
RESEARCH PAPER

Investigating the relationship between hypoxia,
hypoxia-inducible factor 1, and the optical redox

ratio in response to radiation therapy
Jesse D. Ivers ,a Nagavenkatasai Puvvada,a Charles M. Quick,b

and Narasimhan Rajaram a,*
aUniversity of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States

bUniversity of Arkansas for Medical Sciences, Department of Pathology, Little Rock, Arkansas, United States

Statement of Discovery

This work uses multivariate histogram analysis of two-photon excited autofluorescence
images acquired from excised tumor sections to investigate the relationship between tumor
hypoxia and metabolism in radiation resistance.

ABSTRACT. Significance: Radiation resistance is a major contributor to cancer treatment failure
and is likely driven by multiple pathways. Multivariate visualization that preserves
the spatial co-localization of factors could aid in understanding mechanisms of
resistance and identifying biomarkers of response.

Aim: We aim to investigate the spatial and temporal relationship between hypoxia,
hypoxia-inducible factor 1 (HIF-1α), and metabolism in response to radiation therapy
in two cell lines of known radiation resistance and sensitivity.

Approach: Two-photon excited fluorescence and fluorescence lifetime imaging
microscopy were used to quantify the optical redox ratio (ORR) and NAD(P)H fluo-
rescent lifetime and bound fraction in frozen tumor sections and co-registered with
immunohistochemical stain-based imaging of hypoxic fraction and HIF-1α.

Results: Histogram analysis of hypoxia, HIF-1α, and ORR revealed an increase in
the ORR in regions of low hypoxia and high HIF-1α, indicating that the stabilization of
HIF-1α is likely due to an increase in reactive oxygen species following radiation
therapy. In addition, the bound NAD(P)H fraction was higher in regions with a low
ORR in resistant tumors following radiation, suggesting an increase in fatty acid
synthesis.

Conclusions: A multivariate histogram approach can reveal hidden trends not
observed in bulk analysis of tumor images and may be useful in understanding
biomarkers and mechanisms of radiation resistance.
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1 Introduction
The majority of patients with head and neck squamous cell carcinoma (HNSCC) are treated
with radiation therapy (in addition to surgery and/or chemotherapy and immunotherapy).
Unfortunately, nearly 30% of patients will experience loco-regional recurrence following
treatment.1–4 Oxygen is a key ingredient in radiation’s success as radiation creates free radicals
in DNA or water molecules that react with the available oxygen to cause ionizing damage to the
DNA.5,6 Tumor hypoxia, on the other hand, leads to treatment failure due to the lack of this key
vehicle.7–9 Hypoxia leads to the stabilization of hypoxia-inducible factor 1 alpha (HIF-1α), a
master regulator of oxygen homeostasis.10 In cancer cells, HIF-1α stabilization promotes angio-
genesis and activates several downstream glycolytic genes that promote solid tumor growth.11–14

The level and intensity of HIF-1α expression is inversely correlated with disease-free survival in
cancers of the oropharynx treated with radiation therapy.15 However, studies have shown that
factors other than hypoxia, such as radiation-induced reoxygenation within the tumor, can lead
to an increase in reactive oxygen species, leading to the activation of HIF-1α16,17 and a sub-
sequent increase in glucose uptake.18 Increased glucose catabolism can promote radiation resis-
tance through utilization within the pentose phosphate shunt to maintain the NADPH-glutathione
buffer and hence scavenge radiation-induced ROS. Thus, although hypoxic tumors respond
poorly to radiation therapy, well-oxygenated tumors can also escape the effects of radiation
by leveraging alternative metabolic pathways.

The determination of the relationship between oxygenation and metabolism has typically
involved measurements of glucose uptake and lactate production in cells in vitro in the presence
and absence of oxygen.19 However, these studies do not account for tumor heterogeneity; it is
well established that tumor hypoxia varies both in space and time across a tumor,20 leading to
likely similar perturbations in HIF-1α and hence metabolic pathways. Therefore, there is a need
to understand how the relationship between hypoxia, HIF-1α, and metabolism affects the
response to radiation therapy in tumors.

Two photon microscopy can provide label-free, high-resolution, and quantitative readouts of
cell metabolism. Endogenous fluorescence intensities of the metabolic cofactors reduced nico-
tinamide adenine dinucleotide, and the spectrally indistinguishable NAD(P)H as well as oxidized
flavin adenine dinucleotide (FAD)21,22 can be used to quantify the optical redox ratio (ORR),
defined here as ORR ¼ IFAD

INADðPÞHþIFAD
. This metric has become a well-established means of assess-

ing cellular redox state and distinguishing between sub-populations of cells.23–26 Fluorescence
lifetime imaging microscopy (FLIM) provides a measure of the average time spent by a fluo-
rophore in the excited state before decaying to its ground state. Protein-bound NAD(P)H has a
relatively long lifetime, from 1.9 to 5.7 ns, whereas free NAD(P)H has a shorter lifetime, around
0.4 ns.27–29 Protein-bound NAD(P)H lifetime can be more sensitive than the ORR or mean life-
time in determining metabolic changes associated with the diversion of glucose away from its
traditional pathway to the mitochondria.30

Previous studies in our lab have investigated the relationship between HIF-1α and the ORR
in vitro in response to radiation therapy and found that an increase in HIF-1α was accompanied
by a decrease in the ORR in radiation-resistant cancer cells treated with radiation, suggesting an
increase in glucose catabolism.31 Knockdown of HIF-1α led to an increase in the ORR that was
accompanied by a decrease in glucose uptake, a decrease in reduced glutathione, and an increase
in ROS in radiation-resistant cells, demonstrating that the radiation-resistant cells were shunting
glucose through the pentose phosphate pathway to generate NADPH that could maintain the pool
of reduced glutathione to scavenge free radicals.32 Immunohistochemical assessment of HNSCC
tumors excised from mice following radiation therapy showed a significantly higher accumu-
lation of HIF-1α in treatment-resistant tumors compared with treatment-sensitive tumors, despite
only minor differences in overall hypoxic fraction.33 To our knowledge, no study has examined
the spatiotemporal dynamics of hypoxia, HIF-1α, and metabolism within tumors, especially in
the context of radiation therapy.

The objective of this study is to investigate the relationship between hypoxia, HIF-1α, and
the ORR in radiation-sensitive and resistant cancer cells prior to treatment and in response to
treatment. We used two human HNSCC lines: UM-SCC-22B (radiation-sensitive) and UM-SCC-
47 (radiation-resistant). These cell lines were grown as tumor xenografts in mice and excised
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either prior to therapy or 24 and 48 hr following radiation therapy. Whole-section autofluores-
cence imaging of NAD(P)H and FAD and immunohistochemical stain-based imaging of hypoxia
and HIF-1α were performed on the same tumor sections using two-photon microscopy. In addi-
tion, we acquired intensity and lifetime maps from specific fields of view within each section.
Trivariate histograms of co-registered images of hypoxic fraction, HIF-1α, and the ORR revealed
relationships between the three parameters not apparent when analyzing the bulk mean of each
parameter across the entire tumor section. Specifically, we found regions of low-hypoxia that had
high HIF-1α expression and increased ORR, a finding at odds with the traditional observation of
a reduced ORR under hypoxic conditions and high HIF-1α expression. In addition, analysis of
the relationship between fluorescence lifetime and ORR revealed regions of increased bound
fraction in regions with low ORRs in the resistant tumors following radiation therapy, consistent
with optical metabolic changes associated with fatty acid synthesis, which has been shown to
promote radiation resistance in cancer cells. Altogether, we show that multidimensional imaging
and analysis can provide a deeper view into the tumor microenvironment, especially the relation-
ship between tumor oxygenation and metabolism that is known to play key roles in radiation
resistance.

2 Materials and Methods

2.1 Cell Culture
Cell culture conditions, xenograft protocol, and radiation treatment procedures have all been
detailed previously.33–35 In summary, UM-SCC-22B (22B) (established from HPV 16- metastatic
lymph node of a female patient) and UM-SCC-47 (47) (established from HPV 16þ primary
tumor of lateral tongue of a male patient) were purchased from EMD Millipore and cultured
in Dulbecco’s modified Eagle medium with 10% fetal bovine serum, 1% penicillin-streptomycin,
1% non-essential amino acids, and 1% L-glutamine.

2.2 Tumor Xenografts and Radiation Treatment
All animal studies were approved by the Institutional Animal Care & Use Committee at the
University of Arkansas (protocol number: 18061). Mice were purchased from Jackson
Laboratories (Bar Harbor, Maine) and housed at the Central Laboratory Animal Facility with
ad libitum access to food and clean water and standard 12 hr light/dark cycles. After a 2 to
3 week acclimatization period, 1.5 million cells suspended in a 1:1 mixture of Matrigel
(Corning, Corning, New York) and saline were injected into the right flank (for treatment groups)
or both flanks (for control groups) of athymic (nu/nu) mice to form xenografts. This study
included 23 mice in the UM-SCC-22B group and 18 mice in the UM-SCC-47 tumors. Mice
from each tumor group were further divided into treatment (XT) or control (NT) groups
(n ¼ 2 to 5 in each group). Animals in the XT group were treated with a single dose of
2 Gy of radiation using an X-Rad 320 biological cabinet (Precision X-Ray, North Branford,
Connecticut) while under anesthesia using a 1.5% v/v isoflurane and oxygen mixture. The ani-
mal’s body was covered using lead blocks except for the tumor. Animals in the NT group served
as controls and did not undergo radiation. XT and NT groups were subdivided into groups for
euthanasia and tumor excision time relative to treatment: baseline (before treatment) and 24 and
48 hours post-treatment (hr). When tumor volume reached 200 mm3, (∼20 days after tumor
implantation), mice underwent the assigned treatment (NT/XT), and tumors were excised at the
assigned time [Fig. 1(a)].

2.3 Immunohistochemistry
Mice were injected (i.p.) with pimonidazole (60 mg∕kg; Hypoxyprobe, Burlingame,
Massachusetts) 1 hr prior to euthanasia. Pimonidazole (pimo) is a nitroimidazole that forms
adducts with thiol-containing proteins in hypoxic cells and tissue.37 Tumors were excised,
flash-frozen, and later sectioned with 50 μm thickness using a cryostat (CM 1860; Leica, Inc.,
Nusslock, Germany). Each slide contained three serial sections. Slides were stored at −80°C
before and after imaging. Immunohistochemistry (IHC) was performed on slides after autofluor-
escence imaging to isolate endogenous and exogenous signals.
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An indirect IHC staining procedure was used to detect hypoxia (through pimo labeling) and
HIF-1α accumulation within a single tissue section. Reagent concentrations and incubation times
were optimized through in-house trials to maximize the signal and minimize the non-specific
background. Briefly, the slides were warmed to room temperature from −80°C, and individual
sections were outlined with a hydrophobic pap pen (H4000; Vector Laboratories, Burlingame,
California). Slides were fixed with 4% PFA, washed three times with PBS for 2 min, and per-
meabilized with 0.5% Triton-X 100. Off-target antigen binding was blocked with an in-house
blocking solution of 96% PBS, 4% goat serum, and 1% sodium azide for 1 hr at room temper-
ature. The blocking solution was aspirated, and a primary antibody solution, composed of
0.5% Rabbit anti-HIF-1α (36169; cell signaling, Danvers, Massachusetts), 2% Rat anti-pimo
(Rat Mab; Hypoxyprobe, Burlington, Massachusetts) and 97.5% blocking solution, was added.
Slides were incubated in the primary antibody solution for 3 h at room temperature and then
washed three times in PBS for 2 min. A secondary antibody solution of 1% Goat anti-
Rabbit Alexa Fluor 488 (A27034; Invitrogen, Waltham, Massachusetts), 1% Goat anti-Rat
Alexa Fluor 568 (A11077; Invitrogen, Waltham, Massachusetts), and 98% blocking solution
was added, and slides were incubated for 45 min at room temperature. These conjugate fluo-
rophores were selected to optimize the signal separation into separate channels (further described
in IHC imaging and signal extraction). Slides were washed three more times for 2 min in PBS,
then mounted with fluoromount-G (0100-01; SouthernBiotech, Birmingham, Alabama), covered
and sealed with nail polish, and allowed to dry overnight.

2.4 Two Photon Excited Fluorescence
All imaging (autofluorescence—intensity and lifetime—and IHC assays) was performed using
two photon excited fluorescence (TPEF) with excitation using a tunable Ti:Sapphire laser
(Spectra-Physics, Santa Clara, California) and emission detected in three distinct channels using
GaAsP photomultiplier tubes (PMT) (H10770PB-40; Hamamatsu, Shizuoka, Japan). The center
wavelength and bandpass for each emission filter (ET680sp-2p; Chroma, Bellows Falls,
Vermont) were as follows: 460∕40 nm (blue), 525∕50 nm (green), and 625∕30 nm (red). All
images were captured with a 20×, 1.0 NAwater-immersion objective (Olympus, Tokyo, Japan).
Individual images (whether a region of interest image or a single frame of a whole-section image)
were captured with a pixel dwell time of 3.8 μs at a size of 512 × 512 pixels (584 584 × 584 μm)
and a 13-bit depth. Power and PMT gain were manually adjusted to maximize the SNR
and recorded for normalization after imaging (see Sec. 2.5). The incident power was never

Fig. 1 Schematic of the study design and methods. (a) Timeline of tumor implantation and group
divisions. (b) Overview of the autofluorescence imaging protocol. (c) Overview of the IHC staining
and imaging protocol for pimonidazole and HIF-1α. Created with BioRender.36
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allowed to exceed 65 mW. All whole-section images were captured using Prairie View’s (Bruker
Corporation, Billerica, Massachusetts) Atlas Imaging application with a frame overlap of at least
15%. Specific imaging details for each assay are described in the following sections and graphi-
cally in Figs. 1(b) and 1(c).

2.4.1 Autofluorescence intensity and lifetime

NAD(P)H was excited at 755 nm and emission detected in the blue channel. FAD was excited at
855 nm and emission detected in the green channel. Whole-section autofluorescence was cap-
tured from one tumor section/slide to limit the amount of time at room temperature and ensure
minimal changes in autofluorescence as a result of freeze thaw38. Whole-section imaging
required ∼30 min to acquire both NAD(P)H and FAD signals. A multi-level nested ANOVA
(see Sec. 2.6) revealed no significant variations between individual region of interest (ROI)
images or due to sections, confirming the signal consistency over the imaging time. During pro-
tocol optimization, IHC signals from two sections were used to validate the imaging protocol;
one section was imaged exclusively for IHC signals, and the other was imaged for endogenous
signals first, undergoing a single thaw-freeze cycle. Images from these samples were observed,
and it was determined that there was no evident degradation of the IHC signal intensity or quality
due to the prior autofluorescence imaging or limited time at room temperature. The fluorescence
lifetime of NAD(P)H was imaged using time-correlated single-photon counting (SPC-150;
Becker & Hickl Gmbh, Berline, Germany). FLIM acquisition was performed over a 2 min inte-
gration time with an 80 MHz laser pulse and 256 0.0390625 ns temporal bins to ensure a suffi-
cient number of photon counts to determine lifetime components and distinguish lifetime species.
Autofluorescence intensity and lifetime images were captured for at least three ROIs for each
section [Fig. 1(b)].

2.4.2 IHC imaging and signal extraction

Following IHC, Alexa Fluor 568 was excited at 755 nm and Alexa Fluor 488 at 950 nm. Two-
photon excitation for Alexa Fluor 488 and Alexa Fluor 568 has been reported previously.39

The spectral overlap between the 755nm and 950 nm excitation wavelengths was selected and
determined experimentally to maximize the total emission of fluorophores while minimizing any
overlap from endogenous fluorophores. To confirm this, serial sections were imaged under iden-
tical parameters for autofluorescence intensity and IHC staining intensity to determine the effects
(if any) of endogenous fluorophores on IHC signals. Under these conditions, autofluorescence
intensity was negligible compared with the intensity from exogenous fluorophores, which were
typically orders of magnitude more intense. As a result of this, any endogenous fluorescence
signal present under the IHC imaging conditions was effectively removed by thresholds and
binarization during processing. Whole-section IHC images were captured using Prairie View’s
Atlas Imaging from three sections/slide [Fig. 1(c)]. Pimo+ and HIF-1αþ pixels were determined
after fluorescein normalization using intensity thresholds that were determined by averaging
multiple manually set thresholds across a random subset of images. Pimo+ pixels were isolated
from the red channel of 755 nm excitation images, and HIF-1αþ pixels were isolated from
the product of the red and green channels of 950 nm excitation images [Fig. 2(a)]. This product
was found experimentally to minimize the background staining, maximize the true signal, and
improve the signal-to-noise ratio for low HIF-1α signals. The quality of thresholds was visually
assessed across a random subset of images to ensure sufficient signal selection and background
rejection.

2.5 Image Processing
TPEF image intensities for both autofluorescence and IHC signals were normalized by laser
power and PMT gain. These parameters were calibrated to fluorescein solutions of different
concentrations, as described in detail elsewhere.40,41 Briefly, multiple solutions with known con-
centrations of fluorescein (μM range) were imaged for a range of PMT gain and laser power
settings to establish a relationship between these parameters and image intensity. Laser power
readings were acquired on each imaging day to account for daily variations. These measurements
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were then used to normalize the image intensities on each day and calibrate to the fluorescein
concentrations. Whole-section images were stitched using Fiji’s (ImageJ) stitching plugin to
compute the overlap between adjacent tiles, with a regression threshold of 0.05 and linear
interpolation between the overlapping portions.42 After normalization and stitching, a mask was
created to remove pixels with a low signal based on a manually identified threshold to mitigate
noise from these regions. This mask was added to the manually drawn mask (see Sec. 2.5.1) and
included in all subsequent analyses. The ORR was calculated for each pixel within all images
using MATLAB (R2022a; MathWorks, Natick, Massachusetts). All histograms (including pha-
sor plots43) were generated in MATLAB and scaled to the percentage of total pixels in the histo-
gram. Specifics for processing different image types are explained in subsequent sections and
graphically in Fig. 2.

2.5.1 Masking and registration

Necrotic regions, non-tumor regions, and background were manually identified and masked out
using a manual tracing program developed in MATLAB and converted to polygons using fast
mapping.44 Matched sections with both autofluorescence and IHC image data were manually
registered using a program developed in MATLAB. Briefly, two pairs of corresponding points
are identified in each image. These points are used to define a line within the image. Necessary
rigid transformations to align both lines are calculated. The line is first scaled, then rotated, and
then translated. The final transform is rounded to account for the discrete pixels of images. The
final transform is applied to the extracted IHC signal and mask from the IHC image. The regis-
tered IHC signals are stacked with the corresponding ORR map resulting in anM × N × 3 image
with ORR, pimo+, and HIF-1αþ layers. The intersection of the registered masks is used to create
a new mask for the stack.

2.5.2 Regional analysis of ORR, hypoxia, and HIF-1α accumulation

The registered stack (as described in Sec. 2.5.1) is used to perform a regional analysis of ORR,
oxygenation, and HIF-1α accumulation within a 100 μm radius around each pixel. This radius
represents the generally accepted maximum diffusion barrier of oxygen.45–48 This radius also
mitigates the impact of minor registration errors introduced through the manual registration
process, tissue movement during IHC staining, and variations in imaging depth between assays
(differences in depth are limited by a section thickness of 50 μm).

Fig. 2 Schematic of image processing for whole-section images. (a) Univariate processing
(following vertical arrows) of autofluorescence intensity and IHC signals with intermediate outputs.
LP and LH are representative of the threshold cutoff values for pimo and HIF-1α stains to obtain
the resultant binarized IHC signal map. Red and green pixels in the binarized IHC map represent
pimo+ and HIF-1αþ staining, respectively. In regions of overlap and near overlap, the RGB rep-
resentation appears yellow. (b) Multivariate processing derived from univariate maps (following
horizontal arrows) with masking and regional analysis of image stack to produce (c) final multi-
variate outputs. Created with BioRender.36
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The intersection of masks (as described in Sec. 2.5.1) was applied to each stack. The
M × N × 3 stack (of ORR, pimo+, HIF-1αþ) was convolved with a 100 μm radius disk filter.
The disk was created using MATLAB’s fspecial, which creates a circular averaging pillbox of
a given radius (which may have fractional values on the border, see Fig. 2 for a visual repre-
sentation). This filter was scaled up by the area of a circle to convert to a summation filter.
Convolving results in a blurred M × N × 3 stack with each 1 × 1 × 3 voxel representing the
weighted sum of the signal within the disk region for the respective channel. The mask for each
stack was separately convolved with the same filter to obtain a map of region size (in pixel
counts) around each pixel. The blurred stack was divided element-wise by the map of region
size to obtain the average of each signal for the region centered at all locations. This process
is described graphically in Fig. 2.

2.5.3 NAD(P)H lifetime analysis

Phasor plots of lifetime decays are, in short, a bivariate histogram of the real and imaginary parts
of the Fourier transformation of the fluorescent decay for each pixel.43 An adapted MATLAB
code was used to perform phasor transformations, based on work from Gottlieb et al.49 Phasor
histograms for each group were manually inspected to ensure that they were reasonably approxi-
mated by two lifetime species. Under this assumption, the real and imaginary components of
the transform (G and S coordinates, respectively) were fit using a simple linear regression in
MATLAB. The intersection of this line with the universal circle was used to determine the short
and long (free and bound, respectively) lifetime species (τ1 and τ2). All phasor points were then
projected onto the fit-line, and the distance from the intersection points was used to calculate the
free and bound fractions (α1 and α2). The mean lifetime (τm) was then calculated as the weighted
average of short and long lifetime species for each pixel using the equation τm ¼ α1τ1 þ α2τ2.

2.5.4 Multivariate histograms

All multivariate histograms were generated in MATLAB. Uni- and bivariate histogram counts
were calculated using built-in histogram functions and normalized to the percentage of the total
number of pixels within the group. Histogram counts were plotted against the center value of the
bin. Bivariate histograms were plotted as a surface color-coded by the pixel percentage, and the
shading between bin centers was interpolated linearly. Trivariate histograms were calculated by
averaging the third variable (ORR in this case) within each bin’s range. The value of this average
was used to update the color-code of the surface of the respective bivariate histogram. The pixel
percentages were represented in the z-value of the surface plot.

2.6 Statistical Analysis
For testing of bulk means for whole-section and ROI images [Figs. 3(b), 4(b), 4(c), 8(b), 8(d),
and 8(f)], each sample and animal were initially tested with a multi-level nested ANOVA through
a custom MATLAB script to ensure no significant variation due to the individual image or sec-
tion. No significant variation was found due to these factors within any animal, so a simplified
repeat-measures ANOVA was employed in JMP (SAS Institute, Cary, North Carolina) with
means for each image treated as spatial repeats within the animal. A two-factor ANOVA for
each cell line was used to analyze the variation due to treatment and time after radiation.
Baseline metrics for both cell lines were compared using Student’s t-test (JMP). Post-hoc
analyses were performed using Tukey’s HSD in JMP. Accordingly, all box-and-whisker
plots are shown using Tukey’s method and generated in GraphPad Prism (Dotmatics, Boston,
Massachusetts). Differences between interaction effects (treatment × timepoint) were not consid-
ered except with the baseline, and thus only pairwise differences between baseline, groups from
the same treatment, or treatment groups with matched timepoint are shown and discussed.

Simple linear regressions [Figs. 4(d), 4(e), Figs. 9(b)–9(d)] were performed and plotted in
GraphPad Prism (with the exception of phasor lines used to calculate mean lifetime and bound
fraction as described in NAD(P)H lifetime analysis). Slopes of regression lines of individual
datasets were compared using an ANCOVA (GraphPad Prism). Slopes and p-values for Pimo
versus HIF-1α regression lines are included in Table 1 as m and pline, and pair-wise ANCOVA
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p-values are listed (as relevant) with no subscript in the text. Slopes of phasor lines are included
in figure legends [Figs. 9(b)–9(d)].

Univariate histograms were compared pairwise with a χ2 test for homogeneity on histograms
bins (JMP) [Figs. 5, 7, and 10(b)]. Only pairs of interest were tested to limit the accumulation of
type I errors. All reported p-values are adjusted (where relevant) using the Holm–Bonferonni
method for multiple comparisons and employed manually. α ¼ 0.05 was considered statistically
significant.

3 Results and Discussion

3.1 Analysis of Whole-Section Images of Hypoxia, HIF-1α, and ORR Shows
Large Intra-Group Variances Within 22B and 47 Tumors

We determined the ORR for whole-section images at baseline and at each time point for the
untreated controls and the treated groups (Fig. 3). For comparisons, only untreated controls
(NT) versus treated (XT) groups at the same time point, baseline versus 24∕48 h within each
cell line, and baselines between cell lines were considered; we found no significant differences in
the bulk ORR across these comparisons. However, we noticed large intra-group variances of the
average ORR of tumor sections from both cell lines, suggesting the possibility of more complex
distributions of ORR data that could obscure differences when considered in bulk.

For the whole-section IHC images (Fig. 4), we found that hypoxia was significantly lower in
the treated 22B tumors at 24 h (1.655� 0.465%) compared with baseline (2.401 � 0.497%;
p ¼ 0.0108). However, there were no differences between the NT and XT groups at either

Fig. 3 Whole-section image ORR (a) representative ORR maps of baseline and XT groups for
each cell line with zoomed inset to show detail and (b) box-and-whisker plot of all samples in
each group. ORR ¼ IFAD

INADðPÞHþIFAD
.
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Fig. 4 Whole-section image IHC (a) pseudo-colored representative images of baseline and XT
groups for each cell line (pimo+ in red, HIF-1αþ in green). Zoomed inset (matched to the inset
in Fig. 3) shows the punctate nature of HIF-1α distribution that contributes to the difficulty in visu-
alization at large scales. Scale bar ¼ 2000 μm. (b) Box-and-whisker plot of pimo+ staining percent
and (c) HIF-1αþ staining percent for all samples in each group (**: p < 0.025, ***: p < 0.005).
(d), (e) Scatter plot with simple linear regression fit line superimposed for baseline and XT groups
for pimo+ staining percent versus HIF-1αþ staining percent for (d) 22B and (e) 47 tumors.

Table 1 Summary of correlation results for Pimo+% versus HIF-1αþ% regressions. Slopes
marked with ** are significantly different from one another (p ¼ 0.006).

Correlations between Pimo+% and HIF-1αþ%

22B 47

Timepoint m R2 pline m R2 pline

Baseline 2.848 0.2401 0.0390 7.001 0.6735 0.0067

24 hr 4.652** 0.7292 0.0001 3.118 0.9524 <0.0001

48 hr 1.157** 0.3363 0.0481 3.301 0.4786 0.0127
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24 h or 48 h, suggesting that the observed decrease in hypoxia is likely not a result of treatment.
We also found that hypoxia was significantly lower in the control 22B tumors at 48 h
(1.889� 0.922%) when compared with baseline (2.401� 0.497%; p ¼ 0.0043) [Fig. 4(b)].
In fact, all groups are lower than the baseline in 22B tumors. We did not see any significant
differences in hypoxic fraction in the resistant 47 tumors, though hypoxic fraction does appear
elevated in the treated tumors at 48 h relative to the control tumors at the same time [Fig. 4(b)].

At 48 h in the treated 22B tumors (2.887� 1.839%),HIF-1α accumulation was significantly
decreased from baseline (6.161� 2.588%; p ¼ 0.0148) [Fig. 4(c)]. Although not significant,
there was also a notable difference between the NT and XT groups at 48 hr in the 22B tumor,
with the XT tumors showing lower HIF-1α accumulation. No significant differences in HIF-1α
accumulation were found in the 47 tumors, but the 48 hr XT group had elevated HIF-1α relative
to the 48 hr control. This parallels the trend seen in hypoxic fraction at 48 hr between the NT and
XT groups.

3.1.1 Hypoxia and HIF-1α are positively correlated but with different slopes
in the resistant and sensitive tumors

To investigate the relationship between hypoxia and HIF-1α, we used a simple linear regression
of all whole-section image means for each time point [Figs. 4(d) and 4(e)]. All correlations were
found to be significant and positively sloped (Table 1), confirming the expected correlation
between hypoxia and HIF-1α. Although not reaching statistical significance, the slope of cor-
relations at baseline is notably greater in the 47 tumors compared with the 22B tumors. In 22B
tumors, this slope differs significantly between 24 and 48 hr [p ¼ 0.006; Fig. 4(d)]. No signifi-
cant difference in slopes was found between time points in the 47 tumors (p ¼ 0.9425 for 24 hr
versu.48 hr). With the exception of the treated 22B tumors at 24 hr, the slope of the correlation
between hypoxia and HIF-1α is consistently greater in the 47 tumors, indicating a large HIF-1α
accumulation for a small change in hypoxia and pointing to the possibility of non-hypoxic
sources of HIF-1α accumulation.

3.1.2 Distributions of ORR and HIF-1α A are significantly different at 24 and
48 hr following radiation compared with baseline in the resistant tumors

Having identified large intra-group variances in the analysis of bulk ORR, hypoxic fraction, and
HIF-1α, we suspected that there may be sub-populations of metabolic phenotypes that were
obscured when averaged over the entire tumor section. Therefore, we employed a histogram-
based analysis of the entire section to further investigate the relationship between these three
parameters (Fig. 5).

First, we compared all treatment groups with their respective baseline control for all regions.
Only 47 tumors at 24 hr were found to be significantly different from their baseline control
(p ¼ 0.0153), showing a peak above 0.5, whereas baseline and 48 hr groups have declining
numbers of regions at this ORR [Fig. 5(a)]. The 22B tumors at 48 hr show a similar distribution
of ORRs to that observed in the 47 tumors at 24 hr, though it was not statistically significant
[Fig. 5(a)]. Next, we analyzed the distributions of regions for hypoxia andHIF-1α [Fig. 5(b)]. We
found that the regional percentage of pimo+ pixels at 24 hr was significantly different from both
baseline (p ¼ 0.0003) and 48 hr (p ¼ 0.012) in the 47 tumors, with a greater percentage of low-
hypoxia regions and fewer high-hypoxia regions [Fig. 5(b) and Fig. S1 in the Supplementary
Material]. The decrease in high-hypoxia regions at 24 hr is likely due to radiation-induced reox-
ygenation that we have observed in the 47 tumors33 and is concordant with the redistribution of
the ORR toward higher values at 24 hr as seen here. By 48 hr, we observe an increase in high-
hypoxia regions and a decrease in the ORR in the 47 tumors, which would be consistent with
the development of a glycolytic phenotype under hypoxic conditions.50

3.1.3 Low-pimo+, high-HIF-1α+ regions have populations with elevated ORR

We next performed a trivariate histogram analysis on these three factors (hypoxia, HIF-1α
accumulation, and ORR) to determine potential distinct regions of sub-populations (Fig. 6).
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Fig. 5 Univariate histograms of whole-section images for (a) ORR for baseline and XT groups for
each tumor type with mean values for each group denoted by color-matched vertical lines, empha-
sizing the difference in information provided by bulk statistics compared with histogram analysis.
(b) Histogram of the center quartiles of the regional percentage of pimo+ pixels and the regional
percentage of HIF-1αþ pixels. Due to the skewed nature of the data, medians of all values for
pimo+ and HIF-1αþ are denoted by the vertical dashed line, which was used as the cutoff for
low/high pimo∕HIF-1α. ORR ¼ IFAD

INADðPÞHþIFAD

Fig. 6 Trivariate histograms of log10 percent of pixels binned by the regional percent of pimo+ and
HIF-1αþ. The color bar corresponds to the mean ORR for each bin for all whole-section images.
ORR ¼ IFAD

INADðPÞHþIFAD
.
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The elevation of these histogram surfaces corresponds to the number of pixels within each
bivariate bin of hypoxia and HIF-1α accumulation, spanning all possible combinations for all
regions in the group. The color of the surface is the average ORR for the pixels that fall into each
bivariate bin. Because of the skewed nature of the distribution of the regional percentage of both
pimo+ pixels and HIF-1α pixels toward 0%, we used the median value of all regions (denoted as
vertical lines in the figure) as a cutoff for low percentage and high percentage [Fig. 5(b)]. All
regions with pimo or HIF-1α accumulation below the respective median, values are classified as
low-pimo or low-HIF-1α regions. Similarly, all regions with pimo orHIF-1α accumulation above
the respective median values are classified as high-pimo or high-HIF-1α regions. Qualitatively,
the first point of note is the decrease in the number of regions with a low percentage of
pimo+ pixels and high percentage of HIF-1αþ pixels (toward the top-left of xy-plane) in the
22B tumors at 48 hr (Fig. 6 and Fig. S2 in the Supplementary Material). In the 47 tumors, the
opposite trend emerges, with an emergence of a small population of regions with a low percent-
age of pimo+ pixels and a high percentage of HIF-1αþ pixels at 24 hr and a much larger pop-
ulation at 48 hr. As discussed in Sec. 1, HIF-1α stabilization can be driven by a number of factors
not limited to hypoxia. Here, we observe that regions with low-pimo, high-HIF-1α seem to be
coincident with higher ORR sub-populations, particularly at baseline in the 22B tumors and in
the 47 tumors at 24 and 48 hr post-radiation. In previous studies in cells in vitro,32 we have shown
that an increase in ROS coincides with an increase in the ORR. Given that radiation-induced
ROS can stabilize HIF-1α,17 these results appear to indicate the development of regions with
non-hypoxia driven HIF-1α and an increase in ROS.

Having observed these qualitative trends, we wanted to quantify differences in this specific
region of the histograms. To do so, we used median values for all regional pimo+ and HIF-1αþ
percentages from all tumors as the threshold for low/high regions [the median values are
displayed as a dotted vertical line in Fig. 5(b)]. Using these values as criteria for consideration,
we performed contingency table analyses on the distribution of the average ORR of regions that
met the criteria (Fig. 7).

The distribution regional average ORR of low-pimo+, high-HIF-1αþ regions of 22B tumors
at 48 hr was significantly higher compared with baseline (p ≪ 0.0001), confirming the quali-
tative difference that we observed in the trivariate histograms. In the 47 tumors, the baseline
distribution of the regional average ORR was different for the bulk [Fig. 5(a)] compared with
the low-pimo+, high-HIF-1αþ regions (Fig. 7) (p ¼ 0.016). Further, the distribution of the
average ORR of regions was significantly different at both 24 and 48 hr compared with baseline
in the 47 tumors for low-pimo+, high-HIF-1αþ regions (p ≪ 0.0001 and p ¼ 0.03, respec-
tively). Distributions for high-pimo+ and high-HIF-1αþ regions are shown in Fig. S3 in the
Supplementary Material.

3.2 ROI Analysis Reflects Trends Seen in Whole-Section Analysis
Figure 8 presents the representative images and group means from specific ROIs within the
tumor section. The means of the parameters are calculated over the entire ROI shown here.

Fig. 7 Histograms for ORR pixels in regions with a low percentage of pimo+ pixels and high per-
centage of HIF-1αþ pixels for both tumor types, also including means of the ORR values shown for
each group in color-matched vertical lines. ORR ¼ IFAD

INADðPÞHþIFAD
.
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Similar to the whole-section images, we saw no significant differences in the ORR for ROI
groups [Fig. 8(b)].

All means were notably lower than the whole-section image counterparts. We did, however,
observe similar relative trends in the bulk means for each group. We believe that the lower ORR
is due to the selection of ROIs primarily while viewing 755 nm excitation, which could lead to a
selection bias toward regions with marked NAD(P)H fluorescence. ROI images highlight the
presence of distinct regions of keratinization [Fig. 8(a), see 47 tumors at 24 hr]. These are known
as keratin pearls and are a marker of well-differentiated squamous cell carcinoma.51 The auto-
fluorescent signal from these structures is dominated by FAD and keratin at 855 nm excitation,
contributing a subset of regions with elevated ORRs relative to the bulk. Keratin has a broad
emission spectrum that overlaps with both NAD(P)H and FAD and has been shown to contribute
a significant 1.5 ns lifetime to FLIM measurements;52 however, excitation at 755 nm and
emission in the blue channel mitigates much of the keratin interference, as observed [Figs. 8(c)
and 8(e)]. In the 47 tumors, the 48 hr NT group was significantly elevated (1.988� 0.405 ns)
when compared with both the baseline (1.745� 0.274 ns; p ¼ 0.0190) and 48 hr XT group
(1.692� 0.237 ns; p ¼ 0.0006). No significant differences emerged in the bound fraction of
47 tumors, though the relative trends tracked closely with those observed in the mean lifetime.
In the 22B tumors, on the other hand, we found a significant increase in the bound fraction from
baseline (0.481� 0.072) of 24 hr NT tumors (0.544� 0.047; p ¼ 0.0013) and 48 hr XT tumors
(0.532� 0.058; p ¼ 0.0077). This trend is reminiscent of the differences observed in the bulk
hypoxic fraction. In that case, we saw a general decrease in hypoxic fraction over a 48 hr period
relative to baseline, whereas here we see an increase in the bound fraction. These trends are

Fig. 8 ROI imaging results for (a) and (b) representative ORR images and group ORR
ðORR ¼ IFAD

INADðPÞHþIFAD
Þ, (c) and (d) mean lifetime (τM ¼ α1τ1 þ α2τ2), and (e) and (f) NAD(P)H pro-

tein-bound percent (α2% ¼ α2
α1þα2

). (a), (c), (e) Color-coded representative ROI images for each

output. Arrows point to an example of a mature keratin pearl as observed in each imaging modality.
Images for each parameter are from the same ROI. Scale bar ¼ 150 μm. (b), (d), (f) Box-and-
whisker plots of each parameter for all images within each group.
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consistent with previous work that has shown a decrease in the bound fraction with an increase in
the hypoxic fraction.50

3.2.1 Protein-bound NAD(P)H lifetime decreases in response to treatment
in resistant tumors

Phasor plots (Fig. 9) support the presence of two primary NAD(P)H species for most pixels,
evidenced by the elliptical nature of the phasor plot sub-populations oriented to two locations
on the universal circle. Although there are multiple separate foci of pixels, due to the small
number of animals in the study and the inability to follow animals longitudinally, we elected to
analyze only whole-group phasors, rather than isolating sub-populations.

The means for each ROI were used to fit lines and compare groups [Figs. 9(b)–9(d)].
Although not reaching statistical significance, there is a noticeable difference between tumor
types at baseline that diminishes by 48 hr. This is driven by a decreasing slope in the 47 tumors
at 48 hr. A decreasing slope, in this case, accompanies a decrease in the lifetime of the long
lifetime (protein-bound NAD(P)H) component as the intersection point on the universal circle
rotates clockwise toward shorter lifetimes.

3.2.2 High NAD(P)H bound fraction is associated with lower ORR at baseline
in sensitive tumors and in response to treatment in resistant tumors

To investigate how the subtle differences in lifetime may be associated with the difference in
metabolism, trivariate histograms of the phasor coordinates and ORR were created and inspected
[Fig. 10(a)].

Initially, it was evident that different ORR species tend to cluster together in phasor space.
Noticeably, lower ORR species tend to be closer to the universal circle and have a higher bound
fraction (which is equivalent to being near the long lifetime component or, in this study, near

Fig. 9 Bivariate histogram of phasor coordinates. (a) Phasor density plot after a single 3 × 3
median filter and threshold of 15 photons for 22B (top) and 47 (bottom) at baseline (left), 24 hr
(center), and 48 hr (right). (b), (d) Scatter plots of average G and S coordinates for each ROI
in the 22B and 47 tumors. For each plot, solid lines illustrate the linear regression fit, and the dotted
line represents the universal circle. The slope of each fit is indicated in the figure legend.
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G ¼ 0.6 and S ¼ 0.4). Higher ORR species tend to be closer to the short lifetime component
(toward G ¼ 1 and S ¼ 0) comparatively, but also shifted inward from the universal circle in all
phasors. This suggests a greater mix of short- and long-lifetimes and possibly more than two
lifetime species. The exact location of both of these ORR species seems to depend on the
tumor and time after treatment. Guided by the trivariate histogram, we investigated lifetime end-
points (bound fraction and mean lifetime) for low- and high-ORR species, using the mean of all
ORRs within the analysis as the threshold value [Fig. 10(b) and Fig. S4 in the Supplementary
Material].

In general, the bound fraction and mean lifetime are highly correlated, so only the bound
fraction is presented here. We manually determined that mean lifetime trends were similar.
Matched histograms for mean lifetime are available in Fig. S4 in the Supplementary Material.
Although no differences reach statistical significance in this analysis, there is a trend evident in
both tumor types. The 22B tumors show a decrease in bound fraction after treatment, particularly
in species with a low ORR. The 47 tumors have a steady mean across all times for all pixels,

Fig. 10 Multivariate histogram analysis of ROI images. (a) Trivariate histograms of phasor coor-
dinates after a single 3 × 3median filter and threshold of 15 photons. Color bar corresponds to the
mean ORR for each bin for all ROIs in 22B (top) and 47 (bottom) at baseline (left), 24 hr (center),
and 48 hr (right). (b) Histograms of bound fraction (α2) from phasors for all pixels (left), pixels with
a low ORR (middle), and pixels with a high ORR (right) at baseline (top), 24 hr (center), and
48 hr (bottoms) for all ROIs of 22B and 47 tumors. Low and high cutoffs were determined using
Otsu’s method for the distribution of the ORR for all groups. ORR ¼ IFAD

INADðPÞHþIFAD
; α2% ¼ α2

α1þα2
.
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but the distribution for low-ORR species at 48 hr shows an increasing number of pixels with a
higher bound fraction. Interestingly, this difference in the distribution is not evident in high-ORR
regions. A high bound fraction with a low ORR has been associated with fatty acid synthesis in
mesenchymal stem cells and mechanistically is consistent with these results, as glycolysis out-
paces oxidative phosphorylation to provide precursors for fatty acids, and NADH is enzymati-
cally utilized to synthesize fatty acids.27,50 De novo lipogenesis protects cancer cells from
external insults, such as oxidative stress, and the inhibition of lipogenesis increases oxidative
stress-induced cell death.53 Studies have identified increased levels of fatty acid synthase (FASN)
in radiation-resistant head and neck cancer cells.54,55 FASN is a key player in lipogenesis and
has been shown to be a prognostic indicator of radiation resistance in clinical nasopharyngeal
carcinoma.56

4 Conclusion
Hypoxia and glucose metabolism play key roles in determining the efficacy of radiation therapy.
In this study, we used high-resolution imaging of endogenous fluorescence to evaluate the
response to a single dose of radiation treatment in sensitive and resistant tumor xenografts across
multiple dimensions: ORR, NAD(P)H lifetime, and IHC of hypoxic fraction and HIF-1α accu-
mulation. By acquiring high-resolution images at multiple time points (before, 24 hr after, and
48 hr after treatment), we sought to understand the spatiotemporal relationship between hypoxia,
HIF-1α, and metabolism. To our knowledge, the relationship between these three parameters has
not been examined in this manner. We present a data processing and visualization approach to
identify patterns in the relationship between these three parameters and provide a framework for
future studies to investigate similar multivariate relationships. Multivariate histograms plot the
frequency of pixels within a range for each of the variables. Although uni- and bivariate histo-
grams are commonplace, we propose a method for effectively visualizing and analyzing trivariate
histogram data. Histograms such as this can effectively preserve the spatial information regarding
co-localization of variable quantities. Our analysis reveals relationships and distinct sub-
populations within the tumor microenvironment that did not necessarily follow bulk trends.
Although this study included a relatively small number of animals in each group, the methods
and initial results from such analyses presented here, we believe, hold promise for understanding
the complex energy economy of the tumor microenvironment. Understanding the complex rela-
tionship between tumor oxygenation and metabolism will contribute to the development of thera-
pies that can overcome treatment resistance in the clinic.

Table 2 summarizes the key observations of this study. In the radiation-sensitive 22B and, to
a greater extent, the radiation-resistant 47 tumors, we observed an increase in the ORR associated
with regions of low-hypoxia and high-HIF-1α at 24 and 48 hr after radiation therapy.

As discussed earlier, although these regions are likely associated with an increase in
radiation-induced ROS based on previous work in vitro, we do not have data corresponding
to ROS labeling here that can confirm this observation. We found reduced ORRs in regions
of high-hypoxia and high-HIF-1α both within the 22B and 47 tumors. This observation is con-
sistent with an expected increase in glucose catabolism in hypoxic regions that leads to a buildup
of NADH within the mitochondria. We also observed an increased ORR, albeit to a lesser extent,

Table 2 Summary of key multivariate observations from all analyses. Each row summarizes
trends that were observed together through histogram analyses.

Summary of observations

Tumor type Hypoxia HIF-1α ORR α2 Possible driver Figures

22B, 47 ↓ ↑ ↑ — ROS-activated HIF-1α32 Figs. 6 and 7

22B, 47 ↑ ↑ ↓ — Hypoxia-activated HIF-1α Fig. 6, Fig. S3 in the
Supplementary Material

22B — — ↓ ↑ Fatty-acid synthesis50 Fig. 10
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in the 47 tumors at 24 hr in regions of high-hypoxia and high-HIF-1α (Fig. S3 in the
Supplementary Material). Although we do not fully understand the reason for this increase,
it could be attributed to the generation of reduced glutathione; the oxidation of NADPH to
NADPþ in a reaction catalyzed by glutathione reductase generates reduced glutathione, which
can then scavenge free radicals. Depending on the contribution of NADPH to the overall NAD(P)
H autofluorescence, the oxidation of NADPH to NADPþ can lead to an increase in the ORR.
However, we were unable to confirm these trends due to a lack of complementary lifetime data
from whole-section images. FLIM was only performed on ROIs and not whole-section images
due to the total time needed to generate adequate photon counts. IHC signals confounding endog-
enous signals precluded ROI analysis with hypoxic fraction and HIF-1α accumulation. The
ability to co-register images of hypoxic fraction, HIF-1α, and FLIM would have also provided
stronger evidence to support fatty acid synthesis as a possible reason for the observation of
an increase in the bound fraction of NAD(P)H along with a decrease in the bulk hypoxic fraction
and HIF-1α in the sensitive 22B tumors. In addition, the use of IHC in this study necessitates
imaging of ex vivo sections that are either frozen or formalin fixed. Freezing and thawing
for metabolic imaging has been reported in previous studies to affect ORR measurements and
metabolite levels, namely, increasing the measured ORR relative to fresh tissue controls.38,41,57

Importantly, these same studies also observed consistent trends within frozen groups. Taken
together, this supports the analysis of data when comparing between groups that were fixed con-
sistently, as in this study, but also highlights the need for in vivo studies of these relationships as
a necessary step to a clinically applicable understanding of radiation resistance.

Even within whole-section images, our analysis is limited by registration quality. Pixel-level
registration would be ideal to maximize the resolution of multivariate relationships. Such a
high-quality resolution, however, is precluded by IHC staining, which requires imaging to be
performed on different days, making it nearly impossible to ensure identical imaging depths.
Furthermore, the process of IHC itself is likely to cause tissue sections to move, tear, or fold,
which further inhibits pixel-level registration. Therefore, we performed our image analysis on
whole-section images by considering 100 μm regions around each pixel. We chose to use
100 μm to approximate the diffusion limit of oxygen from capillaries.45–48 Convolving large
image stacks is computationally intensive, and we chose to use only a single disk size to limit
computational necessities. Future studies investigating how these relationships may change with
region sizes could be beneficial particularly because hypoxia and hypoxia-stabilized HIF-1α
are known to vary spatially and temporally and are known to accumulate at different distances
from vasculature.58

Although it is standard to present either lifetime curve fit data or phasor plots, we chose to
include both (Figs. 9 and 10 and Figs. S4 and S5 in the Supplementary Material) to illustrate the
benefits of this multivariate histogram approach for multiple data types. Phasor analysis and
curve-fitting methods each have pros and cons.59,60 Lifetime-fitting introduces assumptions and
simplifications that may not be valid—namely, a two-species fit—resulting in a long-lifetime
parameter that is not directly analogous to any single species, but rather a weighted average
of bound species’ lifetimes.27,61 These fits, however, provide easy-to-interpret outputs that can
be quickly compared. Phasor analysis, on the other hand, does not require any a priori assump-
tions regarding the number of lifetime species to be included in the analysis, but it can be difficult
to quantify and compare across groups.43,59 The use of a linear fit to phasor coordinates rein-
troduces assumptions, but these assumptions can be validated before they are implemented.
Ultimately, phasor analysis may provide a more robust tool for metabolic analysis when com-
bined with complementary endpoints, such as the ORR.
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