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ABSTRACT. Significance: Label-free multimodal imaging methods that can provide comple-
mentary structural and chemical information from the same sample are critical for
comprehensive tissue analyses. These methods are specifically needed to study the
complex tumor-microenvironment where fibrillar collagen’s architectural changes
are associated with cancer progression. To address this need, we present a multi-
modal computational imaging method where mid-infrared spectral imaging (MIRSI)
is employed with second harmonic generation (SHG) microscopy to identify fibrillar
collagen in biological tissues.

Aim: To demonstrate a multimodal approach where a morphology-specific contrast
mechanism guides an MIRSI method to detect fibrillar collagen based on its chemi-
cal signatures.

Approach: We trained a supervised machine learning (ML) model using SHG
images as ground truth collagen labels to classify fibrillar collagen in biological tis-
sues based on their mid-infrared hyperspectral images. Five human pancreatic tis-
sue samples (sizes are in the order of millimeters) were imaged by both MIRSI and
SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random
forest (RF) model. The other 68 million spectra were used to validate the collagen
images generated by the RF-MIRSI model in terms of collagen segmentation, ori-
entation, and alignment.

Results: Compared with the SHG ground truth, the generated RF-MIRSI collagen
images achieved a high average boundary F -score (0.8 at 4-pixel thresholds) in the
collagen distribution, high correlation (Pearson’s R 0.82) in the collagen orientation,
and similarly high correlation (Pearson’s R 0.66) in the collagen alignment.

Conclusions: We showed the potential of ML-aided label-free mid-infrared hyper-
spectral imaging for collagen fiber and tumor microenvironment analysis in tumor
pathology samples.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JBO.29.9.093511]

Keywords:mid-infrared spectral imaging; machine learning; second harmonic gen-
eration; fibrillar collagen imaging; tumor microenvironment; cancer

Paper 240145SSRR received May 22, 2024; revised Sep. 4, 2024; accepted Sep. 5, 2024; published Sep.
27, 2024.

*Address all correspondence to Filiz Yesilkoy, filiz.yesilkoy@wisc.edu

†These authors contributed equally to this work.

Journal of Biomedical Optics 093511-1 September 2024 • Vol. 29(9)

https://orcid.org/0000-0002-4439-2021
https://orcid.org/0009-0001-1749-8306
https://orcid.org/0000-0001-8678-670X
https://orcid.org/0000-0001-8483-3285
https://doi.org/10.1117/1.JBO.29.9.093511
https://doi.org/10.1117/1.JBO.29.9.093511
https://doi.org/10.1117/1.JBO.29.9.093511
https://doi.org/10.1117/1.JBO.29.9.093511
https://doi.org/10.1117/1.JBO.29.9.093511
https://doi.org/10.1117/1.JBO.29.9.093511
mailto:filiz.yesilkoy@wisc.edu
mailto:filiz.yesilkoy@wisc.edu
mailto:filiz.yesilkoy@wisc.edu


1 Introduction
The tumor microenvironment (TME) is compositionally and structurally heterogeneous, hosting
a complex network of biomolecules that encode a variety of biological signals, and metabolic
and immune interactions. Collagen is the dominant structural protein in the extracellular matrix
(ECM) of the TME.1 Among the 28 types of collagen, fibrillar type I collagen forms a triple-helix
structure and organizes itself into a fiber-like structure,2 being the primary collagen in the ECM.
It has been shown that the changes in the collagen (especially type I collagen) structure or dis-
tribution are linked to many diseases including cancer. Specifically, parameters such as fiber
density and orientation of collagen fibers have a significant impact on the progression and treat-
ment of cancer.3–6 For example, the stroma in the TME of pancreatic ductal adenocarcinoma
(PDAC) is highly fibrotic, constituting up to 85% of the tumor volume.7 PDAC fibrosis affects
the efficacy of cytotoxic therapies and can compromise drug delivery.2 Therefore, comprehensive
analysis of fibrillar collagen in the TME is critical for understanding the role of collagen’s archi-
tectural changes in carcinogenesis and metastasis, which have implications for the development
of effective cancer therapies and personalized treatments.

Conventional histological staining agents, such as Masson’s Trichrome, Movat’s
Pentachrome, Van Gieson’s stain, and Picrosirius Red, can be used for collagen imaging.2,8

While these labeled techniques enable inspection of collagen in tissue samples using standard
widefield microscopes, they are fairly laborious and time-consuming, requiring specialized pro-
tocols to overcome stain variation effects. Moreover, histological staining-based techniques are
limited in resolving collagen fibers with high resolution and providing quantifiable metrics
needed for prognosis and treatment studies. The implementation of artificial intelligence models
to enhance the diagnostic potential of collagen-stained images has shown promise, but it is lim-
ited by the lack of insight into the biochemistry and the detailed morphology of the ECM.9,10

Label-free collagen-specific imaging modalities, such as polarized light11–13 and second har-
monic generation (SHG) microscopy, have been demonstrated to overcome shortcomings of con-
ventional stain-based imaging. Specifically, SHG is a second-order nonlinear coherent scattering
process that is highly specific to non-centrosymmetric fibrillar collagen and its supramolecular
fiber morphology. In addition, SHG microscopy has sub-micrometer resolution and can perform
optical sectioning of tissue with an imaging depth of up to hundreds of micrometers.14,15 SHG
has been used to study tumor-associated collagen signatures3,16 (TACS); therefore, it is suitable
to be ground truth in our study. In particular, TACS-3, a pattern exhibiting high fiber alignment
perpendicular to tumor boundaries, has been shown to be a negative prognostic factor in
breast cancer.17 Moreover, similar morphological signatures have also been found in other types
of cancer such as skin,18,19 ovarian,4,20 prostate,21 and pancreas.6,22 While SHG imaging has elu-
cidated the biomedical consequences of architectural changes in TME, the molecular mecha-
nisms that drive collagen alterations are still poorly understood. Thus, there is a need for a
multimodal approach where SHG and chemical imaging methods sensitive to molecular changes
are employed together in TME investigations.

Infrared absorption spectroscopy is a label-free analytical technique that provides quanti-
tative biochemical information by probing the vibrational bands of functional biomolecules.
Specifically, in the mid-infrared (MIR) fingerprint region (∼800 to 1800 cm−1), spectrochemical
analysis of measured transmittance through a specimen reveals compositional information.
Recently, tunable quantum cascade lasers (QCL) with high spectral power output enabled the
development of wide-field MIR spectral imaging systems that can operate at room temperature
with compact footprints.23–25 The QCL-based MIR spectral imaging (MIRSI) can rapidly collect
hyperspectral datasets from whole-slide tissue sections and has the unique capability to combine
spatial and chemical information.26 Previous important studies revealed that the MIR spectral
analysis can detect different collagen types,27,28 identify fibrosis in numerous tissues, including
the liver,29 heart,30 and bone marrow,31 and provide critical prognostic information based on
reactive stroma in TME-based investigations.32,33 In these past reports, the MIRSI-identified
fibrotic regions were primarily referenced to stained images of adjacent tissue sections.
However, an objective benchmarking of MIRSI-detected collagen fibers with respect to the
ground truth SHG microscopy on the same tissue sample has not been performed.
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Here, we present a new label-free multimodal imaging approach using MIRSI and SHG
imaging modalities to sequentially acquire complementary chemical and morphological infor-
mation from the same biological tissue sample (Fig. 1). We first developed a protocol that
enabled reliable image acquisition from the same tissue section using two different microscopes,
which employ two distinct frequency regions of the electromagnetic spectrum, i.e., visible-near-
infrared (λ ¼ 890 nm) and MIR (λ ¼ 5 to 10 μm). To classify fibrotic regions in pancreatic tissue
samples based on collagen’s spectral signatures, we trained a random forest (RF) model using
large hyperspectral MIRSI datasets and SHG images of the same tissues as the ground truth. This
RF model, which we named RF-MIRSI, was then used to identify regions of high collagen

Fig. 1 Schematic diagram of the workflow for label-free multimodal imaging using MIRSI and
SHG: RF training workflow (top): a pancreatic tissue section is first mounted onto an infrared-trans-
parent CaF2 substrate for MIRSI imaging. Subsequently, the tissue section is enclosed with a cov-
erslip and imaged with a SHGmicroscope. Binarized SHG images are used as ground truth for the
RF model training after the registration of MIRSI and SHG images. Validation workflow (bottom):
once the RF model is trained, an unused independent subset of the image data is used to validate
the RF-MIRSI results. To generate SHG-like images from the RF-MIRSI predicted collagen pixels,
further image processing, such as thresholding and density filtering, is conducted. Finally, RF-
MIRSI images are compared with SHG images that have also undergone further processing, such
as thresholding and density filtering, to generate binarized SHG images for equivalent comparison.
Adjacent tissue slices are stained with H&E and imaged on a standard brightfield microscope for
reference. Scale bars are 100 μm for both images in the training section and 650 μm for all images
in the validation section. SHG, second harmonic generation; MIRSI, mid-infrared spectral imaging;
and RF, random forest.
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composition from the whole-tissue sections. Finally, we validated the RF-MIRSI fibrotic colla-
gen segmentation method, referencing our findings to the SHG images. The RF-MIRSI method
achieved a high average boundary F-score (0.8 at 4-pixel thresholds) in the collagen distribution,
high correlation (Pearson’s R 0.82) in the collagen orientation, and similarly high correlation
(Pearson’s R 0.66) in the collagen alignment. Our label-free multimodal collagen fiber imaging
approach is a key step towards future comprehensive tumor tissue investigations where both
morphometric and chemometric information are considered to better study tumor-promoting
ECM alterations.

2 Materials and Methods

2.1 Tissue Sample and Pure Collagen Sample Preparation
Five human pancreas tissue samples were selected from archival, formalin-fixed paraffin-
embedded (FFPE) blocks that were created at the Translational Science Biocore BioBank of
the University of Wisconsin Carbone Cancer Center. Each FFPE block contains one pancreas
tissue sample of one patient. The diagnosis of the patients was not retrieved since it was not
needed for this proof-of-concept imaging study. The Translational Research Initiatives in
Pathology Laboratory of the University of Wisconsin-Madison prepared the tissue sections for
this study using Richard-Allan Scientific Cytoseal 60 Histology Mounting Media. Specifically,
two adjacent 5-μm-thick sections were cut from each block and then deparaffinized. Among
these two tissue sections, one was first hematoxylin and eosin (H&E) stained and then enclosed
with #1.5 coverslip for later use in bright-field imaging; the other section was unstained, first put
on a CaF2 substrate for MIRSI imaging and then #1.5 cover-slipped for the following SHG im-
aging. CaF2 was used as a substrate for MIRSI imaging because it does not have any spectral
signature in our MIR spectral window. For the spectrum in Fig. S2 in the Supplementary
Material, pure human type I collagen (Cat # CC050, Sigma Aldrich, St. Louis, Missouri,
United States) of 1 μL volume was drop casted on CaF2 substrate, was dried for 2 h, and was
acquired using the same MIRSI microscope described in Sec. 2.3.

2.2 Second Harmonic Generation Microscopy
All slides in this study were imaged with a custom-built SHG backward detection multiphoton
microscope described previously.34 In this system, a Coherent Chameleon Ultra II Ti:Sapphire
laser (Coherent, Santa Clara, California, United States) was used to deliver 890 nm light to the
sample using a 20 × ∕0.75 NA air immersion objective (Nikon, Melville, New York). The back-
ward SHG signal was filtered with a bandpass filter (445∕20 nm, Semrock, Rochester, New
York) and collected with a H7422P-40 GaAsP photomultiplier tube (Hamamatsu,
Hamamatsu, Japan). Circular polarization was implemented for the SHG light source. All images
were collected at 512 pixels × 512-pixel resolution (1 pixel ¼ 0.96 μm) with consistent acquis-
ition settings using in-house developed acquisition software WiscScan.35 The images were then
stitched together for each slide using the Fiji Grid/Collection Stitching plugin.36

2.3 Mid-infrared Spectral Imaging
The MIR spectral images were acquired using the Spero-QT (DRS Daylight Solutions Inc., San
Diego, California, United States), which uses four tunable QCLs that span the spectral region of
950 to 1800 cm−1 with 2 cm−1 resolution. The microscope was run in transmission mode using a
12.5× air objective (0.7 NA). The linearly polarized infrared light transmitted by the tissue sam-
ple was measured at room temperature by a 480 × 480 microbolometer focal plane array (image
pixel size: 1.35 μm). The sample chamber was kept inert with nitrogen gas. To scan an entire
tissue sample, a translational stage was used to image the region of interest (ROI) consisting of
multiple field of views (FOVs) as illustrated in Fig. S1 in the Supplementary Material. At the time
of the measurements, the device suffered some instability at the spectral region of 1440 to
1480 cm−1, where the switching between two different QCLs happens. Therefore, the region
was omitted from further analysis. For this work, MIRSI data from five tissue sections were
collected, totaling ∼300 FOVs for validation and ∼60 FOVs for training, each with
480 × 480 pixels, summing up to ∼68 million spectra and ∼13.5 million spectra for validation
and training, respectively. Overall, we combined RF-MIRSI FOVs encompassing all five tissues
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into 33 large ROIs, each of size 1950 × 1950 μm2 (1440 × 1440 hyperspectral pixels). In each
ROI, spectra from non-tissue regions (on average about 20%) were excluded.

2.4 Spectral Data Processing
The infrared spectral images were processed with MATLAB (MathWorks, Natick,
Massachusetts, United States) using the methods described before.26,37 The raw hyperspectral
images consist of data cubes with dimensions of 480 × 480 × 405 for each FOV. To exclude
spectral data from the non-tissue regions, the protein-associated amide I absorption peak was
considered because proteins are omnipresent in any tissue sample. The presence of the amide
I spectral peak was determined by taking the intensity difference between 1655 cm−1 (amide I)
and 1760 cm−1, and if the value lies between 0.1 and 2.0 a.u., then it implies the presence of a
significant amide I infrared spectral peak and that pixel was labeled as tissue associated and
considered in the following workflow. Subsequently, all the spectra excluding the spectral region
of 1440 to 1480 cm−1 were normalized so that its Euclidean norm was set to unity. To reduce the
noise in the hyperspectral MIRSI data, a principal component analysis (PCA) was first performed
on the raw datasets. Only the first 40 principal components were kept (average 99.8% of vari-
ance) to reconstruct the spectra in the original wavenumber space to reduce the noise.26 The PCA
noise reduction procedure was done separately for training and validation datasets.

2.5 Random Forest Model
The training and validation datasets were labeled based on the ground truth SHG images. SHG
images were first registered to MIRSI hyperspectral images using landmark registrations in
MATLAB as described in Ref. 38. Briefly, matching points were selected manually to indicate
common points between both images using MATLAB’s Control Point Selection (cpselect)
function.39 Then, the affine transformation that matches their scaling, translation, and rotation
was determined using MATLAB’s fitgeoform2d function40 and applied to the SHG image using
MATLAB’s imwarp function.41 The matched SHG images were then binarized to provide a clas-
sification label (collagen/non-collagen) for every MIRSI spectra. The SHG images were binar-
ized by first choosing a proper background threshold. The threshold within an image was set to a
level manually such that dark counts (signals from outside of tissue region) were mostly removed
while the remaining true collagen signals were maximized. Across all used SHG images, the
threshold was set to be ∼5% of the maximum intensity. Next, a density filter was applied to
filter out isolated collagen pixels from the binarized SHG images, i.e., those with less than six
neighboring collagen pixels, and henceforth is referred to as non-structural collagen. For RF
model training, two MIRSI ROIs from two different tissue samples deemed representative of
the whole dataset (assessed through their corresponding SHG images) were chosen and yielded
∼13.5 million spectra. There was no overlap between training and validation ROIs. From the
training spectra, those that were not from tissues and surpluses were discarded to avoid class
imbalance between collagen and non-collagen. In total, 1.4 million collagen and 1.4 million
non-collagen labeled spectra were used for training. An overview of the training and validation
data can be found in Table S1 in the Supplementary Material.

The TreeBagger class42 fromMATLAB was used to train the RF model. The number of trees
was set to 50. Increasing the number of trees to 500 did not yield any perceptible advantage;
therefore, 50 was kept. As per the default recommendation, the number of features used for each
decision split was set to 21 by rounding up the square root of the number of features (n ¼ 405).
The accuracy of the RF model was quantified using out-of-bag error, which is equivalent to
cross-validation for the RF algorithm.43 The model achieved an accuracy of 79% calculated using
the MATLAB function oobError.44 Furthermore, the importance of each feature for the classi-
fication was determined by taking the feature out of the model and calculating the model per-
formance drop based on a randomly selected training dataset (out-of-bag dataset). This
calculation of the feature importance was done using the built-in implementation in
MATLAB by setting the “OOBPredictorImportance” parameter to on, as detailed in Ref. 42.

2.6 Image Processing and RF Model Evaluation
Based on the RF model training, we first generated a new set of RF-MIRSI images of all five
tissue sections, where each pixel value yields collagen probability. These probability maps,
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where collagen and non-collagen classes for each pixel are specified, were used in our method
validation. The pixels whose probability of being collagen was higher than 50% were classified
as collagen pixels and the rest as non-collagen pixels. This rather low probability threshold was
chosen to accurately detect collagen-containing pixels, and a 50% threshold value was used
throughout our analysis unless otherwise noted. However, this threshold resulted in many iso-
lated pixels from non-structural collagen that can be considered noise in our study. To remove
this noise from RF-MIRSI images, we applied a density filter, where only pixels with at least six
surrounding predicted collagen pixels were kept, filtering out non-structural collagen. For val-
idation, the corresponding binary images of RF-MIRSI were compared with the binarized SHG
images (details on binarization were given in Sec. 2.5).

To validate the collagen distribution from the RF-MIRSI model, we calculated a metric
named boundary F-score (BF-score). The F-score is the harmonic mean of the precision and
recall values and is defined as 2�precision�recall

ðrecallþ precisionÞ ¼ TP
TPþ 1

2
ðFPþFNÞ with TP, FP, and FN true positive,

false positive, and false negative, respectively. F-score ranges from 0 to 1, and 1 indicates perfect
classification.45 The BF-score is an extension of the F-score that takes distance error tolerance
into consideration by defining a boundary to determine whether a point matches the ground truth
or not. It was calculated using MATLAB’s BF-score function46 for all 33 ROIs that encompass all
five tissues as described in Sec. 2.4. The BF-scores were calculated with various pixel thresholds
up to 8 pixels (1 pixel represents 1.3 μm, and the largest diffraction limited point is ∼10 μm).
Similar calculations were done using RF-MIRSI images that were obtained at different collagen
probability thresholds.

To examine the capabilities of our technique for studying collagen morphology, we calcu-
lated both dominant orientation and coherency for each selected ROI. Both metrics were obtained
by calculating the structure tensor of each ROI using the Fiji plugin OrientationJ.47 The dominant
direction is defined as the primary orientation of the ROI, ranging from 0 to 180 deg. The coher-
ency is an indicator of fiber alignment within an ROI, ranging from 0 to 1, with “0” indicating
isotropic fiber orientations and “1” indicating fibers aligned in one direction. For both metrics,
the size of ROI was set to 480 × 480 pixels (650 × 650 μm2) to obtain the granularity of the
direction. In total, 297 480 × 480 pixels ROIs were studied.

Pearson’s R-value was calculated using MATLAB’s corrcoef function48 to evaluate the cor-
relation between the RF-MIRSI images and SHG images for both dominant orientation and
coherency. Pearson’s R-value is a measure of the strength of the linear correlation between var-
iables, ranging from −1 to 1, where −1 indicates a perfect negative linear relationship, 0 indicates
no linear relationship, and 1 indicates a perfect positive linear relationship.

3 Results

3.1 RF Training and RF-MIRSI
MIRSI data of five tissues were collected, constituting ∼300 FOVs of 480 × 480 pixels or
around 68 million spectra. To illustrate our raw MIRSI spectral data, Fig. 2 shows a typical
unprocessed MIRSI image collected at 1650 cm−1 illumination that corresponds to the pro-
tein amide I band along with 10 randomly selected spectra for each of the three outlined
ROIs. The example MIRSI image consists of four (2 × 2) stitched FOVs collected from a
pancreatic tissue section. To train the RF, 2.8 million spectra, including collagen and
non-collagen pixels (1.4 million each), were used. These training spectra were pre-processed
to exclude non-tissue regions and reduce noise. For the ML training, SHG image pixels were
used as classification labels. MIRSI images are registered to SHG images using landmark
registration, which matches their scaling, translation, and rotation. Subsequently, the trained
RF model was applied to the rest of the spectra collected from the tissues. For each pixel-
associated spectrum, the RF outputs the probability of how likely that pixel contains collagen.
More details about the data pre-processing workflow and the training of the RF can be found
in Sec. 2.

3.2 Correlation Between Binarized RF-MIRSI and SHG Images
Figure 3 presents the results of our correlation investigation between the RF-MIRSI-predicted
collagen pixels and the SHG ground truth. A representative MIRSI image of a tissue region
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collected at 1650 cm−1 protein amide I band illumination is shown in Fig. 3(a). The RF-MIRSI
predicted collagen pixels from the same tissue region are shown in green in Fig. 3(b). To quali-
tatively illustrate the correlation between RF-MIRSI-predicted and SHG-identified collagen pix-
els, Fig. 3(b) shows the binarized SHG image in pink and the pixels that are identified as fibrillar
collagen by both methods in white. Collagen fiber’s dominant direction and coherency were also
calculated for a randomly chosen subregion, outlined with a white box in Fig. 3(b), and the
findings were presented in Fig. 3(c). For reference, an unprocessed SHG image (raw) counterpart

Fig. 3 Correlation between RF-MIRSI and SHG images. (a) MIRSI image collected at 1650 cm−1

protein amide I band of a representative tissue. (b) Overlay of corresponding RF-MIRSI-predicted
collagen image (green) and SHG image (pink), where overlapping pixels (white) indicate corre-
spondence in between. (c) A subregion enclosed with the white box from panel (b) presenting
calculated dominant direction and coherency. (d) Raw SHG image of the same region in panel
(c) is shown for reference. The scale bars for panels (a) and (b) are 650 μm and 200 μm for panels
(c) and (d).

Fig. 2 Representative MIRSI data. (a) MIR image collected at the 1650 cm−1 protein amide I band.
(b) The MIR spectra of each of 10 randomly chosen pixels from three ROIs in a pancreatic tissue
section. The data from the spectral range of 1460 to 1480 cm−1 was omitted due to the QCL
switching issues with our instrument.
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of the same subregion is shown in Fig. 3(d). A similar analysis using the rest of the data was also
performed and will be explained below.

For the quantitative evaluation of our multimodal imaging technique, we used BF-score,
dominant angle, and coherency as metrics. We first divided RF-MIRSI data from five tissues
into 33 large ROIs of size 1950 × 1950 μm2 (1440 × 1440 hyperspectral pixels). The average
BF-scores calculated for each of the 33 ROIs are shown in Fig. 4(a) for various pixels and col-
lagen probability thresholds. For the dominant direction and coherency calculations, we used
smaller ROIs (480 × 480 pixels) to preserve granularity. The Bland-Altman plot shown in
Fig. 4(b) depicts the agreement of the dominant direction for both SHG and RF-MIRSI mea-
surements with Pearson’s R of 0.82. Figure 4(c) depicts the distribution of the absolute angle
difference between the two techniques with a mean of −5.8 deg and a standard deviation of
14.9 deg. The coherency calculated from both techniques is shown in Fig. 4(d) with
Pearson’s R of 0.66.

3.3 Wavenumbers Significant in Detecting Collagen as Identified by Random
Forest

Figure 5(a) shows the wavenumbers as a function of their importance in detecting collagen as
identified by the RF model. The top 20 best predictor wavenumbers are colored in maroon. To
further examine this, the average and standard deviation of collagen and non-collagen spectra
from the training data are shown in Fig. 5(b) with the top 20 wavenumber predictors indicated
with stars.

Fig. 4 Quantitative validation of RF-MIRSI-identified collagen based on ground truth SHG images.
(a) BF-score calculated to validate RF-MIRSI collagen prediction accuracy based on binarized
SHG using various pixel and collagen probability thresholds. Error bar indicates standard
deviation. (b) Bland-Altman plot comparing the dominant direction of collagen calculated using
OrientationJ for both RF-MIRSI collagen probability and SHG images along with its Pearson’s
R-value. (c) The distribution of the calculated absolute angle difference. (d) Alignment (coherency)
calculation between SHG and RF-MIRSI along with its Pearson’s R-value.
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4 Discussion
In cancer, the growth of fibrous tissue around the tumor (also referred to as a desmoplastic reac-
tion) has been shown to be an important hallmark of TME, where it presents distinct similarities
to the wound healing response.49–51 Previously, highly organized fibrillar collagen patterns in
TME were identified as negative cancer prognostic markers using SHG imaging, which is the
current “gold standard” in fibrillar collagen studies.6 Despite their important prognostic potential,
stromal-based biomarkers are not yet part of the current clinical histopathology because SHG is a
low-throughput imaging technique and requires extensive expertise and costly instrumentation.
MIRSI is a label-free and rapid hyperspectral digital tissue imaging technique, which can collect
whole-slide tissue images within minutes. Here, we trained a machine learning (ML) algorithm
using the gold-standard SHG images to generate fibrillar collagen maps using the rapid and high-
throughput MIRSI modality. Our qualitative (Fig. 3) and quantitative (Fig. 4) investigations
revealed that RF-MIRSI-predicted fibrotic collagen tissue regions correlate well with the
gold-standard SHG imaging. Therefore, our method has the potential to contribute to the histo-
pathology workflow by providing fibrillar collagen maps of whole-tissue pathology sections. In
addition to providing fibrillar collagen maps, where there has been significant effort using other
emerging technologies such as polarization microscopy12,13 to emulate SHG with lower cost,
MIRSI takes advantage of potential biochemical signatures associated with specific diseases.
Moreover, infrared photonics is a blooming field, and the costs of IR light sources and detectors
are decreasing. Due to the emerging developments in the biophotonics field, the technology

Fig. 5 Importance of each spectral wavenumber identified by the RFmodel for collagen prediction.
(a) The predictor importance values at each wavelength; the top 20 most important predictors are
highlighted in maroon. (b) Average collagen and non-collagen spectra normalized to their respec-
tive maximum from the training dataset, together with the average of its standard deviation (shaded
area).
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transfer of our proposed technique, collecting structural and chemical information from tissue
samples, has a strong potential to make an impact in clinical settings.

Notably, we report a significant difference between an MIR image of a tissue section col-
lected at a single wavelength illumination associated with the protein band [Fig. 3(a)] and the
collagen map predicted by the RF-MIRSI [Fig. 3(b)]. This highlights the strength of our RF-
MIRSI method in parsing out most of the tissue regions as non-collagen areas, even though they
contain significant amounts of protein as evidenced in Fig. 3(a), the amide I absorption signal.
Moreover, contrary to traditional single-channel spectrometry, hyperspectral imaging modalities
can collect spatially and spectrally rich datasets. When evaluated using ML and artificial intel-
ligence models, MIR hyperspectral imaging can provide versatile information that is critical in
the biomedical field.

In multimodal imaging, accurate image registration is inherently challenging, especially
when images are collected by different instruments with distinct spatial resolution limits, as
in the case of our SHG/RF-MIRSI approach. To tackle the unavoidable image registration errors,
we used the BF-score instead of the standard F-score as a validation metric. The average BF-
score is calculated for all 33 ROIs encompassing all five tissues with various pixel and collagen
probability thresholds as shown in Fig. 4(a). Our results show that the average BF-score reaches
∼0.8 within 4-pixel thresholds for the collagen probability threshold of 50% and 55%, which
indicates a good correlation between both sets of images. Below 4-pixel thresholds, the average
F-score is lower due to the misalignment in the registration of the images. The misalignment
sources can include (i) human error while picking common registration landmarks for registra-
tion, which is amplified because SHG andMIRSI images are collected at different magnifications
(20× versus 12.5×), and (ii) mismatching non-affine deformations that come from the different
imaging system such as barrel distortion as well as the cover slipping process for the SHG im-
aging (sample for MIRSI imaging is uncovered). While different factors impact the multimodal
image alignment accuracy, using 4-pixel thresholds (equivalent to ∼5 μm, which is close to the
spatial resolution limit of MIRSI) in BF-score calculation successfully addresses this issue. Apart
from misalignment, other factors that contribute to the deviations between the SHG and RF-
MIRSI results can also be explained by either the inherent differences between the two processes
(SHG versus absorption), such as their cross-sections and depth of field, or the difference in our
implementation (SHG with circularly polarized and MIRSI with linearly polarized light), and
finally, the performance of the algorithm itself.

Moreover, our quantitative validation results in Fig. 4(a) show that the average BF-score
decreases with increasing collagen probability threshold. This can be explained by the lower
true positive classification outcomes when a larger threshold is applied to RF-MIRSI images.
Therefore, in this work, we first detected as many collagen-classified pixels as possible using a
50% collagen probability threshold, then minimized the non-structural collagen using a density
filter (see Sec. 2). A similar strategy and threshold were used while binarizing the SHG images.

We also compared the morphology in the RF-MIRSI collagen maps and SHG images via the
dominant angular direction parameter calculated in individual ROIs [Fig. 4(b)] and identified a
high correlation (Pearson’s R of 0.82). This is also evident in Fig. 4(c), where the histogram
distribution of the absolute angle differences between the imaging modalities peaks close to zero.
Furthermore, the alignment (coherency) calculated for both techniques showed a high degree of
correlation [Pearson’s R 0.66, Fig. 4(d)]. The outliers in Figs. 4(b)–4(d) can be mainly attributed
to the following three factors: (1) the performance mismatch between the two imaging modal-
ities, (2) the performance of the RF algorithm itself, and (3) the coverslip effect where MIRSI
acquisition was done on non-coverslipped samples and SHG was on coverslipped samples.
Application of the coverslip can alter the geometry in some of the regions of the tissue and can
give an uncorrelated result between both modalities. Regardless, the overall results indicate that
the RF-MIRSI images generated from MIRSI spectral data correlate well with the SHG images.

Among the ML models, RF has the advantage of quantifying the importance of data features
in the decision-making process. It has this advantage, because it keeps the linear independence of
the features, unlike many other ML models that mix multiple features, thus abstracting its physi-
cal interpretation. Moreover, RF is also a nonlinear algorithm, which is suitable for our molecular
fingerprint dataset. We showcase this advantage by calculating the wavenumber importance by
quantifying the increase in error generated by excluding a specific spectral feature (see Sec. 2).

Adi et al.: Machine learning-assisted mid-infrared spectrochemical fibrillar collagen. . .

Journal of Biomedical Optics 093511-10 September 2024 • Vol. 29(9)



Figure 5(a) shows the 20 highest-ranked predictors. In MIRSI-based collagen studies, the spec-
tral focus is usually on the protein-associated amide I and amide II bands.52–59 Our RF model also
identified four features falling within the amide I 1600 to 1700 cm−1 range among the top 20
highest ranked. Interestingly, the RF model heavily relied on the spectral region between 1360
and 1420 cm−1, with 10 out of the top 20 predictors residing there, even though the average
collagen and non-collagen spectra are not different in that region [Fig. 5(b)]. A small window
(1360 to 1340 cm−1) within this region contains the wagging vibration of the proline side chains
present in type I collagen, found in biological tissues.56 Therefore, the dominant dependence of
the RF model on this spectral region must be due to the abundance of proline and 4-hydroxy-
proline in collagen triple-helix (∼22% occurrence of each in type I collagen60). This underscores
the critical role of our holistic TME analysis via multimodal imaging, as it can provide access to
biochemical information from the structurally altered tissue regions. Moreover, the vibrational
fingerprints of molecules depend on many factors such as the molecules’ surrounding environ-
ment, concentration, temperature, and many more. We have shown that our tandem method
selectively captures the molecular fingerprint of collagen in its relevant, native tissue environ-
ment. To demonstrate this point, the spectra of pure human type I collagen are shown in Fig. S2 in
the Supplementary Material, and it is distinct from the collagen spectrum detected in the tissue
with the help of SHG and RF, highlighting the strength of our approach.

In future studies, specific biochemical information such as the integrity of collagen’s triple
helix structure,52 cross-linking collagen concentrations,52,57 the collagen quality associated with
non-enzymatic cross-linking,59 and many more leveraging existing databases and literature61 can
be investigated in the context of diseases, especially those that have been previously studied
using SHG or staining methods such as various organ fibrosis62,63 and cancers.64 Such inves-
tigations can help elucidate the molecular drivers behind the morphological alterations in the
TME observed in various cancer grades. Similarly, MIRSI can be used to complement SHG
by analyzing interactions of collagen with other important ECM molecules such as fibronectin,
which cannot be detected by SHG.65

Our results can be further improved by employing recently developed advanced laser scan-
ning-based MIRSI methods or photothermal imaging,66,67 which can achieve a higher spatial
resolution and better match SHG imaging.68 Moreover, metasurface-enhanced MIRSI can be
used to improve the sensitivity and selectivity of the absorption spectra by benefiting from the
light-matter interactions at the photonic cavities with resonances tuned to the region with a high
density of important predictors.69

In conclusion, the proof-of-concept RF-MIRSI model was successfully used to detect fibril-
lar collagen based on the MIRSI spectral data from pancreatic tissue samples. This technique can
be adapted to other tissue types and can complement state-of-the-art imaging modalities and
analytical techniques to further investigate the complex nature of fibrillar collagen in the TME.
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