D-printed; images of the fabricated layers
are showcased in the lower column of Fig. 9(b). After 3D
assembly and alignment of these fabricated layers, we employed
a terahertz source and a detector to record the intensity distri-
bution at the output plane. Detailed schematics and photographs
of this experimental setup are presented in Fig. S4 in the
Supplementary Material and Fig. 9(c), respectively.

In the experimental phase, our system was subjected to eight
distinct phase objects (never seen during the training), with the
testing thickness range parameter set to Htest ¼ ∼0.7. These ob-
jects were equally divided between the two input planes that are
axially separated by 20 mm, i.e., ∼25.8λm, totaling four test
phase objects per axial plane, and they were also fabricated us-
ing 3D printing. Figure 9(d) delineates the experimental output
imaging results of the diffractive multiplane QPI processor,
which align closely with our numerically simulated output pat-
terns. The object phase profiles on both of the input planes were
accurately transformed into intensity variations at the output
plane, with each pixel clearly distinguishable and matching
the expected ground-truth phase profiles. These experimental
results demonstrate the proof-of-concept capability of our dif-
fractive design in conducting QPI across multiple planes using
wavelength multiplexing.

3 Discussion
In the experimental proof-of-concept results presented earlier,
we used relatively simpler patterns as input phase objects. To
numerically assess the system’s capability to handle more struc-
turally complex objects, akin to real-world conditions, we also
investigated diffractive processor designs capable of retrieving
multiplane QPI signals across the visible spectrum (400 to
650 nm). In these numerical analyses, we assumed that the dif-
fractive layers were fabricated using two-photon polymeriza-
tion-based 3D printing (Photonic Professional GT2, Nanoscribe
GmbH, Germany), and a particular type of photoresist (IP-DIP,
Nanoscribe GmbH)69 was selected as the diffractive layer
material due to its high transparency and prevalent usage in
the visible range. This diffractive design adapted the same
configuration, training data, and methods used by the designs
shown in Fig. S2 in the Supplementary Material, with the
diffractive feature sizes scaled based on the operational wave-
lengths. Accordingly, the axial distance between the input phase
objects was selected as 32λm, i.e., ∼16.8 μm. Fabrication con-
straints for such a diffractive processor operating in the visible
range restrict the axial thickness levels to hundreds of nano-
meters for each layer, which can degrade the performance com-
pared to the ideal numerical design. Therefore, we analyzed the
performance of this visible diffractive processor design under
limited phase bit depth selected from [16, 8, 6, 5, 4, 3, 2].
As shown in Fig. S5a in the Supplementary Material, the dif-
fractive processor designed for the visible part of the spectrum
maintains its QPI performance despite a reduction in the phase
bit-depth of the diffractive layers. For example, for a 16-bit
phase modulation design, the output PCC was 0.991 for the
r ¼ R case and 0.966 for the r ¼ 0.4R case. When the phase
bit-depth was reduced to 4, the PCC values had only a minor
decrease: 0.980 for the r ¼ R case and 0.943 for the r ¼ 0.4R

case. The results reported in Fig. S5b in the Supplementary
Material further support these conclusions and demonstrate that
our diffractive processor can maintain high-quality QPI perfor-
mance under phase quantization limitations, down to a phase
bit-depth of 4.

In practical implementations of diffractive QPI processors,
another challenge is the mechanical misalignments between dif-
ferent layers, which can cause the optical waves to be modulated
by the diffractive layers in an undesired way, leading to results
deviating from their designed performance. To investigate this,
we used the same configuration of the visible diffractive multi-
plane QPI processor and subjected the diffractive layers to vari-
ous levels of random displacements/misalignments (Δ), either in
the lateral directions (Δx;Δy ∈ U½−Δxy;test;Δxy;test�) or the axial
direction (Δz ∈ U½−Δz;tr;Δz;tr�), sampled from uniform random
distributions (U). As shown in Figs. S6a and S7a in the
Supplementary Material, the performance of the diffractive
processor (indicated by blue curves) peaks at an output PCC
of 0.991 under the ideal alignment case (Δ ¼ 0), but it degrades
with increasing lateral or axial misalignments. To address this
misalignment sensitivity, a “vaccination” strategy can be applied
during the optimization process by incorporating random mis-
alignments into the numerical forward model of the system.
Specifically, the 3D random displacements of the diffractive
layers (Δx, Δy, and Δz) are modeled using random variables that
change from iteration to iteration during the training process,
providing resilience against such displacements with minimal
performance loss. The efficacy of this strategy is demonstrated
in Figs. S6 and S7 in the Supplementary Material, where new
“vaccinated” diffractive multiplane QPI processors were trained
under varying degrees of axial and lateral misalignments. As
shown in Figs. S6a and S7a in the Supplementary Material,
these vaccinated models (shown in green and orange curves)
maintain good QPI performance across different levels of mis-
alignments. For instance, when Δz;test ¼ 1.2λm, the PCC value
for the vaccinated design remains at 0.979, while it decays to
0.427 for the unvaccinated baseline diffractive QPI model.
Figures S6b and S7b in the Supplementary Material also illus-
trate the outputs of the vaccinated diffractive QPI design, main-
taining a good agreement with the ground-truth phase images
under various degrees of random misalignments. These analyses
highlight the effectiveness of our vaccination strategy and the
diffractive QPI processor’s capability to withstand unknown
random misalignments.

In the results and analyses presented above, we have unveiled
diffractive multiplane QPI processor designs utilizing wave-
length multiplexing to encode the phase information of multiple
input objects, which can be implemented through sequential im-
aging of different wavelength channels using, for example, a
monochrome image sensor equipped with a spectral filter, each
time adjusted to a unique wavelength; alternatively, a wave-
length scanning light source can also be used for the same multi-
plane QPI. We would like to emphasize that our diffractive
designs are not confined to multishot sequential image capture
configurations, where the diffractive outputs for individual input
planes are captured separately; our design framework can be
further optimized to create a snapshot multiplane QPI system by
devising the functionality of spectral filter arrays into the diffrac-
tive processor.65,70 This functionality allows the multiplane phase
signals at the diffractive processor’s output to be partitioned,
following a virtual filter-array pattern, enabling a monochrome
image sensor to obtain signals from distinct object planes within

Shen et al.: Multiplane quantitative phase imaging using a wavelength-multiplexed diffractive optical processor

Advanced Photonics 056003-13 Sep∕Oct 2024 • Vol. 6(5)

https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01


a single frame. After a standard image demosaicing process,
each QPI channel corresponding to a unique axial plane can
be retrieved from a single intensity-only image.

It is crucial to highlight that our diffractive multiplane QPI
design is tailored for a 3D stack of phase objects with weak
scattering and absorption properties. This scenario meets the cri-
terion for the first Born approximation,71 allowing the modeling
of a 3D phase-only object using a discrete set of 2D phase
modulation layers, which are assumed to be connected by
free-space propagation and approximately uniform illumination
at each axial plane. The diffractive optical processor, due to its
capacity for performing arbitrary complex-valued linear trans-
formations between an input and output FOV,59 emerges as a
viable approach for phase reconstruction and QPI under the first
Born approximation. As one increases the lateral overlap among
the axial planes that contain the phase-only input objects, the
3D QPI problem starts to deviate from the first Born approxi-
mation due to successive object-induced unknown wavefront
distortions on the other axial planes where other unknown ob-
jects are located, which makes the problem nonlinear due to the
interaction among the scattered fields that represent the object
information at different planes. This physical cross talk and the
deviation from a linear coherent system approximation is at the
heart of our QPI performance degradation observed for r ¼ 0
when compared to the performance of r ¼ R designs; the latter
diffractive designs provide a better fit to the first Born approxi-
mation and the resulting fields at the output FOVof a diffractive
QPI processor can be approximated as a linear superposition of
the individual fields resulting separately from each axial plane.
Having emphasized these points in relationship to the first Born
approximation, we should also note that our numerical forward
model does not make any such approximations and in fact
precisely models object-to-object cross-talk fields for each
case, taking all these nonlinear terms as part of its analysis and
training/testing reported in this paper.

To further increase the performance of quantitative phase im-
ages and the spectral multiplexing factor (M), one would require
a deeper diffractive architecture with more trainable degrees of
freedom. Both theoretical analyses and empirical studies estab-
lished earlier56,58,59,61,62 have substantiated that increasing the
total number of trainable diffractive features within a diffractive
processor can improve its processing capacity and inference
accuracy,62,72 also achieving significantly better diffraction effi-
ciency at the output FOV. A particularly effective design strat-
egy here involves increasing the number of layers rather than the
number of diffractive features at each layer, which was proven to
not only boost the diffraction efficiency but also to achieve a
more optimal utilization of diffractive features by enhancing op-
tical connectivity between successive layers.59,68,73 By increasing
the number of diffractive layers (forming a deeper diffractive
architecture), the performance of our wavelength-multiplexed
diffractive QPI processor can be further enhanced to perform
the desired phase-to-intensity transformations more accurately
across an even larger number of axial planes and also facilitate
the multiplane QPI reconstructions with even a higher spatial
resolution.

In our work, the input depth information is encoded into a
specific set of wavelength channels at the output plane, and
the design of the wavelength assignments could affect the QPI
reconstruction accuracy. Our wavelength assignments were in-
formed by the understanding that the input planes/phase objects
at the axially deeper positions (closer to the diffractive layers)

are subject to more distorted illumination wavefronts due to the
phase perturbations caused by the other phase objects in the
front. Therefore, shorter wavelengths were assigned to the
more difficult-to-reconstruct axial planes that are closer to the
diffractive layers. This is also supported by previous work and
empirical evidence, which revealed that a diffractive processor
operating at shorter wavelengths can control larger degrees of
freedom within the diffractive layers due to the diffraction limit
of light, resulting in better diffractive processing capability.62,65,70

As a result, in our wavelength-multiplexed multiplane QPI ap-
proach, shorter wavelengths were assigned to the deeper planes
to better mitigate the cross talk from earlier object planes and
enhance the QPI performance at the output. We quantitatively
analyzed the efficacy of this wavelength assignment strategy by
comparing it with an alternative design that reverses the wave-
length assignment order, i.e., longer wavelengths are assigned to
the axially deeper planes in this alternative approach. Figure S8a
in the Supplementary Material demonstrates that our wave-
length assignment yields more uniform and higher output PCC
values than this alternative diffractive design with a reversed
wavelength assignment. This trend is further highlighted in the
phase-error analysis, shown in Fig. S8b in the Supplementary
Material, where our design achieved an average phase error of
4.1%, which is lower than the 5.0% phase error corresponding
to the reversed wavelength assignment. These results confirm
that our wavelength assignment strategy not only achieves a uni-
form performance across all the input planes, but also improves
the phase accuracy of our multiplane QPI reconstructions.

As another key factor, we also investigated the QPI perfor-
mance of our diffractive imager designs as a function of the il-
lumination wavelength or bandwidth. For this quantitative
analysis, we selected the object plane positioned in the middle
of our object volume, which was designated to a mean wave-
length of λm. As shown in Fig. S9a in the Supplementary
Material, the peak QPI performance occurs at λtest ¼ λm, i.e.,
when the training wavelength matches the testing wavelength,
while the QPI performance relatively declines when the testing
wavelength deviates from the training wavelength, i.e.,
λtest ≠ λm. The same trend can also be observed in the output
examples shown in Fig. S9b in the Supplementary Material.
We also tested the same QPI processor under broadband illumi-
nation, as shown in Fig. S9c in the Supplementary Material. The
average PCC of the output QPI images reduced to 0.843 and
0.676 for a broadband spectral illumination that uniformly cov-
ers [0.995λm: 1.005λm] and [0.99λm: 1.01λm], respectively. The
examples of test objects shown in Fig. S9c in the Supplementary
Material further illustrate the success of the diffractive QPI proc-
essor under such broadband illumination, demonstrating its ro-
bustness and adaptability to different spectral conditions not
covered during its training.

Note that in this work, we assumed spatially coherent illu-
mination, which is common in the measurement of the phase
information of objects, especially in tomography and micros-
copy applications. Nevertheless, previous studies on diffractive
processors also reported that spatially incoherent or partially co-
herent illumination can be used in the optical forward model of a
diffractive processor for the optimization of its inference.74,75 By
doing so, one can further broaden the diffractive QPI process-
or’s applicability to scenarios where ideal coherent light sources
are unavailable.

Our presented system is optimized for transparent objects
commonly used in QPI. In terms of lateral resolution, our
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diffractive QPI processor could resolve spatial phase features
with a linewidth of at least 5.2λm across all five input planes,
which corresponds to ∼3 μm within the visible spectrum. To
further increase the resolution and 3D volume of our diffractive
QPI reconstructions, one could design a much wider and deeper
diffractive architecture with significantly more degrees of free-
dom, which needs larger computational resources during train-
ing. It is important to note that our training process is a one-time
effort, and inference is performed all-optically without any
digital computation. By leveraging the versatility of our dif-
fractive design, we can address the imaging needs of both thin,
transparent objects and more complex 3D structures, making
our technology potentially suitable for a wide array of scien-
tific and industrial applications. Our diffractive optical proces-
sor design could also potentially support applications such as
optical sectioning of thicker objects by collecting information
from specific planes while optically filtering background
signals. However, the current demonstrations reported in this
work show that our processor is most effective in scenarios
where the objects are sparsely distributed or partially overlap-
ping, following a linear coherent system approximation at each
wavelength.

Notably, the presented multiwavelength diffractive process-
ors maintain their accuracy in reconstructing quantitative phase
images for multiple distinct planes irrespective of potential var-
iations in the intensity of the broadband light sources used for
illumination. Furthermore, these diffractive optical processors
are not limited to the terahertz spectrum. By choosing suitable
nanofabrication techniques, including, e.g., two-photon polym-
erization-based 3D printing,76–78 it is possible to scale these dif-
fractive optical processors physically to operate across different
segments of the electromagnetic spectrum, including visible
and IR wavelengths. Such scalability and the passive nature of
our diffractive processors pave the way for more efficient and
compact on-chip phase imaging and sensing devices, promising
a transformative impact for biomedical imaging/sensing and
materials science.

Finally, we would like to note that compared to some of the
earlier QPI work that utilized illumination wavelength and an-
gular diversity to improve the lateral and/or axial resolution of
phase microscopy and tomography,79–81 the presented approach
stands out in that its quantitative phase reconstructions are per-
formed through passive light–matter interactions, without the
need for a digital reconstruction algorithm, which saves image
reconstruction time and computing power. The all-optical
phase-to-intensity transformations demonstrated in this work
are multiplexed over different planes of the sample volume
using wavelength encoding, as demonstrated in Sec. 2 (Results).

4 Appendix: Materials and Methods

4.1 Optical Forward Model of Wavelength-Multiplexed
Diffractive QPI Processors

To numerically simulate a diffractive optical processor, each
diffractive layer was treated as a thin optical element that
modulates the complex field of the incoming coherent light.
The complex transmission coefficient tðxq; yq; zl; λÞ at any point
ðxq; yq; zlÞ on the qth diffractive feature of the lth layer is
determined by the local material thickness, hlq, and can be
described as

tðxq; yq; zl; λÞ ¼ exp

�−2πκhlq
λ

�
exp

�−j2πðn − nairÞhlq
λ

�
:

(7)

In this equation, nðλÞ and κðλÞ are the refractive index and
extinction coefficient, respectively, of the chosen dielectric
material at λ. These values correspond to the real and imaginary
parts of the complex refractive index ñðλÞ ¼ nðλÞ þ jκðλÞ. For
the experimentally tested diffractive multiplane QPI processor,
nðλÞ and κðλÞ were set based on the measurements from a tera-
hertz spectroscopy system.63 As for the numerically analyzed
diffractive multiplane QPI designs in the terahertz range, nðλÞ
was kept the same, while κðλÞ was set to 0. For the diffractive
multiplane QPI designs within the visible range, nðλÞ was set
based on the dispersion of IP-DIP photoresist, and κðλÞ was
set to 0, as the absorption of this material within the visible spec-
trum is negligible. The thickness h for each diffractive feature
combines a constant hbase and a variable/learnable part hlearnable,
as shown in

h ¼ hlearnable þ hbase; (8)

where hlearnable is the adjustable thickness part of each diffractive
feature, constrained within the range ½0; hmax�. In all the diffrac-
tive designs demonstrated in the terahertz range, including the
numerical-simulated diffractive models and the experimentally
validated diffractive model, hmax is 1.4 mm, providing full phase
modulation from 0 to 2π for the longest wavelength. The base
thickness hbase, empirically set as 0.2 mm, provides the substrate
(mechanical) support for all the diffractive features. In the dif-
fractive QPI designs for the visible range, hmax was selected as
1400 nm, and the base thickness hbase was set as 1000 nm.

To simulate the light propagation of coherent optical fields in
free space between the layers (including the input object planes,
diffractive layers, and the output plane), we applied the angular
spectrum approach.54 The field at the ðlþ 1Þth diffractive layer,
modulated by its transmittance function tðx; y; zlþ1; λÞ, is given
by

ulþ1
q ðx; y; zlþ1; λÞ
¼ tðx; y; zlþ1; λÞF−1fFfulqðx; y; zlþ1; λÞgHl

qðfx; fy; dm; λÞg.
ð9Þ

Here, Ff·g and F−1f·g represent the 2D Fourier transform
and its inverse operation, respectively. The transfer function
Hl

qðfx; fy; dm; λÞ of free-space propagation with a distance d
between two successive layers is given by

Hl
qðfx; fy; d; λÞ

¼
8<
:

exp
n
j2πd
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλfxÞ2 − ðλfyÞ2

q o
f2x þ f2y <

1
λ2

0; f2x þ f2y ≥ 1
λ2

(10)

where fx and fy represent the spatial frequencies along the
x and y directions, respectively.

In our numerical simulations for all the diffractive designs
demonstrated in this paper, we chose a spatial sampling rate for
the simulated complex fields at a period of ∼0.44λm. Similarly,
the lateral size of the diffractive elements on each layer was
selected at ∼0.44λm. The axial distance between consecutive
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layers, including both the diffractive layers and the input/output
planes, was set at 6λm for the numerical designs depicted in Fig.
S2 in the Supplementary Material and at 10λm for the design
used in our experimental validations, as illustrated in Fig. 9(a).

4.2 Numerical Implementation of Wavelength-
Multiplexed Diffractive Multiplane QPI Processors

In our diffractive multiplane QPI processor design, multiple
phase-only input objects are placed at different z positions,
where z ¼ z1; z2;…; zM. Each object features a phase profile
Ψwðx; y; λÞ with a consistent amplitude across the plane. The
transmission through each of these phase objects/input planes
is defined as

tðx; y; zw; λÞ ¼ ejΨwðx;y;λÞ: (11)

Initially, a broadband spatially coherent source sw (or u0)
illuminates the front phase object plane. As the light propagates
through axially stacked input planes, it is modulated by the
phase objects and results in the complex field ul at each phase
object plane. This field is calculated using the angular spectrum
approach, postmodulation by the object transmittance t, which
can be expressed as ulþ1 ¼ t · F−1fFfulgHlg. Finally, after
traversing M phase object planes, a cumulative multispectral
complex field iw (or uM) is formed, which contains the desired
phase information of input objects.

The resulting field uM is then positioned at the entry point of
the diffractive multiplane QPI processor. Consequently, the in-
put field uM undergoes a sequence of diffractive layer modula-
tions and secondary wave formations, as elaborated in the last
subsection. This process ultimately results in a complex output
field, denoted as owðx; yÞ ¼ uMþKðx; y; zK; λwÞ, where K is the
total number of the diffractive layers. Upon normalization with
the reference signal (Refw) for each wavelength channel w, the
resultant output QPI signals Φw can be obtained following
Eq. (3).

For the diffractive QPI processor designs depicted in Fig. S2
in the Supplementary Material, both the input 2D FOVs distrib-
uted in the input 3D volume and the output FOV were designed
to have a size of ∼73.5λm × 73.5λm. These FOVs are discretized
into 14 pixels × 14 pixels, with each pixel having dimensions
of ∼5.25λm × 5.25λm. To ensure effective performance of the
multiplane QPI task, every diffractive layer in this diffractive
multiplane QPI processor contains 600 × 600 diffractive fea-
tures, covering an area of ∼262.5λm × 262.5λm. These diffrac-
tive QPI processors used in our numerical analyses operate in
the terahertz spectral range, i.e., λ1 ¼ 0.9 mm and λM ¼ 0.7 mm.
For the diffractive QPI processors in the visible range, the
wavelengths were selected as λ1 ¼ 650 nm and λM ¼ 400 nm.
In the diffractive design used for our experimental validation,
shown in Fig. 9(a), the input and output FOVs share identical
dimensions of ∼24.8λm × 24.8λm. This space is divided into
4 pixels× 4 pixels, resulting in each pixel being ∼6.2λm × 6.2λm.
Each diffractive layer in this design includes 120 × 120 diffrac-
tive features, extending over an area of ∼49.5λm × 49.5λm.
Here, the wavelengths for experimental validation were selected
as λ1 ¼ 0.8 mm and λ2 ¼ 0.75 mm.

4.3 Training Loss Function and Image Quality Metrics

For the optimization of our diffractive multiplane QPI process-
ors, a loss function that utilizes normalized MSE was

formulated to penalize the structural errors between the output
quantitative phase image Φwðx; yÞ and its ideal counterpart
ΦðGTÞ

w ðx; yÞ over each wavelength channel that corresponds to
an individual input plane. The loss computation for each chan-
nel is structured as follows:

Lw ¼ 1

NðDÞ
x

1

NðDÞ
y

XNðDÞ
x

x¼1

XNðDÞ
y

y¼1

jΦðGTÞ
w ðx; yÞ −Φwðx; yÞj2: (12)

During the training stage, the overall loss function used for
the diffractive multiplane QPI processor is determined by aver-
aging these loss terms over all the M spectral channels, thereby
facilitating a concurrent optimization process across all the
wavelength channels. Consequently, the aggregate loss function
can be expressed as

LQPI ¼
1

M

XM
λ¼1

αwLw; (13)

where αw represents the dynamic channel balance weights
assigned to each wavelength channel’s loss. This mechanism
was designed to balance the performance among different wave-
length channels during the training. Initialized as 1, αw under-
goes adaptive adjustments in every training iteration, as per the
subsequent equation,

αw ← maxð0.1 × ðLw − LmeanÞ þ αw; 0Þ: (14)

In this equation, Lmean symbolizes the average loss across all
wavelength channels. According to this methodology, if a chan-
nel’s loss is relatively low compared to the average, αw will de-
crease automatically, thereby dynamically reducing the weight
of that channel in the training process. Conversely, a higher-
than-average loss in a particular wavelength channel leads to
an increase in αw, amplifying the channel’s balance weight
and intensifying the penalty on its output image performance.

In our experimental validation and our output diffraction ef-
ficiency-related analyses, we employed a modified loss function
by further adding an output diffraction efficiency-related loss
term, LEff , into the original loss function defined in Eq. (13),
which is given by

L ¼ LQPI þ βEffLEff ; (15)

where βEff denotes the weight coefficient associated with LEff .
LEff is defined as

LEff ¼ ηthresh −minðη; ηthreshÞ; (16)

where ηthresh is the threshold set to maintain a decent output
diffraction efficiency. To be specific, the efficiency penalty is
activated only when η < ηthresh. During the training of the ex-
perimental model, the values of βEff and ηthresh were empirically
set as 100 and 0.02, respectively; for the diffractive models
trained with output diffraction efficiency penalty shown in
Fig. 8(a), the values of ηthresh were selected as 1%, 5%, 10%,
and the value of βEff was chosen as 100. η represents the output
diffraction efficiency and is defined as

η ¼
P

ðx;yÞ∈Sjoðx; yÞj2P
ðx;yÞ∈Sjiðx; yÞj2

: (17)

Shen et al.: Multiplane quantitative phase imaging using a wavelength-multiplexed diffractive optical processor

Advanced Photonics 056003-16 Sep∕Oct 2024 • Vol. 6(5)

https://doi.org/10.1117/1.AP.6.5.056003.s01
https://doi.org/10.1117/1.AP.6.5.056003.s01


The linear correlation of the quantitative phase images
Φwðx; yÞ produced by the diffractive multiplane QPI processor
against their ground truth ΦðGTÞ

w ðx; yÞ was evaluated using the
PCC metric. For a specific wavelength channel, the PCC value
is quantified using the following equation:

PCC ¼
PðΦwðx; yÞ − ΦwÞðΦðGTÞ

w ðx; yÞ −ΦðGTÞ
w ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðΦwðx; yÞ −ΦwÞ2ðΦðGTÞ

w ðx; yÞ −ΦðGTÞ
w Þ2

q : (18)

For evaluating the phase accuracy of our presented diffractive
multiplane QPI processors, we calculated the normalized MAE
values between the reconstructed output phase profiles and the
ground truth, defined as

MAEPhase ¼
1

NðDÞ
x NðDÞ

y αtestπ

XNðDÞ
x

x¼1

XNðDÞ
y

y¼1

jΦðGTÞ
w ðx; yÞ − Φwðx; yÞj;

(19)

where the testing phase contrast parameter αtest was used to nor-
malize the phase error based on the dynamic range of the input
phase contrast.

4.4 Training Data Preparation and Other
Implementation Details

For training our diffractive multiplane QPI processors, we
assembled a data set of 110,000 images, which can be divided
into two categories: (1) 55,000 handwritten digit images from
the original MNIST training set, and (2) 55,000 custom-de-
signed images featuring a variety of patterns, such as gratings,
patches, and circles, each with unique spatial frequencies and
orientations.66 In the training phase, we generated each set of
input objects by randomly choosing M images from this data
set, with each image encoded into the phase channel of one of
the M object planes, thus creating an input object stack for the
multiplane phase-imaging task.

The numerical simulations and the training process for the
diffractive multiplane QPI processors described in this study
were carried out using Python (version 3.7.13) and PyTorch
(version 2.5.0, Meta Platform Inc.). The Adam optimizer from
PyTorch, with its default settings, was utilized. We set the learn-
ing rate at 0.001 and the batch size at 16. Our diffractive models
underwent a 100-epoch training on a workstation equipped with
an Nvidia GeForce RTX 3090 GPU, an Intel Core i9-11900
CPU, and 128 GB RAM. The training time for a 10-layer dif-
fractive multiplane QPI processor design, as seen in Fig. S2 in
the Supplementary Material, was roughly 12 days, which is a
one-time design effort.

4.5 Details of the Experimental Diffractive Multiplane
QPI System

Our diffractive multiplane QPI design was tested using a tera-
hertz continuous wave (CW) system, as illustrated in Fig. S4 in
the Supplementary Material. This setup involved a terahertz
source comprising a Virginia Diode Inc. WR9.0M SGX/
WR4.3x2 WR2.2 modular amplifier/multiplier chain (AMC),
paired with a corresponding diagonal horn antenna (Virginia
Diode Inc. WR2.2). At the AMC’s input, a 10-dBm radio-fre-
quency (RF) signal was introduced at 10.4166 or 11.1111 GHz

(fRF1), which underwent a 36-fold multiplication, resulting in a
0.375 or 0.4 THz CW radiation output, equal to an illumination
wavelength 0.8 or 0.75 mm, respectively. Additionally, for lock-
in detection, the AMC’s output experienced modulation with a
1-kHz square wave. Situated at ∼10 mm from the horn anten-
na’s exit plane, the input aperture was 1.6 mm wide. An XY
positioning stage, comprising two Thorlabs NRT100 motorized
stages, moved a single-pixel mixer (Virginia Diode Inc. WRI
2.2) to conduct a 2D scan of the output intensity distribution,
with a step size of 0.8 mm. The detector also received a 10-dBm
RF signal at 11.1111 or 10.4166 GHz (fRF2) as the local os-
cillator, downconverting the output frequency to 1 GHz. This
downconverted signal then passed through a low-noise amplifier
(gain: 80 dBm) and a KL Electronics 3C40-1000/T10-O/O
bandpass filter at 1 GHz (+/-10 MHz), reducing noise from un-
desirable frequency bands. After a linear calibration with an HP
8495B tunable attenuator, the signal was relayed to a Mini-
Circuits ZX47-60 low-noise power detector. The lock-in ampli-
fier (Stanford Research SR830) then processed the detector’s
output voltage, using the 1-kHz square wave as a reference
for linear scale calibration.

For the fabrication of the diffractive multiplane QPI system
depicted in Fig. 9(b), an Objet30 Pro 3D printer by Stratasys
was employed to print the diffractive design and the input aper-
ture. To ensure alignment with our optical forward model for the
experimental diffractive design, a 3D-printed holder was fabri-
cated using the same printer. This holder facilitated the precise
positioning of both the input aperture and the printed diffractive
layers, securing their accurate 3D assembly.
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