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ABSTRACT. Significance: Mueller matrix imaging (MMI) is a comprehensive form of polarization
imaging useful for assessing structural changes. However, there is limited literature
on the polarimetric properties of brain specimens, especially with multispectral
analysis.

Aim: We aim to employ multispectral MMI for an exhaustive polarimetric analysis of
brain structures, providing a reference dataset for future studies and enhancing the
understanding of brain anatomy for clinicians and researchers.

Approach: A multispectral wide-field MMI system was used to measure six fresh
lamb brain specimens. Multiple decomposition methods (forward polar, symmetric,
and differential) and polarization invariants (indices of polarimetric purity and
anisotropy coefficients) have been calculated to obtain a complete polarimetric
description of the samples. A total of 16 labels based on major brain structures,
including grey matter (GM) and white matter (WM), were identified. K -nearest neigh-
bors classification was used to distinguish between GM and WM and validate the
feasibility of MMI for WM identification.

Results: As the wavelength increases, both depolarization and retardance
increase, suggesting enhanced tissue penetration into deeper layers. Moreover,
utilizing multiple wavelengths allowed us to track dynamic shifts in the optical axis
of retardance within the brain tissue, providing insights into morphological changes
in WM beneath the cortical surface. The use of multispectral data for classification
outperformed all results obtained with single-wavelength data and provided over
95% accuracy for the test dataset.

Conclusions: The consistency of these observations highlights the potential of mul-
tispectral wide-field MMI as a non-invasive and effective technique for investigating
the brain’s architecture.
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1 Introduction
In the landscape of medicine, clinicians rely on imaging modalities for precise diagnostics and
surgical interventions. Among the diverse array of imaging techniques, polarization imaging
stands out as a potential tool capable of discerning structural changes through tissue anisotropy.1

The polarizing properties of a sample are affected by absorption, scattering, and overall structure,
which will vary depending on the tissue type. Moreover, the wavelength dependency of the optical
parameters2 adds another layer of complexity to imaging processes. The choice of wavelength
and bandwidth not only influences the resolution of the obtained images but also determines the
optical penetration depth into the biological sample.

The most comprehensive form of polarization imaging is achieved through Mueller matrix
imaging (MMI), which enables the acquisition of all inherent polarization properties in a given
sample.3 In medicine, MMI-based diagnosis finds diverse applications in cancer detection,
particularly in head and neck,4 breast,5–7 colon,8–11 lung,12 skin,13–15 cervix,16–18 and liver.18,19

Beyond cancer applications, MMI was used for assessing fiber structures in soft tissue mem-
branes,20 articular cartilage,21 and skin burns.22 These applications collectively validate MMI
as a suitable technique to assess anisotropy changes in samples, which reflect the structural alter-
ations that lead to polarization variations.

Brain imaging, the primary focus of this work, has been explored in several studies through
MMI. Depolarization, retardance, and diattenuation emerge as the predominantly examined
polarization properties, alongside the Mueller matrices themselves. Specifically, MMI applied
to the brain has revealed the correlation between albedo and depolarization,23 improved the visu-
alization of the distribution and orientation of white matter tracts,24–27 investigated the progres-
sion of Alzheimer’s,28 and distinguished between healthy brain tissue and glioblastoma.29

As illustrated in Table 1, the field of brain tissue polarimetry has seen a diverse range of
experimental approaches, including various sample types (human and animal, fresh and fixed,
and bulk and sliced), imaging systems (transmission, reflection, and snapshot), wavelengths, and
decomposition methods. Human samples are typically analyzed in a fixed and sliced state due to
the challenges associated with in vivo imaging. By contrast, a variety of animal models, both
fresh and fixed, have been used to explore brain polarimetric properties under different exper-
imental conditions. Reflectance systems, enabling the analysis of thicker and bulk samples, have
emerged as a dominant imaging modality, likely due to their closer resemblance and applicability
in real-world scenarios, although transmission setups are useful for histological analysis.
Multiple decomposition methods have been applied to the Mueller matrix analysis of brain sam-
ples, each offering unique insights into the underlying polarization properties of tissues. The
forward polar or Lu–Chipman decomposition has arisen as a prevalent tool in brain imaging,
owing to its simplicity, interpretability, and established utility. However, other methods, such
as the differential and arrow decompositions, have also been proven valuable in differentiating
between tumoral tissue and various brain structures, including grey and white matter. Although
wavelengths centered around 470, 550, and 645 nm are commonly employed in brain studies,
likely due to their correspondence with RGB color bands in regular cameras, multi-wavelength
investigations remain limited. The heterogeneity of sample types in Mueller imaging studies of
brain tissue, coupled with the variation in experimental conditions and the limited exploration of
multi-wavelength effects, poses challenges for extrapolating findings across different wave-
lengths and samples. This complicates the task of identifying the optimal wavelength for a given
study and underscores the need for further investigation into the spectral and tissue-specific
polarimetric properties of brain tissue.

Despite the strides made in applying MMI to the brain, to the authors’ knowledge, there is no
bibliographic reference that focuses on reporting with detail the polarimetric properties of
healthy whole brain specimens and their main sub-structures. Building upon our preliminary
findings,43 we propose the use of multispectral MMI of the brain combined with an exhaustive
polarimetric analysis of its multiple structures. The presented methodology and experiments aim
to create a dataset of Mueller matrix images, serving as a reference for future polarization studies
and providing clinicians and researchers with an additional tool for the understanding of brain
anatomy.
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2 Materials and Methods

2.1 Sample Preparation
Dissection. A total of 20 regions from six specimens of locally sourced fresh lamb brain were
used for this work. A summary of the acquired regions is included in Table 2. In 13 cases, a
section of the specimen was performed to adequately visualize areas such as the brainstem, the
corona radiata, the cerebellar white matter (arbor vitae), or the diencephalon. In the remaining
seven cases, an intact lateral view of different areas (mostly cerebral or cerebellar hemispheres)
was acquired. Samples were preserved at fridge temperature and dissected using a size 10 scalpel.
We identified four macro-regions in our specimens: brain hemisphere (corresponding to cortex
and subcortical white matter), basal ganglia/diencephalon, brainstem, and cerebellum (see
Table 2).
Labeling. On the dissection images, specific white matter (WM) and grey matter (GM) regions
were labeled. These were identified on the basis of their macroscopic appearances and the

Table 1 Selected references that apply Mueller matrix imaging for brain analysis.

Brain samples System
Wavelength of

reported results (nm) Method Ref.

Pig, fresh, slices (2 mm, 1 cm) Rx/Tx 635 FPD 23

Human, fixed, slices (60 μm) Tx 632.8 DD 30

Human, fixed, sections (1 cm); Cow,
fresh, sections (1 cm)

Rx 550, 600, and 650 FPD 24

Mouse, fixed, slices ( μm) Rx 450, 500, and 550 TD 28

Human, fixed, slices Rx (microscope) 700 BSV 31

Cow, fresh, sections and bulk Rx 550 and 650 FPD 25

Goat, fresh, sections (1.5 cm); Cow,
fresh, sections (1.5 cm)

Rx-SFDI 630 FPD 32

Human, fixed, slices (6 μm) Rx (3 × 3) 630 FPD MMT 29

Ferret, fixed, bulk Rx (microscope) 405, 473,
543, and 632

FPD 33

Mouse, fixed, slices (10 μm, 500 μm) PA - Rx 527 System specific 34

Pig, fresh, sections and bulk Rx 550 and 650 FPD 26

Cow, fresh, section Rx 470 AD 35

Human, fixed, slices (5 and 10 μm) Rx (microscope) 550 FPD DD 27

Pig, fresh and fixed, sections Rx 550 FPD 36

Cow, fresh, sections (~cm) Rx 470 AD 37

Cow, fresh, sections (~cm) Rx 470 FPD, PPI 38

Pig, fresh, sections (3 cm) Rx 550 FPD 39

Human, fresh, sections Rx 550 FPD 40

Ferret, fixed, bulk Rx (microscope) 405, 442, 473, 545,
605, and 632

FPD 41

Pig, fresh, sections (3 cm) Rx 550 FPD 42

“System” column: Rx and Tx stand for reflection and transmission, respectively, SFDI, spatial frequency domain
imaging; PA, photoacoustic. 3 × 3 indicates that the system is not a complete Mueller polarimeter. “Method”
column: FPD, forward polar decomposition; DD, differential decomposition; TD, total diattenuation; BSV,
backscattered stokes vector; MMT, Mueller matrix transformation; AD, arrow decomposition.
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anatomical landmarks specific to a lamb brain. For this purpose, the specimens were compared
with those available in the literature44 or online.45 The resulting labeling of different regions is
showcased in Table 3.

2.2 System Description
The imaging system utilized in this study is illustrated in Fig. 1. The setup, inspired in previously
reported MMI devices,46,47 was arranged in reflection configuration, including a collimated white
light emitting diode (LED, MCWHLP3, Thorlabs, Newton, New Jersey, United States) filtered
within the wavelength range of 450 to 680 nm by six color filters in a rotating wheel (FW102C,
Thorlabs). The polarization state generator (PSG) consists of a linear polarizer combined with a
λ∕4 retarding film housed in a motorized mount (PRM1/MZ8, Thorlabs). By rotating this mount,
the device generates the four incident illumination polarization states.

In the detection branch, a polarimetric camera (PolarCam snapshot micropolarizer camera,
4D Technology, Tucson, Arizona, United States) with a wide-field lens (NMV50M1, Navitar,
Rochester, New York, United States) is used as the primary detector. The camera is equipped with

Table 3 Labeled brain areas sorted by type and largest to smallest number of pixels. The values
of all GM and WM areas are summarized in their respective (bold) rows.

Structure Type Specimens Regions Pixel no.

Grey matter GM 1 to 6 20 1,369,395

Basal ganglia GM 4 to 6 5 80,661

Superior colliculus GM 4 to 6 5 31,073

Third ventricle GM 6 1 9391

Inferior colliculus GM 4, 5 3 5254

Pineal gland GM 4 1 4302

Periaqueductal GM GM 4 1 3326

Optic chiasm GM 3 1 1667

Area posterema GM 4 1 1255

Brainstem nuclei GM 4 1 976

Claustrum GM 5 1 611

White matter WM 1 to 6 19 597,686

Corticospinal tracts WM 2 1 6308

Trochlear nerve WM 2 1 1026

Cerebellar peduncle WM 2 1 576

Vessels Vessel 1 to 5 6 16,104

Table 2 Summary of the measurements grouped by brain region.

Part Specimens Regions Views

Brain hemisphere 1 to 6 11
(6 right, 5 left)

Lateral (5), medial (4),
and sections (2)

Cerebellum hemisphere 2 to 4 6 Lateral (2) and medial (4)

Brainstem and pineal region 4 2 Sections (1) and medial (1)

Basal ganglia and diencephalon 5 1 Sections
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an array of linear polarizers positioned on top of the detection pixels at four different orientations,
enabling the retrieval of all linear polarization information in a single capture. For obtaining
phase information, another λ∕4 retarding film is inserted in one of the two positions of the sliding
filter mount (ELL6K, Thorlabs), leaving the other position empty. The camera, in conjunction
with the sliding filter mount, constitutes the polarization state analyzer (PSA).

2.3 Measurement Procedure and Dataset Description
Six specimens of lamb brains were measured on 20 regions at six wavelengths between 450 and
680 nm (450, 500, 550, 590, 650, and 680 nm). All filters had a bandwidth of 40 nm, except for
those at 590 and 680 nm, which had bandwidths of 10 nm. The exposure time was adjusted for
each measurement to compensate for the light power dependency with wavelength, which
resulted in exposure times between 0.3 and 3 s. The first two specimens were set on top of
aluminum foil, which was later removed for the remaining specimens to minimize undesired
reflections.

Each complete polarization measurement took ∼1 min and involved a total of 32 images:
one for each position of the rotating retarding film (4), one for each position of the sliding filter
mount (2), and one for each of the four polarizers on the camera sensor (4). This compendium of
images is sufficient for deriving the Mueller matrix of the sample. Given that we used six color
filters and 20 samples, a total of 3840 images were captured, which translates into 120 Mueller
matrices, each with its corresponding polarization properties.

2.4 Polarization Properties
The Mueller matrix (M) of the sample, as constructed from the actual measured matrices (M),
will depend on the polarimetric response of the PSA and PSG matrices [Eq. (1)]

EQ-TARGET;temp:intralink-;e001;117;163M ¼ PSA · M · PSG: (1)

To obtain them, we used the eigenvalue calibration method (ECM), as described by Compain
et al.48 In brief, this method is based on the measurement of known polarizing elements, also
defined as calibration samples, to calculate the PSA and PSG matrices by comparing the
expected matrices of the calibration samples with their actual measurements. Due to having
six individual color filters, our system required a different calibration for each filter. The ECM
also retrieves the error of the calibrated PSA and PSG through the study of the eigenvalues;

Fig. 1 Multispectral MMI’s photograph (a) and diagram (b): (1) LED light source, (2) LED collima-
tor, (3) filter wheel, (4) linear polarizer, (5) rotating mount with λ∕4 retarding film, (6) polarization
camera, (7) lens, and (8) sliding filter mount with λ∕4 retarding film. The oblique detection angle is
approximately 7 deg.
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the calibration error was, on average, 6.3%, with the highest error being 8.2% and the lowest
being 4.5%.

Once obtained, the matrices M contain 4 × 4 elements, Mij, i; j ∈ ½0;3�, that are typically
represented in a normalized fashion, mij ¼ Mij∕M00, i; j ∈ ½0;3�, in terms of the polarizance
~P ¼ ðm10; m20; m30ÞT and diattenuation ~D ¼ ðm01; m02; m03ÞT vectors, as follows:

EQ-TARGET;temp:intralink-;e002;114;672M ¼

0
BB@

M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

1
CCA ¼ M00

0
BB@

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

1
CCA ¼ M00

�
1 ~DT

~P m3×3

�
:

(2)

2.4.1 Verifying the validity of experimental Mueller matrices

Not all measured Mueller matrices depict a correct representation of the polarization properties of
the sample. Specifically, factors such as instrumental noise, misalignments, randomization
through depolarization, inhomogeneities across the penetration depth, or non-linearities such
as fluorescence might lead to calculated matrices that are not physically realizable.

The ensemble criterion49 can be utilized to determine whether measured samples represent
physically realizable Mueller matrices, which should be equivalent to a weighted average of
non-depolarizing matrices. Mathematically, this implies two conditions. The first one relates to
the covariance matrix of M, HðMÞ, defined as

EQ-TARGET;temp:intralink-;e003;114;464H ¼ 1

4

X3
i;j¼0

Mikσi ⊗ σj; (3)

where σi are the Pauli matrices and ⊗ represents the tensor product. For M to be physically
realizable, all eigenvalues of HðMÞ must be greater than or equal to zero.50

The second condition of the ensemble criterion implies that the medium cannot increase the
degree of polarization of the incident light. This condition is evaluated through two equations,
namely, the forward and reverse passivity conditions [Eq. (4)]51
EQ-TARGET;temp:intralink-;e004;114;361

M00ð1þk ~DkÞ ≤ 1;

M00ð1þk~PkÞ ≤ 1: (4)

2.4.2 Indices of polarimetric purity indices (IPPs) and anisotropy coefficients

Mueller matrices can be characterized by their polarimetric purity, quantified by the IPPs, and
their anisotropy, assessed through various anisotropy coefficients. These metrics are useful for
providing insights into the depolarizing and anisotropic properties of the medium. Let λi,

i ∈ ½0;3� be the four eigenvalues of HðMÞ, with λ0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0. Let λ̂i ¼ λi∕traceðHÞ.
Then, the three indices of polarimetric purity are defined as52,53

EQ-TARGET;temp:intralink-;e005;114;218

P1 ¼ λ̂0 − λ̂1;

P2 ¼ λ̂0 þ λ̂1 − 2λ̂2;

P3 ¼ 4 − λ̂1; (5)

and the degree of polarimetric purity is defined as

EQ-TARGET;temp:intralink-;e006;114;139PΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
2P2

1 þ
2

3
P2
2 þ

1

3
P2
3

�s
: (6)

The IPPs represent the amount of polarization maintained by the sample, taking values
between 0 and 1 and satisfying the inequality 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1.
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Aside from the IPPs, the anisotropy coefficients can also be directly derived from the
Mueller matrix to provide insights regarding the anisotropies present in the samples. Starting
with the 3 × 3 sub-matrix of M, m3×3, the following complementary vectors are defined:54

EQ-TARGET;temp:intralink-;e007;117;700

~k ¼ 1ffiffiffi
3

p ðk1; k2; k3ÞT; ~r ¼ ðr1; r2; r3ÞT; ~q ¼ ðq1; q2; q3ÞT; (7)

where

EQ-TARGET;temp:intralink-;e008;117;652m3×3 ¼
0
@ k1 r3 r2

q3 k2 r1
q2 q1 k3

1
A: (8)

By defining Σ ¼ 3ð1 − k~kk2Þþ 2 ~DT ~P − 2~rT ~q and taking the individual elements of vectors
~D, ~P, ~k, ~r, and ~q, the linear (αL) and circular (αC) anisotropy coefficients are derived as

EQ-TARGET;temp:intralink-;e009;117;573

αL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 þP1Þ2 þðr1 − q1Þ2 þðD2 þP2Þ2 þðr2 − q2Þ2

Σ

r
;

αC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD3 þP3Þ2 þðr3 − q3Þ2

Σ

r
; (9)

and the overall degree of anisotropy is derived as

EQ-TARGET;temp:intralink-;e010;117;494Pα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2L þ α2C

q
≤ PΔ ≤ 1: (10)

These coefficients are valuable for analyzing the directional dependence of the samples’
optical properties, which in turn is related to their 3D structure. However, the degree of
anisotropy is inherently constrained by the degree of polarimetric purity. Highly depolarizing
samples (low PΔ) will necessarily exhibit low anisotropy, but the converse is not always
true—low anisotropy does not guarantee low polarimetric purity.

2.4.3 Forward polar decomposition

Although there are many ways of decomposing M, the most commonly applied method is the
forward polar (or Lu–Chipman) decomposition.55 The Lu–Chipman decomposition is one of the
existing methods to decompose one matrix in terms of a finite series of matrices, each represent-
ing some known polarization properties. These decompositions prioritize easily interpretable
results at the cost of assuming that the media can be modeled as three distinct layers ordered
in one particular way. Although newer decomposition methods that do not have the same
limitations have emerged, the Lu–Chipman decomposition, one of the first models in the field,
continues to be the most widely applied method, particularly for analyzing Mueller matrices in
brain tissue.

The forward polar decomposition is based on the assumption that any polarization property
can be understood as a combination of depolarization (Δ), retardance (R), and diattenuation (D),
through their respective Mueller matrices, MΔ, MR, and MD, as indicated in Eq. (11), which is
typically calculated after normalizing M by its first element, M00 ¼ Mð0;0Þ.

EQ-TARGET;temp:intralink-;e011;117;209M ¼ MΔ · MR · MD: (11)

For each decomposed Mueller matrix, their magnitudes (Δ, R, andD) are derived as follows
[Eq. (12)]:
EQ-TARGET;temp:intralink-;e012;117;160

Δ ¼ 1 −
jtraceðMΔÞ − 1j

3
∈ ½0;1�;

R ¼ cos−1
�
traceðMRÞ

2
− 1

�
∈ ½0; π�;

D ¼ k ~Dk ¼ kðMDð1;0Þ;MDð2;0Þ;MDð3;0ÞÞTk ∈ ½0;1�: (12)
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The orientation of the optical axis of linear retardance of the sample (θ) is calculated by
understanding the retardance as a combination of linear and circular birefringence. In this
manner, θ is obtained by decomposing MR as a combination of a linear retarder (LR) with a
retardance of δ and an optical rotation ψ [Eq. (13)]

EQ-TARGET;temp:intralink-;e013;114;688MR ¼ MLR · Mψ : (13)

By deriving the 16 equations inside the product of Eq. (13), the value of θ is determined as
follows:56

EQ-TARGET;temp:intralink-;e014;114;639θ ¼ 1

2
tan−1

�
MLRð3;1Þ −MLRð1;3Þ
MLRð2;3Þ −MLRð3;2Þ

�
; (14)

where the ði; jÞ values in MLRði; jÞ refer to the row and column of MLR, respectively. All of the
derived polarization properties are wavelength-dependent as the optical properties of the sample
and the penetration depth vary with the wavelength.

2.4.4 Symmetric decomposition

The forward and reverse polar decompositions (the latter not discussed here) impose a specific
order for the equivalent depolarizer, retarder, and diattenuator matrices. However, matrix algebra
dictates that altering this order yields different equivalent element sets, each characterized by
distinct matrices. Notably, the depolarizer matrix (MΔ) resulting from the polar decomposition
can contain non-zero off-diagonal elements, implying the presence of polarizance or diattenua-
tion, depending on the chosen matrix order. To overcome those limitations, the more recently
proposed symmetric decomposition57 proposes a five-layer model with two retarders (MR1 and
MR2), two diattenuators (MD1 andMD2), and one diagonal depolarizer (MΔd) while retaining the
ease of interpretability of a serial model, given as follows:

EQ-TARGET;temp:intralink-;e015;114;421M ¼ MD2MR2MΔdMT
R1MD1: (15)

This model, derived from the normal form of M,58 implies that the product matrices
Mj2 ¼ MD2MR2 and Mj1 ¼ MT

R1MD1 are non-depolarizing (pure) components, ensuring that
all depolarization is confined to MΔd.

The symmetric decomposition requires the Mueller matrix M to be diagonalizable to derive
the diagonal depolarizer as

EQ-TARGET;temp:intralink-;e016;114;335MΔd ¼

0
BB@

d0 0 0 0

0 d1 0 0

0 0 d2 0

0 0 0 d3

1
CCA: (16)

Specifically, given G ¼ diagð1;−1;−1;−1Þ, the applicability of the symmetric decompo-
sition can be verified by checking the diagonalizability of the matrix as

EQ-TARGET;temp:intralink-;e017;114;249N ¼ GMTGM: (17)

To obtain the two diattenuators, vectors ~sD1 ¼ ð1; ~D1ÞT and ~sD2 ¼ ð1; ~D2ÞT , related to
the diattenuation vectors of MD1 and MD2, respectively, are resolved using the eigenvalue–
eigenvector equations57
EQ-TARGET;temp:intralink-;e018;114;186

ðMTGMGÞ~sD1 ¼ ð ~d0Þ2~sD1;

ðMGMTGÞ~sD2 ¼ ð ~d0Þ2~sD2: (18)

The absolute diattenuation for each MDi is then obtained, as indicated in Eq. (12), to verify
that the inequalities D1;2 ≤ 1 hold. Subsequently, applying singular value decomposition (SVD)
to the intermediate matrix,

EQ-TARGET;temp:intralink-;e019;114;102M 0 ¼ M−1
D2MM−1

D1 ¼ MR2MΔdMT
R1; (19)

is enough to retrieve the remaining matrices, namely, MR2, MΔd, and MR1.
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It is worth noting that the SVD is invariant to rotations and therefore can introduce an
artificial circular retardance in MR1 and MR2. To avoid this, the overall product

EQ-TARGET;temp:intralink-;e020;117;712MR ¼ MR1MT
R2; (20)

which is not modified by the rotations introduced by the SVD, is used instead. The complete
mathematical formulation is available in the literature.57,59

2.4.5 Differential decomposition

In a real, macroscopic sample, considering it completely uniform along the light propagation is
often not precise. Instead, the differential decomposition60,61 assumes that, for each infinitesimal
element of the optical path length (dz), there is a differential Mueller matrix mðzÞ that relates to
MðzÞ through

EQ-TARGET;temp:intralink-;e021;117;579

dMðzÞ
dz

¼ mðzÞMðzÞ: (21)

Ifmwas non-dependent of z, Eq. (21) would have a solution in terms of the matrix logarithm
(assuming z ¼ 1)

EQ-TARGET;temp:intralink-;e022;117;519m ¼ lnðMÞ: (22)

However, it is often not the case that m is independent from z. In such cases, the matrix
logarithm can still be defined as L ¼ lnðMÞ and analyzed in the same way that m would be.60,61

Let G ¼ diagð1;−1;−1;−1Þ be the Minkowski metric matrix. Then, for any matrix A, the
concept of G-transpose is defined as

EQ-TARGET;temp:intralink-;e023;117;447AG ¼ GATG; (23)

and G-symmetry and G-antisymmetry are fulfilled when
EQ-TARGET;temp:intralink-;e024;117;411

AG ¼ A;

AG ¼ −A; (24)

respectively.
The matrix logarithm L is separated into its G-antisymmetric (Lm) and G-symmetric (Lu)

parts as follows:

EQ-TARGET;temp:intralink-;e025;117;333L ¼ lnðMÞ ¼ Lm þLu ¼
1

2
ðL − GLTGÞþ 1

2
ðLþGLTGÞ; (25)

where the components of Lm contain the spectroscopic properties ofM, namely, the linear (hori-
zontal–vertical and 45 to 135 deg) and circular (left–right) diattenuation and retardance.
Specifically, Lm relates to the (spatial or temporal) average of the spectroscopic properties as62

EQ-TARGET;temp:intralink-;e026;117;263Lm ¼

0
BB@

0 −LDH −LD45 CD
−LDH 0 CB LB45

−LD45 −CB 0 −LBH

CD −LB45 LBH 0

1
CCA; (26)

where LD and LB indicate linear diattenuation and retardance, respectively; CD and CB are
circular diattenuation and retardance, respectively; and the sub-indexes H and 45 indicate if the
linear properties are with respect to the horizontal or þ 45 deg axes, respectively. On the other
hand, Lu contains the necessary data to calculate their average variances (jΔLHj2, jΔL45j2,
jΔCj2) and covariances (ΔLHΔL�

45, ΔLHΔC�, ΔL45ΔC�).
The main assumption the differential decomposition makes is that a Mueller matrixM can be

created from infinite differential matrices m. Then, for this decomposition to be applicable, each
of the differential m (or L) must have physical meaning by themselves. This condition must be
fulfilled to apply the differential decomposition, which can be done by verifying if the reduced
coherency matrix, related to the G-symmetric component of m (or L), is positive semi-definite.
The complete formulation is available in the work of Ossikovski and Devlaminck.63
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Given the unknown nature of the optical path length inside a sample, the differential model is
particularly useful for the analysis of thin samples in a transmission configuration, although its
use has also been verified in the backscattering configuration.64

2.5 Classification
K-nearest neighbors classification65 was used to determine the usefulness of Mueller-derived
properties (Δ, R, andD) for distinguishing between GM andWM. First, the dataset was balanced
by randomly removing points so that each specimen and each class had the same number of
samples. Then, the accuracy of the classifier was evaluated through sixfold cross-validation
by leaving one specimen out on each fold. With this distinction, 83% of the data was used for
training and 17% for testing.

In total, eight different instances of K-nearest neighbors (KNN) were trained: one for each
wavelength ([ΔðλiÞ, RðλiÞ, DðλiÞ], i ∈ ½1;6�), one combining specific features (SF, KNN-SF),
and one containing the features at all wavelengths (KNN-All, ½Δðλ1Þ; Rðλ1Þ; Dðλ1Þ; : : : ;
Δðλ6Þ; Rðλ6Þ; Dðλ6Þ�). The models’ average sensitivity and specificity were retrieved after sixfold
cross-validation. For each fold, a confusion matrix and its respective significant parameters were
obtained. The presented results were computed by averaging after the six folds. As identifying
GM and WM is a binary classification problem, if we assume the “positive” class as GM and the
“negative” class as WM (Table 4), sensitivity is the true GM rate (i.e., of the values detected as
GM, those that are actual GM) and specificity is the true WM rate (i.e., of the values detected as
WM, those that are actual WM), as indicated in Eq. (27).
EQ-TARGET;temp:intralink-;e027;114;484

True GMRate ¼ TrueGM

TrueGMþ FalseWM

TrueWMRate ¼ TrueWM

TrueWMþ False GM

Accuracy ¼ TrueWMþTrueWM

TrueWMþ False GMþTrueGMþ FalseWM
: (27)

The importance of each property for classification was analyzed through the average accu-
racy decrease via random permutations. This method was first introduced for random forest
classifiers,66 but it can be applied to any model, given that only the model output is evaluated.
For each property, the values are randomly shuffled so that inconsistencies between the feature’s
values and the classes are introduced. If the property is important for the classifier, then its accu-
racy will decrease with respect to the un-shuffled dataset. We calculate the average accuracy
decrease by performing the random shuffling s ¼ 10 times for each feature, fold, and model.

In addition, both forward and backward sequential floating selection (SFS; forward SFS:
SFFS; backward SFS: SBFS) were implemented for KNN-All to select the three optimal features
to use for KNN-SF. This method, which has been extensively documented67–69 and implemented
for optically obtained data multiple times,70–72 works by choosing a subset of N features based on
an optimization metric. In this case, for a dataset X ¼ fx1; x2; : : : ; xig with i features, only N
features are selected Xsubset ¼ fx1; : : : ; xNg, and the optimization metric is evaluated. In the next
step, a new feature xinc is included in Xsubset, and another one xexc is excluded. If xinc provides
better results than without it, xinc is introduced in Xsubset. If removing xexc provides better results
than keeping it, xexc is removed from Xsubset. This process goes on until the optimal Xsubset is
reached. To avoid trying all possible combinations, once a feature is removed, it is not included
again at any point in the sequential process. In SFFS, features are added until N is reached, and

Table 4 Confusion matrix in a binary classification problem.

Expected

GM WM

Predicted GM True GM False GM

WM False WM True WM
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then, data are included or excluded without having more than N in any iteration, whereas SBFS
starts with the whole dataset and removes features until N is reached, without having less than N
in any iteration. Choosing SFFS or SBFS does not typically lead to the same results given that the
order in which features are removed is different. In addition, depending on if N is closer to i or to
0, one method will be faster than the other. Both SFFS and SBFS were tested fold-wise forN ¼ 3

features. The idea was to obtain the three optimal features that provide the best classification
without increasing the computation time regarding the single-wavelength models.

The advantage that SFS has regarding the random permutation method is that it is also not
restricted to any model, and thus, the optimization metric can be any statistically relevant param-
eter of the data itself. In addition, SFS should be faster in these experiments than random per-
mutations because the former evaluates metrics with fewer features (i.e., less data). However,
depending on the optimization metric, other considerations might need to be evaluated, such
as the type of distribution that the data have or the scale of the different features. In this case,
we still opted for using the accuracy of KNN-All as the optimization metric to see if a noise-
inducing method such as random permutations can provide equivalent results to a data reduction
method and to evaluate if the speed increment given by SFS working with less data is worth its
implementation even if it does not try all possible combinations.

3 Results
The measurements from 20 different views (four macro-regions described in Table 2 and labeled
as indicated in Table 3) of lamb brain were acquired according to the protocol described in Sec. 2.
For each color filter, the Mueller matrices M were measured and evaluated according to their
physical realizability (Sec. 3.1). In addition, the IPPs and anisotropy coefficients were retrieved
(Sec. 3.1.1), and three decomposition methods (forward polar, symmetric, and differential) were
applied to evaluate the resultingM (Secs. 3.1.2–3.1.4). Afterward, each image was hand-labeled
by a neurosurgeon (GA author) to identify the regions introduced in Table 3, which are also
depicted in Fig. 2 (Sec. 3.2). The labeled regions were then analyzed using the forward polar
(or Lu–Chipman) decomposition due to its simplicity, widespread use in the literature, and preva-
lence as the preferred decomposition method for brain tissue analysis, facilitating comparisons

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 2 Labels identified on the 20 measurements taken of lamb brain in multiple regions: brainstem
(a), lateral (b, c), and medial (e)–(g) views of cerebella, frontal basal ganglia sections (h), lateral
(i, j), medial (k, l), and sectional (m) views of left hemispheres; and pineal region (n), lateral (o)–(q),
medial (r, s), and sectional (t) views of right hemispheres.
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with existing research. Specifically, the Lu–Chipman parameters are provided for grey–white
matter distinction (Sec. 3.3) and for all labeled areas (Sec. 3.4).

3.1 Mueller Matrices
The measured Mueller matrices, M, with normalized components mij (i; j ∈ ½0;3�) and first (not
normalized) element M00 were almost diagonal for all samples and wavelengths, indicating that
samples are mostly depolarizing. Figure 3 represents the matrix of one of the samples, at 450 and
680 nm. The finer detail observable at shorter wavelengths (450 nm) is due to the reduced blur-
ring associated with shorter optical path lengths.

To further analyze the matrices, their physical realizability was evaluated according to the
ensemble criterion. This criterion establishes two conditions for a Mueller matrix to be physically
realizable, as previously stated in Sec. 2.4.1: (1) all eigenvalues of the associated Hermitian
matrix, HðMÞ [Eq. (3)], must be non-negative, and (2) the forward and reverse passivity

Fig. 3 Mueller matrices of a lateral view of one left hemisphere at (a) 450 and (b) 680 nm. The
non-normalized first element of the matrix, M00, is represented to the left, whereas the rest of the
coefficients,mij (i ; j ∈ ½0;3�Þ, are normalized. The colormaps were adjusted to the�99th percentile
of M00. Positive values are showcased in green, and negative ones are depicted in red.
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conditions [Eq. (4)] must be fulfilled. A tolerance of tol ¼ 10−5 was established to fulfill con-
ditions (1) and (2) to compensate for numerical approximations.

The pixel-wise analysis of the ensemble criterion revealed two distinct regions within the
matrices: physically realizable and non-realizable (Fig. 4). Three primary areas fail to meet the
criterion: regions of specular reflection, edges of the sample where water accumulated, and areas
of lower signal in samples placed over aluminum foil [Fig. 4(a)]. When measuring the initial
specimens (1 and 2), reflections from the aluminum foil interfered with the samples. To mitigate
this, a paper plate was used as a base for subsequent measurements. Although the images
presented in this work show the entire specimens, areas where the ensemble criterion failed were
excluded from the boxplots and any calculations of average polarimetric magnitudes. This
effectively removed all imaging artifacts from the analysis.

3.1.1 Indices of polarimetric purity indices (IPPs) and anisotropy coefficients

The IPPs [Eq. (5)] and the degree of polarimetric purity [Eq. (6)] were calculated for all samples.
In general, the behavior is equivalent to that showcased in Fig. 5. Aside from a slight increase at
550 nm, the general tendency is that the polarimetric purity decreases as the wavelength
increases. White matter structures are distinctly characterized by low polarimetric purity, indi-
cating greater depolarization than grey matter. At longer wavelengths, virtually no polarimetric
purity is retained, which is consistent with the expected depolarization increment due to the
longer optical paths. Although the indices P1, P2, and P3 consistently satisfy their inequality
conditions, no clear relationship among them is apparent.

All of the anisotropy coefficients provided very small absolute values, as required by
Pα ≤ PΔ (Fig. 6). Notably, linear anisotropy was almost three times the value of circular
anisotropy, dominating Pα and suggesting the presence of linear retardance or diattenuation.
Although some sub-cortical structures are apparent at shorter wavelengths, no significant
structures were discernible above 600 nm.

3.1.2 Forward polar decomposition

After applying the forward polar decomposition, the overall depolarization Δ, retardance R, and
diattenuation D were obtained for all samples. Some of their representative images are displayed

(a) (b) (c)

(d) (e) (f)

Fig. 4 Ensemble criterion applied to one representative sample at different wavelengths:
(a) 450 nm, (b) 500 nm, (c) 550 nm, (d) 590 nm, (e) 650 nm, and (f) 680 nm. Areas where the
ensemble criterion is fulfilled are represented in green, and areas where the matrices are not
physically realizable are in red.
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in Fig. 7 for one of the lateral views of a left brain hemisphere. For representation, the color scales
are restricted to 99% of the data distribution by clipping values under 0.5% and over 99.5%
(Δ ∈ ½0.31; 0.94�, R ∈ ½0.052; 0.93�, D ∈ ½2.5 × 10−3; 0.33�). In addition, D is depicted logarith-
mically for image enhancement.

Depolarization [Fig. 7(a)] provides good discrimination between GM and WM structures,
with the latter having higher Δ at all wavelengths. Generally speaking, Δ increases with wave-
length in all of the observed brain structures, regardless of their type. Retardance also increases
slightly with wavelength [Fig. 7(b)], but the different R between matter types enhances specific
structures. Blood vessels are also better detected in R out of the three parameters. The WM
structures present on the hemisphere and identified through Δ are also visible in the retardance
images and enhanced when the wavelengths are longer. The longer penetration of this wave-
length range enhances the ability of the system to see deeper structures, as is the case with
WM. However, at 680 nm, the combination of the light source used, the transmittance of the
wavelength filter, the sensitivity of the camera, and the depolarization increment make it harder

Fig. 6 Linear (αL) and circular (αC ) anisotropy coefficients and degree of anisotropy Pα repre-
sented at all six wavelengths. The colormaps were adjusted to exclude all values below the
1st and over the 99th percentiles of each magnitude.

Fig. 5 Indices P1, P2, and P3 and degree of polarimetric purity PΔ represented at all six wave-
lengths. The colormaps were adjusted to exclude all values below the 1st and over the 99th per-
centiles of each magnitude.
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to discern fine structures due to the increase in noise. Low diattenuation values were observed for
all samples, with D having more detail for 450 nm and being almost completely random at
680 nm. Overall D values were significantly small as tissues are not typically diattenuating.
The combined effect of the higher resolution at 450 nm with its shallower penetration allows
for better discrimination of superficial structures.

The behavior depicted in Fig. 7 was observed for all samples, with Δ being the main dis-
criminant factor between WM and GM, as well as the increasing tendency for Δ and R correlat-
ing with wavelength and the overall low and non-discriminating values of D. Vessels have better
visibility in the R images than in Δ images, and detail is better preserved for shorter wavelengths.
Sections 3.3 and 3.4 introduce a more in-depth analysis of the results for WM, GM, and the
aforementioned labeled regions.

3.1.3 Symmetric decomposition

Following the procedure applied for the forward polar decomposition, the overall Δ, R, D1, and
D2 were obtained and are represented in Fig. 8, with the same color ranges that were applied
to Fig. 7.

The depolarization images [Fig. 8(a)], as derived from the diagonal depolarizer matrix,
MΔd, are almost identical to those provided by the Lu–Chipman decomposition. Again, there
is an increasing tendency in general, with the exception of those values at 550 nm.
Furthermore, Δ serves as the main discriminator parameter between GM and WM, with
enhanced separability at shorter wavelengths. The overall retardance R calculated from
MR ¼ MR2MR1

T [Eq. (20)] also increases slightly with wavelength and is stronger in WM
structures and vessels. The main distinction between R as obtained from the Lu–Chipman
and the symmetric decompositions is that the latter seems to be more resistant to noise at
longer wavelengths, even with the high depolarization over 600 nm. In addition, the difference
between GM and WM is less drastic than for the forward decomposition, but it is still more
than twice the value for WM than for GM, and the overall increment in R is also smaller.
The noise resistance of the symmetric decomposition suggests that the Lu–Chipman decom-
position might overestimate the retardance values, but it does not seem to change the relative
relationship between tissue types. Finally, the diattenuation obtained from MD1 and MD2 is
also slightly different, with D1 being more similar to the forward polar decomposition’s D,
but overall diattenuation values are still negligible.

(a)

(b)

(c)

Fig. 7 Depolarization (a), retardance (b), and diattenuation (c) of a lateral view of one left hemi-
sphere, from 450 nm to 680 nm. The white arrows indicate white matter presence, the red ones
point to some vessels, and the yellow one to sub-cortical structures. D is represented logarithmi-
cally. The data were clipped to Δ ∈ ½0.31; 0.94�, R ∈ ½0.052; 0.93�, and D ∈ ½2.5 × 10−3; 0.33� for
visualization purposes.
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3.1.4 Differential decomposition

The differential decomposition analysis of brain samples revealed no clear patterns of diatten-
uation or retardance, both characterized by small, non-negligible, variable values across samples
and wavelengths (as shown in Table 5 for one left hemisphere). In addition, their variances are

Table 5 Wavelength-dependent linear (L), circular (C), retardance (B), and diattenuation (D) and
their variances and covariances as obtained with the differential decomposition for the sample
represented in Fig. 3.

450 nm 500 nm 550 nm 590 nm 650 nm 680 nm

LBH 0.0000 −0.0054 −0.0070 −0.108 −0.0153 0.0168

LB45 −0.0188 −0.0309 −0.0122 −0.0062 −0.0086 0.0047

CB −0.0084 0.0266 −0.0166 −0.0166 0.0202 −0.0177

LDH 0.0025 0.0140 0.0002 0.0055 0.0138 0.0082

LD45 −0.0201 −0.0103 −0.0132 −0.0090 0.0068 0.0082

CD −0.0060 −0.0186 −0.0034 −0.0102 −0.0205 −0.0157

jΔLH j2 0.6033 1.1881 0.8964 1.2967 1.8431 1.8742

jΔL45j2 0.7293 1.3739 0.9987 1.3872 2.0271 1.9715

jΔCj2 0.4365 0.7736 0.5527 0.8269 1.1884 1.259

ΔLHΔL�45 0.0166 −0.0354 0.0143 0.0067 −0.0416 0.0025

ΔLHΔC� 0.0330 0.0703 −0.0040 −0.0202 0.0229 −0.0321

ΔL45ΔC� 0.0044 −0.0023 0.0177 0.0202 0.0061 0.0382

(a)

(b)

(c)

(d)

Fig. 8 (a) Depolarization (Δ), (b) retardance (R), and (c,d) diattenuation (D1;2) obtained with the
symmetric decomposition. D1;2 are represented logarithmically. The data were clipped to the
same values used for the forward polar decomposition (Fig. 7), namely, Δ ∈ ½0.31; 0.94�,
R ∈ ½0.052; 0.93�, and D ∈ ½2.5 × 10−3; 0.33�, for visualization and comparison purposes.
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between one and three orders of magnitude greater than the values, which indicates strong depo-
larization. Their covariances are also small, and much smaller than the variances, which is an
indicator that there is not a straightforward relationship between the polarization properties
fluctuations. However, there is a 20% decrease, approximately, in the variances at 550 nm, which
again supports the slight decrease in depolarization at said wavelength, as pinpointed by the other
decomposition methods. These findings point toward a complex polarimetric behavior of brain
tissue, dominated by depolarization effects.

3.2 Anatomical Considerations and Rationale for Labeling
The labeling process followed the basic principles of topographical landmarks, focusing on
the most recognizable structures. Two public atlases were used for comparison with our
specimens.44,45

The lamb and human brain differ from both a functional and topographical point of view.
Therefore, obviously recognizable cortical and subcortical GM structures (e.g., the basal ganglia
or the periaqueductal grey) were labeled accordingly. We assigned the label of GM to those
structures that were either known to be constituted entirely of GM (e.g., cortex) or showed
visual/topographical features of that sort (e.g., brainstem nuclei).

Regarding the WM, the definition of precise boundaries between specific bundles was much
more challenging; therefore, our segmentation was limited to the identification of the most
evident nerves (optic chiasm, olfactory bulbs, etc.) or tracts, whereas we labeled all subcortical,
diencephalic, cerebellar, and brainstem areas showing clearly myelinated features as generic
“WM.” One important exception was made for the cortico-spinal tracts at the level of the cerebral
peduncle, mainly considering the precise topographical appearance, which is also the reason that
this specific structure was included in Sec. 3.4.3.

A few more structures were uncertain in nature. For example, the superior and inferior
colliculi are known to be relay nuclei for the visual and auditory pathways, respectively, but
they are surrounded by white matter. The same challenge applies to the third ventricle, an area
rife with small grey matter nuclei and white matter bundles. In such cases, we opted to label these
structures according to their macroscopic conventional name and appearance, without segregat-
ing the specific sub-components. Although this choice most likely lacks accuracy, both options
of leaving the structure itself unlabeled or attempting to be more specific were not considered
feasible. Interestingly, the MMI analysis still showed a relatively distinct set of features when
comparing these structures to the more identifiable ones (see below).

3.3 Grey and White Matter
All of the pixels labeled as GM (1,369,395 pixels) and WM (597,686 pixels) were evaluated
together in terms of depolarization, retardance, and diattenuation, regardless of the sample and
brain part. The objective was to establish the capability of these polarization properties to discern
between white and grey matter. Due to the uneven number of pixels in both types of tissue, we
took a random sample for GM so that it contained the same number as in WM. The results are
shown in Fig. 9. Among the three mentioned polarization properties, Δ exhibits the most distinct
behavior. For GM, the Δ values increase with wavelength from 0.6 to almost 0.9, whereas WM
values have less variability, starting just below 0.9 and reaching almost 0.95 for the longer wave-
lengths. The only exception is at 550 nm, where both magnitudes decrease slightly. In addition,
the width of the distributions decreases for GM and WM as the wavelength increases, indicating
more spatial uniformity for the red than for the blue, as previously presented in Fig. 7(a). The
greatest separation between GM and WM is achieved for 450 nm, where there is no overlap
between distributions.

R also increases with wavelength for GM and WM. In particular, at 680 nm, the median
value for GM (0.32 rad) is twice the value at 450 nm (0.16 rad). Similarly, for WM, the value
reaches 0.72 rad at 680 nm while starting at 0.42 rad at 450 nm.

As shown in Fig. 9, D has negligible values (D < 0.04) at all wavelengths, especially for
GM, with values that are almost half of those of WM. Further, the bulk of the distributions over-
lap both between GM and WM and among the different wavelengths for each type of matter.

A two-sided Mann–Whitney U test was performed to assess the overall separability of the
distributions for all GM–WM pairs. All obtained p-values were p < 1e − 5, indicating that the
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three reported polarization properties have distinct distributions for each type of brain matter in
the analyzed wavelength range.

Two types of KNN models were trained to distinguish between GM and WM: with single-
wavelength or multiple-wavelength features. For both types, the neighbor number was estab-
lished by analyzing the cross-validated accuracy for the test dataset between Kn ¼ 1 and
Kn ¼ 100. After Kn ¼ 50, the accuracy increased only an additional 0.05% for the single-
wavelength models, whereas the all-wavelength one peaked at Kn ¼ 8, and the specific-features
one at Kn ¼ 48, so those were the values chosen for each model type. The average accuracy for
the train and test datasets is shown in Table 6. For all models, true GM and WM rates are close to
the accuracy, both for training and for testing, indicating that no model is biased toward one class
or the other.

Table 6 Average accuracy, true GM rate, and true WM rate after sixfold cross-validation for the
train and test datasets for each of the eight KNN models trained.

Accuracy
(train)

Accuracy
(test)

True GM
(train)

True WM
(train)

True GM
(test)

True WM
(test)

450 nm 89.10 ± 0.72 88.3 ± 9.5 88.98 ± 0.73 89.22 ± 0.71 88.7 ± 7.8 88.3 ± 9.5

500 nm 88.52 ± 0.82 85.9 ± 7.9 88.44 ± 0.82 88.59 ± 0.83 86.3 ± 6.4 85.9 ± 7.9

550 nm 88.84 ± 0.57 87.8 ± 6.8 88.68 ± 0.58 88.98 ± 0.56 88.0 ± 5.7 87.8 ± 6.8

590 nm 87.25 ± 0.78 86.5 ± 6.6 87.14 ± 0.78 87.36 ± 0.78 86.6 ± 5.5 86.5 ± 6.6

650 nm 83.47 ± 0.89 82.5 ± 7.7 83.22 ± 0.94 83.71 ± 0.86 82.4 ± 6.6 82.5 ± 7.7

680 nm 79.9 ± 1.4 79.0 ± 8.5 79.7 ± 1.4 80.2 ± 1.4 78.8 ± 7.4 79.0 ± 8.5

KNN-All 97.25 ± 0.49 95.3 ± 6.8 97.23 ± 0.49 97.27 ± 0.49 95.5 ± 6.1 95.3 ± 6.8

KNN-SF 95.57 ± 0.65 94.1± 8.4 95.57 ± 0.64 95.57 ± 0.65 94.6 ± 7.6 94.1 ± 8.6

KNN-All stands for the models trained with Δ, R, and D at all six wavelengths, whereas KNN-SF was trained
specifically with Δð450;500;and550 nmÞ. Results are shown in percentages and presented with two significant
figures.

Fig. 9 DepolarizationΔ, retardanceR, and diattenuationD for GM andWM, sorted by wavelength.
The two-sided Mann–Whitney U test indicated p-values of p < 1e − 5 (*****) for all pairs GM–WM.
The average of each distribution is indicated both as a white scatter point and as the number on top
of each boxplot.
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Below 590 nm, KNN correctly identifies the type of tissue (on average) in over 85% of the
training dataset cases for the single-wavelength models (Fig. 10). Between 590 and 650 nm, that
number is reduced to around 81%, and it keeps decreasing to 77% for 680 nm. The standard
deviation due to the test folds changes between 12% and 18%, with the smallest one at 590 nm,
whereas the training dataset results are better at 550 nm. In addition, there is not a big difference
between the average training and test results (∼2%), and the test dataset completely overlaps with
the training set due to the former’s greater standard deviation.

Looking at the feature importance of the three polarization properties (Fig. 11), we see that
the main discriminating one is Δ, which is the one that reduces accuracy the most through ran-
dom removal, and its values are between three and four times those of R and D. This correlates
with the distributions depicted in Fig. 9, given that Δ boxplots do not overlap at all below 650 nm
and R andD have some amount of overlap at all wavelengths. Only from 650 nm and above does
the importance of Δ start to decrease and the classifiers look at R and D as well, but their con-
tribution is not enough to keep the accuracy constant.

Two additional models were trained: one that contained all features (KNN-All) and another
composed specifically of Δðλ ¼ 450; 500; and 550 nmÞ (KNN-SF). The rationale behind adding
said models was to see if multiple-wavelength data can outperform using only one λ. In the case
of KNN-SF, we selected N ¼ 3 features for the training times to be comparable with the single-
wavelength models. Their results are compared with the single-wavelength models in Table 6.
Overall, the accuracy of KNN-All outperformed all other models, reaching a 95% accuracy for
the test dataset, which is an indicator that multi-wavelength setups provide more clinically
relevant information than single-wavelength ones.

To choose the parameters for KNN-SF, we evaluated the average accuracy decrease through
random permutations with KNN-ALL (Fig. 12). Similar to the single-wavelength models, depo-
larization is the principal parameter that contributes to the accuracy; however, its impact is

Fig. 10 Average accuracy (solid lines) and its standard deviation (shaded areas) after sixfold
cross-validation for the train (red) and test (green) datasets. The data depicted in this image
correspond to single-wavelength models.

(a) (b)

Fig. 11 Average accuracy decrease through feature permutation of depolarization (blue), retard-
ance (orange), and diattenuation (green) for the train (a) and test (b) datasets for the single-
wavelength models. In this case, each model uses only the features (Δ, R, and D) for each
wavelength at a time, without any additional information. The standard deviation is included as
shaded areas around each line, but at the scale of the graphs, it is not visible.
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four times less than for the single-wavelength models. This indicates that having multispectral
information makes the classifiers more robust to noisy features. The importance of the wave-
lengths still decreases with the wavelength increment, similar to what was observed for the
single-wavelength models, both for the test and train datasets. An exception to this trend is that
the results at 550 nm seem to contribute more to the accuracy than those at 500 nm.

SFFS and SBFS were also introduced in this step to see if the best-selected features by SFS
were comparable to the random permutation models. In all folds, SFFS and SBFS provided the
same results. Specifically, Δð450 nmÞ was the best feature for all folds, corresponding to what
random permutations indicate for KNN-All. The second-best feature was Δð500 nmÞ for the first
five folds, whereas for the last one (specimen 1 for testing), the second-best feature was
Δð550 nmÞ. Finally, the third best feature selected varied: Δð550 nmÞ for the first four folds,
and Δð590 nmÞ for the last two. On average, the best features were the ones chosen for
KNN-SF, namely, Δðλ ¼ 450; 500; and 550 nmÞ, but interestingly, doing random permutations
or SFS interchanges the second and third best features, which, if we had chosen N ¼ 2, would
give rise to two different datasets for classification. However, evaluating 10 random permutations
on KNN-All with sixfold cross-validation implied training for almost 2 h per fold because each
fold fits 10 models that consider hundreds of thousands of data points. On the contrary, SFFS
starts with only one feature and builds up to N, whereas SBFS starts with all of them (18) and
removes features up until N. This gave training times of ∼3 min for SFFS and 30 mins for SBFS
(per fold), which makes SFS much more manageable even if not all possible data combinations
are tested with these methods.

The choice of optimized features leads to over a 6% increase in accuracy as obtained with
KNN-SF with respect to all single-wavelength models and only 1% less than with KNN-All
(Table 6), without increasing the computation time, which was less than a minute per fold.
Overall, selecting key multispectral features appears to be the best way to obtain good classi-
fication results.

3.4 Analysis by Brain Region
The results provided in this subsection are grouped according to the areas described in Table 2.
To make a complete description of each anatomic region of the brain, the labeled regions iden-
tified within them (Fig. 2) are also discussed in this section. The pineal region and basal ganglia
images [see Figs. 2(n) and 2(h), respectively] are contained within the hemisphere’s discussion
(Sec. 3.4.1) due to the labeling difficulties discussed in Sec. 3.2. GM andWM are still included in
this section, specifically referring to each anatomical region. The only exception is the pineal
region, where the GM and WM labeling was excluded due to it being a mixture of hemispherical
and cerebellar GM and WM.

3.4.1 Brain hemisphere, optic chiasm, basal ganglia, and claustrum

A total of 11 of the 20 captured regions belonged to brain hemispheres and adjacent areas
[Figs. 2(i)–2(m) and 2(o)–2(t)]. Between the left and right hemispheres, a total of 10 unique

(a) (b)

Fig. 12 Average accuracy decrease through feature permutation of depolarization (blue),
retardance (orange), and diattenuation (green) for the train (a) and test (b) datasets for the
all-wavelengths model. In this case, the model uses all available features (Δ, R, and D) at all wave-
lengths. The standard deviation is included as shaded areas around each line, but at the scale of
the graphs, it is not visible.
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areas were identified. In the lateral views, GM, WM, and blood vessels were easily detectable,
along with some areas of the basal ganglia and optic chiasm. On the hemisphere sections, only
cortical GM and subcortical WM were visible, but additional basal ganglia and claustrum data
from the frontal basal ganglia image [Fig. 2(h)] are included here, too. Both Δ and R increase
with increasing wavelength for all tissue types (Fig. 13). As indicated previously, Δ values for
GM and WM form almost a continuum of values of depolarization with increasing wavelength.
Vessels have polarimetric optical properties that overlap GM and WM significantly, which is
consistent with their positioning over both types of hemispheric matter and their reduced thick-
ness. The remaining regions also have polarimetric values ranging between those of GM and
WM. As expected, the Δ values of the basal ganglia are closer to GM’s values, whereas those
of the optic chiasm lie nearer to WM’s values.

Hemispheric R shows values between 0 rad and π rad, but the bulk of R data is between
0 and 1 rad, specifically for lower wavelengths. In this case, the width of the inter-quartile ranges
increases for longer wavelengths for most labels, especially for those of the claustrum and GM,
which exhibit a retardance almost two times stronger at 680 nm than its value at 450 nm.
Structures such as vessels, the basal ganglia, and the claustrum have retardance values closer to
those of GM, whereas the optic chiasm retardance is even greater than those of WM.

As mentioned, diattenuation for hemispheric tissue is very low, with most values being
under 0.05. However, we detected a slight decrease of D with increasing wavelength for most
tissue types, but the overlap between categories makes D the least discriminant feature of
the three.

3.4.2 Cerebellum

Complete Mueller measurements of six cerebellar areas were captured and labeled with six dis-
tinct tags [Figs. 2(b)–2(g)]. Some of the lateral and medial views were taken with the cerebellum
still connected to the brainstem [Figs. 2(d), 2(f), and 2(g)]; therefore, some images also included
labeled sections from the area postrema, brainstem nuclei, corticospinal tracts, and cerebellar
peduncle. Only cerebellar GM, WM, and the cerebellar peduncle are included in this section;
the remaining areas in the cerebellar images are considered in Sec. 3.4.3. The data of the cer-
ebellar peduncle at 500 nm were not considered in this analysis due to unintentional movement
artifacts, which prevented the co-registration of Mueller images. Specifically (Fig. 14), GM and
WM have values of Δ, R, and D in the same ranges and with the same behavior as that already
discussed for the hemispheres.

Fig. 13 Depolarization Δ, retardance R, and diattenuation D for the labeled regions on the hemi-
spheres. The first two colors correspond to GM and WM, respectively. The remaining data are
sorted by ascending the 75th percentile of retardance at 680 nm from left to right. The average
of each distribution is indicated as a white scatter point. Outliers are not shown.
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The cerebellar peduncle has Δ values superior to those of WM, even though it is a WM
structure itself, and its boxplots have a smaller interquartile range than GM or WM, possibly
due to the reduced number of labeled pixels by comparison. Retardance-wise, all three types of
matter provided very similar results, with the cerebellar peduncle again having values slightly
above GM and WM. Finally, the calculated diattenuation was also low in cerebellar matter
(D < 0.04). No significant behavior was observed for any of the labels in the D images either.

Images of the cerebellar regions behaved as discussed in Sec. 3 with some exceptions on R.
We expected the linear retardance to enhance WM structures as it did in the brain hemispheres
(Fig. 7), and at those locations where Δ indicated WM presence, R values were also significantly
high. However, WM structures were not as well defined in cerebellar R values as for the hemi-
spheric WM (Fig. 15). In particular at 430 nm, only the biggest stem of the arbor vitae is high-
lighted by R, whereas its structure is perfectly delineated by Δ. The contrary happens as the
wavelength increases, with a better delineation of retarding tissue, but at the same time, the
increased amount of depolarization results in noisier images.

3.4.3 Brainstem

As mentioned in Sec. 3.4.2, some of these images [Figs. 2(d) and 2(f)] contained brainstem-
related structures, such as the trochlear nerve, area postrema, brainstem nuclei, pineal gland,
and superior and inferior colliculi. The latter two were also identified in multiple medial views
[Figs. 2(k), 2(l), and 2(n)], as well as the third ventricle, present in Fig. 2(s). Due to the afore-
mentioned labeling difficulties, only GM and WM from the brainstem section image [Fig. 2(a)]
are discussed in this section.

The section image [Fig. 2(a)] was specifically interesting due to its complex combination of
GM and WM, which is clearly reflected in the fact that GM and WM are more similar to each
other than for the hemispheres or cerebellum in all three magnitudes (Fig. 16). Periacqueductal
GM was independently labeled due to its localization and structure, and its depolarization and
diattenuation are highly similar to regular brainstem GM, with only its retardance being slightly
less than for GM. Specifically, the Δ values of the area postrema, pineal gland, third ventricle,

Fig. 14 Depolarization Δ, retardance R, and diattenuation D for the labeled regions on the cer-
ebella. The first two colors correspond to GM andWM, respectively. The remaining data are sorted
by ascending the 75th percentile of retardance at 680 nm from left to right. The data of the cer-
ebellar peduncle at 500 nm were removed due to sample movement artifacts. The average of each
distribution is indicated as a white scatter point. Outliers are not shown.
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and superior colliculus are closer to GM’s values, but their lower limits are inferior, whereas the
inferior colliculus matches GM in Δ. By contrast, the Δ values of the trochlear nerve, brainstem
nuclei, and corticospinal tracts lie nearer to WM values. Retardance-wise, the periaqueductal GM
lies in between both WM structures (trochlear nerve, corticospinal tracts) and most GM struc-
tures (area postrema, pineal gland, third ventricle, superior colliculus). However, brainstem GM
andWM have wider interquartile ranges than the other brainstem structures, which were easier to
delimit when labeling. Finally, D does continue the aforementioned tendency for the other tissue
types, with very low values and little to no differentiation between tissues.

3.5 Optical Axis of Retardance and White Matter Tracts
The optical axis of linear retardance (θ) was calculated for all Mueller matrices. A representative
image is depicted in Fig. 17. Discerning between GM and WM is not trivial by looking at one
single wavelength because there are slight variations throughout the whole specimen that make
delineation harder than using Δ or R. In Fig. 17(a), an area containing GM and WM was marked

(a)

(b)

Fig. 15 Depolarization (a) and retardance (b) of a medial view of one cerebellar hemisphere,
at 450, 590, and 680 nm. The color representation is chosen to coincide with Fig. 7.

Fig. 16 Depolarization Δ, retardance R, and diattenuation D for the labels in the brainstem, pineal
region, and frontal basal ganglia areas. The first two colors correspond to GM and WM, respec-
tively. The remaining data are sorted by ascending the 75th percentile of retardance at 680 nm
from left to right. The data of the corticospinal tracts at 500 nm were removed due to sample
movement artifacts. The average of each distribution is indicated as a white scatter point.
Outliers are not shown.
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as a region of interest to evaluate at all wavelengths. We observed that the frontier between GM
andWM (as viewed inΔ) moves slightly when the wavelength increases, revealing more detail of
the WM tracts at longer wavelengths. An example of this phenomenon is indicated by the green
arrow in Fig. 17. As for the other parameters, surface structures are highlighted for sub-550 nm
wavelengths, especially the interface among some major gyri, some vessels, and overall regions
with similar properties. Beyond 550 nm, the signal starts to deteriorate due to a decrease in the
signal-to-noise ratio, combined with the blurring effects produced by longer optical path lengths
at greater wavelengths, making it harder to discern specific characteristics.

4 Discussion
This work focuses on reporting the polarization properties of healthy brain tissue when obtained
through multispectral MMI in animal samples.

The choice of whole, fresh brain specimens was based on two main factors. First, we
assumed that the comparison between our results and the findings on fixed tissue reported in
the literature remains valid. This assumption is supported by recent evidence demonstrating the
effect that fixation has in Mueller-derived parameters of brain tissue, with Gros et al.36 finding a
slight depolarization increase for GM and a 27% to 28% retardance decrease in GM and WM.
Second, we aimed to gather a realistic dataset in a non-invasive manner before applying this
technology to an in vivo scenario. Although formalin effects have been quantified as mentioned
above and can be taken into account in the discussion, we hypothesized that the texture and the
mechanical properties of fresh tissue without fixing agents are closer to those seen during a
potential in vivo acquisition. For the purpose of acquiring a rich and heterogeneous dataset, views
from multiple specimen sections (comparable to those of a neurosurgical procedure) and different
angles were considered in this work.

The proposed system can be easily replicated due to the wide availability of the optical
elements. Reflectance systems often imply the need for an oblique angle detector, which in our
setup was ∼7 deg. Although single backscattering from reciprocal media yields reciprocal

Fig. 17 Orientation of the optical axis of linear retardance (θ) for the left hemisphere depicted in
Fig. 7: (a) reference image at 450 nm, (b)–(g) optical axis orientation at the six wavelengths for the
area marked by the green square in panel (a). The green arrow marks show that the frontier
between GM and WM moves from right to left with the different wavelengths. All images share
the same color scale.
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Mueller matrices with only 10 independent parameters, the introduction of an oblique angle can
break these symmetries. Additional factors such as multiple scattering, non-uniform samples, and
instrumental noise and accuracy can further contribute to the loss of symmetry. However, an
inspection of our obtained Mueller matrices revealed predominantly diagonal (depolarizing)
matrices, suggesting that the off-diagonal elements, although influenced by the aforementioned
phenomena, remain relatively small. Nevertheless, it is important to consider that depolarization
tends to be the most accurately derived parameter in such scenarios.

The measured Mueller matrices of brain samples had an almost-diagonal composition; thus,
the polarimetric indices and all decomposition methods point to the elevated depolarization
power of the samples, a characteristic frequently encountered in biological tissues. Analysis
of the polarimetric indices indicates significant differences between grey and white matter, with
the latter exhibiting a near-complete loss of polarimetric purity, consistent with its denser com-
position and lower absorption. The progressive loss of polarimetric purity as the wavelength
increases is an expected behavior due to the increment in multiple scattering. Regarding the
anisotropic properties, the samples predominantly displayed linear anisotropy, with minimal
to no circular anisotropy detected. The absence of significant circular anisotropy suggests a
limited net contribution of chiral structures to the overall polarization properties and a polari-
metric predominance of structural features with preferential orientations, such as white matter
tracts. The absence of significant circular anisotropy was further corroborated by the components
derived from the forward polar decomposition. In all cases, linear retardance was one order of
magnitude higher than circular retardance. Specifically, linear retardance (both respect to the
horizontal and 45 deg axes) had averages ranging from 0.2 rad at 450 nm to 1.0 rad at
680 nm, approximately, and the average circular retardance stayed under 0.2 at all wavelengths.
In the case of the overall low diattenuation, circular diattenuation was approximately half or less
of the value of its linear counterparts.

The multispectral analysis setting revealed that the main discriminating factor between GM
and WM was depolarization (Δ) for all tissue types, with WM having values close to 1 for all
wavelengths and GM values increasing steadily from 450 to 680 nm. This previously reported
GM–WM distinction through Δ24,25,36 was corroborated by our analysis of this phenomenon at
six wavelengths, with the differences between matter types being higher for shorter wavelengths.
A possible explanation for having more distinguishable distributions at 450 nm could be that the
dominating scattering of WM over GM is also enhanced by the anisotropy of the tissue, i.e., the
fiber-like organization of WM, as suggested by Alali et al.23 Therefore, the Δ increment of GM
and WM at longer wavelengths could be caused by the scattering and birefringence behavior of
each tissue type evolving at different rates, thus giving different separability of the Δ distribu-
tions. The absorption and scattering coefficients of GM and WM have been extensively analyzed
by Shapey et al.73 In their study, GM and WM had similar absorption profiles that generally
decrease between 400 and 600 nm, with the only exception to that trend being the hemoglobin
peaks around 550 nm. However, the scattering coefficient of GM decreased, whereas, for WM, it
initially increased and then decreased in the same wavelength range, which could be the origin of
the different rate of change that we observed in the depolarization. Another possibility is that, as
absorption is lower at 680 nm than at 450 nm,2,73 there would be two regimes of Δ: the highly
scattering, highly absorbent regime at shorter wavelengths and the low scattering, low absorbent
regime at longer wavelengths. The latter would therefore showcase longer optical path lengths
that result in more multiple-scattering events that would randomize the resulting Δ distributions,
even if, overall, the scattering probability decreases.2,73 At the same time, shallower penetration
lengths will make polarization preservation easier for shorter wavelengths. All of these factors
(absorption, scattering, and birefringence) might therefore play a role in showing more separabil-
ity between GM and WM for shorter than for longer wavelengths, and further research would
provide more insight into this field to model the exact causes of depolarization in brain tissue.

In all distributions (Figs. 9, 13, 14, and 16), there was a dip in depolarization at 550 nm.
Multiple studies24–26 attribute this change in Δ to the absorption peaks of the hemoglobin, which
is known to be one of the main chromophores in tissue.2 There are other additional chromophores
in the brain, such as eumelanin and lipofuscin, which do not present any characteristic absorption
or scattering signal at this wavelength.74 The sensitivity of Δ to the hemoglobin is also supported
by our experiments by the fact that the vessels are areas where the Δ change with the wavelength
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at 550 nm is most visible, followed by GM structures (Fig. 13). Specifically, the median value of
Δ at 550 nm for GM is 9% lower than the tendency marked by the values at 500 and 590 nm,
whereas, for WM, the dip represents a 2% decrease. Combining the fall in Δ with the knowledge
that the cerebral blood volume (CBV) is ð3� 0.4Þ ml∕100 g in GM and ð1.7� 0.4Þ ml∕100 g

in WM75 and that temporal variation in detected CBV could correspond to variation in perfusion,
multispectral MMI could be a highly sensitive method to potentially determine not only the blood
volume but also the oxygenation level in the brain through the addition of hemoglobin-specific
wavelength filters. Nonetheless, it is worth noting that most multi-wavelength studies that
focused on calculating tissue absorption considered very few chromophores, mostly due to the
limited number of available reference spectra. Therefore, more in-depth studies of brain
chromophores in the visible range are encouraged to have a complete description of their
influence in Δ.

Still, depolarization was the most helpful parameter for classifying GM and WM. We tested
eight K-nearest neighbors classification models based on different single-wavelength or multi-
wavelength features. All of them focused more on Δ than on any other parameter, especially at
shorter wavelengths. In addition, using only depolarization data as selected by SFS or random
permutations was almost as good as using all available features for classification, as long as
multi-wavelength information was kept for training. This indicates that multispectral/hyperspec-
tral setups can provide better results than single-wavelength ones even with traditional classi-
fication methods. It is worth noting that Δ was the only feature apparently influenced by tissue
absorption, which again highlights the necessity for multimodal systems that provide comple-
mentary structural and compositional information.

In a similar experiment to what is explored in this work, Bonaventura et al.33 analyzed in
depth the change in retardance with the wavelength (405 to 632 nm) for three brain regions
(corticospinal tracts, cerebellum, and optic chiasm). It is worth noting that, although for our
analysis the retardance increased with the wavelength regardless of tissue type, thickness, or
structure, their analysis showcased different results for each tissue type. Specifically, their results
for the cerebellum differ from ours in that retardance decreases on average. There are multiple
reasons that these differences might occur. In the aforementioned study, fixed ferret brains were
used, whereas this work considers fresh lamb specimens. Aside from the anatomical differences
that come with using different animals, fixed brain tissue can showcase almost a third less retard-
ance than fresh tissue,36 as previously indicated, which could be the cause of the retardance
differences between both publications. However, the effect of formalin in terms of the wavelength
has yet to be explored. In addition, their setup consists of a modified microscope, which should
provide higher spatial resolution than our wide-field lens. This implies that, although their micro-
scope can resolve small spatial features, our system would be averaging some GM/WM struc-
tures if they are too small and interlaced. For the optic chiasm, their experiments report an
increase in the retardance, which is slightly different between the left and right lobes, with
average values around 0.3 rad. In our case, the optic chiasm was visible in a side view of one
right hemisphere (Fig. 2), and its average values increased from 0.8 to over 1 rad (Fig. 13). Even
though both our and their results show an increase in retardance, the average differences and their
variances make comparisons difficult when considering all of the mentioned factors that make
both experiments differ. Finally, for the corticospinal tracts, Bonaventura et al. reported no abso-
lute increase between 405 and 442 nm, with an average of ∼0.7 rad, which is within the inter-
quartile range of the values that we calculated at 450 nm for the same tissue type (Fig. 16). Thus,
an interesting line of future research would be to measure the same samples and reproduce the
experiments to see how both setups compare and complement each other, as well as to potentially
find a bridge between the micrometric scale given by a high-resolution polarimetric microscope
and the wide-field real-time applicability of a macroscopic setup.

When considering the bulk of WM and GM measured in all samples and sample types, all
parameters had distinct distributions at all wavelengths. However, those distributions are less
separated when focusing on individual labels (Figs. 13, 14, and 16). There are many consider-
ations to evaluate for this comparison that could be playing a role in the separability, such as the
number of pixels contemplated on each label, the fiber orientations, and the local chemical or
anatomical composition. However, the reduced separability is still an indicator of how the polari-
metric optical properties change according to the difference between GM and WM types.
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For example, the optic chiasm and the trochlear nerve both fall into the WM category. Still, their
different structure affects specifically their retardance (Figs. 13 and 16), with the optic chiasm
having a higher average R at all wavelengths, suggesting a more anisotropically organized struc-
ture than the trochlear nerve. This finding resembles that of diffusion tensor tractography.76 The
same rationale could be applied to all labels, with R being a marker of tissue anisotropy.
Nonetheless, the longer the wavelength is, the less polarized light returns to the sensor, which
indicates that retardance values could be a mixture of multiple local features and not single GM
or WM structures because only the upper-most tissue layers preserve the initial polarization. The
results at longer wavelengths are especially affected by the calibration error obtained when
retrieving the PSA and PSG matrices, which for our system were, on average, 6.3% and, spe-
cifically, 5.6% at 650 nm and 4.5% at 680 nm, respectively. Although our findings align well
with the existing literature and anatomical expectations, the observed polarimetric purity below
0.2 for wavelengths over 600 nm combined with the calibration error suggests potential inac-
curacies in the decomposition-derived parameters at these wavelengths. This phenomenon could
explain the observed decrease in classifier accuracy above 600 nm, despite the increased impor-
tance of retardance and diattenuation for classification performance. Further research on this
topic could help determine the real penetration depth of polarized light and the depth range that
preserves the polarization properties.

In general, the size of the structure to be observed should be considered when choosing a
wavelength. The shorter penetration of the 450 nm light, combined with the higher anisotropic
scattering signal of WM, makes it the ideal wavelength range to visualize small surface structures
such as the thinner branches of the cerebellar’s arbor vitae [Fig. 15(a)]. GM mostly absorbs light
at these wavelengths,73 which is consistent with our results given that there is no significant R or
D and the Δ is at its lowest (Fig. 9), further enhancing the GM–WM contrast. This could also
explain why, at shorter wavelengths, only the thickest parts of cerebellar WM are viewed as
localized spots of retarding matter, as the interlaced GM–WM architecture of the cerebellum,
significantly smaller than the human one, hinders the R separability. The longer path length at
680 nm causes light to pass through more of the cerebellar WM, thus outlining its retardance
better. This phenomenon represents a fundamental characteristic of multispectral MMI, given
that there is a trade-off between detail (Δ, short wavelengths, superficial) and structural infor-
mation (R, long wavelengths, sub-superficial). The size of the different features also affects the
separability of the distributions. It is known that the penetration depth of light at 450 nm for
human brains is between 0.1 and 0.5 mm and between 1 and 2 mm for 650 nm and that
GM can have twice as much as WM inside those ranges.77,78 In addition, light penetration is
not downward-facing, but it spreads horizontally, too. Therefore, even considering animal sam-
ples, we can assume that features in the sub-mm range are going to be blurred with the neighbor-
ing and underlying tissue, which will affect the separability of all distributions, especially those
with a dimmer signal (R and D) and at the longest wavelengths.

The orientation of the optical axis of retardance (θ) has also been addressed by different
research groups and reported to be a non-invasive option to visualize WM tracts.24–27,33,41

Our multispectral analysis revealed a progression in the orientation of WM tracts and their differ-
entiation with GM, in which each wavelength plays a role in the pseudo-tomographic assessment
of θ. The anatomical explanation of this phenomenon resides in the different orientations of the
WM tracts in the subcortical space as the association, projection, and commissural fibers are
often merging, mixing, and/or running in different directions.76 The observed orientation changes
with the increasing wavelength could be due to not only the observation of deeper layers inside
the tissue but also the previously mentioned blurring due to adjacent structures. In a recent work
in which Mueller imaging was combined with structured light, the authors reported the same
effect32 of the delineation of GM and WM being improved with increasing the spatial frequency
attributed in this case to the enhanced penetration. Bonaventura et al.33 also proposed that longer
wavelengths are better for observing the micro-structure due to the increased penetration depth.
The same authors expanded on this topic in their recent article41 in which, for shorter wave-
lengths, only superficial features were visible, but the longer ones provide averaged values over
thicker tissue sections. Those experiments are consistent with our results and the enhanced spatial
resolution and less noisy data that we obtained for shorter wavelengths.
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Diattenuation did not provide significant information regarding any of the analyzed brain
structures, at any of the wavelengths. However, an emerging area of research79,80 focuses onD as
a marker for tissue homogeneity, fiber compactness, fiber size, and myelin sheath thickness.
It has also been recently shown that D can be an indicator of fiber inclination.41 All of these
experiments were conducted with polarization-sensitive microscopes, so it is possible that our
reflectance macroscopic setup is structurally or optically inadequate to retrieve the type of detail
needed to decouple the already dim diattenuation from the heavily depolarizing environment of
bulk samples. Nonetheless, further research is needed to evaluate if shorter wavelengths can be
used to retrieve D as a useful marker in neuroimaging.

5 Conclusion
As Mueller matrix imaging gains importance in clinical settings, there is a growing need for
studies to establish the polarimetric behavior of all types of tissue in multiple environments.
To address this, we applied multispectral Mueller matrix imaging to animal brain specimens,
aiming to document and describe the polarimetric properties of healthy brain tissue. Our primary
focus involved imaging, labeling, and determining depolarization, retardance, and diattenuation
at six different wavelengths and using them for tissue classification.

This experiment highlights the critical role of the wavelength dependency of the polarization
properties, given that high-resolution depolarization imaging can be achieved at short wave-
lengths, whereas longer ones are better for the analysis of tissue anisotropy through retardance.
This also means that the change in penetration length with the wavelength, given by the optical
properties of the tissue, allows for the visualization of structures and their orientation at different
depths inside the tissue. In the brain, both depolarization and retardance play a major role in the
differentiation of WM and GM. This effect was proven by training multiple classifiers and
observing how much the results change or improve by considering specific wavelengths or their
combination. Overall, multi-wavelength models performed better than single-wavelength ones.
The orientation of the observed fibrous-like structures also changes slightly with depth; therefore,
the choice of wavelength should be carefully considered, especially if the application at hand
aims to image surface or sub-surface phenomena.
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