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Abstract. The challenges in today’s medicine are progressively more related to the application
of artificial intelligence and supervised learning techniques. Optical coherence tomography
(OCT) is a noninvasive imaging technology used to obtain high-resolution cross-sectional
images of the retina. The layers within the retina can be differentiated and retinal thickness can
be measured to facilitate early detection and diagnosis of retinal diseases and conditions. This
research paper is aimed at exploring different possibilities of applying deep learning, specifically
convolutional neural networks in retinal diseases. During the research, several different archi-
tectures—AlexNet, VGG, Inception, and residual network, were evaluated, and the convolu-
tional neural network that proved to be the most successful in the classification was based
on the Inception architecture. Hyperparameter tuning was applied as the main method to find
the most optimal solution. The key contributions of this research refer to the analysis of different
architectures that can be applied in the classification of retinal diseases based on OCT images,
as well as the evaluation of the test set obtained by comparing different models with different
hyperparameters. This research yielded the best results obtained with Inception1, when training
by means of the root mean square propagation optimizer with a batch size of 32, learning rate
of 1e°, momentum of 0.99, and .2 regularization rate of 0.001. This model achieved an accu-
racy of 0.95528. In the conclusion of the paper, the advantages of the proposed and implemented
solutions were discussed, and a proposal for further improvements was proposed. © The Authors.
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1 Introduction

Retinal diseases range from fairly common and easily treatable to quite rare and complex.' Early
identification and treatment are crucial for preventing vision impairment. Diabetic macular
edema (DME) and choroidal neovascularization (CNV) are among the most common blinding
retinal diseases.” These conditions require urgent referral to an ophthalmologist; if treatment is
delayed, there is an increased risk of complications that cause irreversible vision impairment.
Drusen, which are lipid deposits present in the dry form of macular degeneration, is a less urgent
condition.’

Optical coherence tomography (OCT) is a noninvasive imaging technology used to obtain
high-resolution cross-sectional images of the retina.>* The layers within the retina can be differ-
entiated and retinal thickness can be measured to facilitate early detection and diagnosis of
retinal diseases and conditions.

Machine learning has been used for years in the medical field for aiding medical profession-
als in diagnosing and classifying diseases.* To obtain the most optimal solution the problem
solved within the research refers to dataset preparation of more than 77,000 images based
on the available source,’ and the realization of different models based on four most important
architectures—AlexNet, VGG, Inception, residual network (ResNet), and the tuning of
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hyperparameters. The research is aimed at illustrating a concrete application of convolutional
neural networks (CNNs) on classifying OCT images into four categories, namely CNV, DME,
drusen, and normal. The main research contributions refer to the analysis of different architec-
tures that can be applied in the classification of retinal diseases based on OCT images, as well as
the evaluation of the test set obtained by comparing 64 models with different hyperparameters.

The second section gives a brief introduction of the covered retinal diseases and examines the
existing solutions in this field. The dataset used to develop the solution is also mentioned in this
section. Section 3 describes the main concepts behind CNNs while covering the most popular
CNN network architectures. Section 4 describes the development of the system, which includes
dataset preprocessing, network architectures, hyperparameter tuning, training, and evaluation
of the models. Section 5 presents results for each family of networks and the overall best-
performing model. The conclusion outlines the contribution of this paper and provides some
guidelines for future work.

2 Problem Description

This section represents a survey of the nature of the problem in loose medical terms.
Additionally, it examines the related work and provides information about the dataset utilized
in developing the solution.

The macular edema (ME) occurs when there is abnormal leakage and accumulation of fluid
in the macula from damaged blood vessels in the nearby retina.” The DME is caused by a com-
plication of diabetes called diabetic retinopathy. It is the most common diabetic eye disease and
the leading cause of irreversible blindness in working-age Americans.’

Age-related macular degeneration (AMD) is an eye disease that damages the retina, causing
vision loss.’> The most common form of AMD is called the dry form. In the early stages, tiny
deposits called drusen begin to appear under the retina. The presence of drusen indicates possible
vision loss in the future, either from slowly progressing atrophy or from rapid new blood vessel
growth. The risk of vision loss is tied to the number of drusen. The more and the bigger drusen
are the likelier vision loss is. Dry AMD can progress to wet AMD, which is more likely to cause
a relatively sudden change in vision resulting in serious vision loss.

The CNV involves the growth of new blood vessels that originate from the choroid, which
is a vessel-containing layer under the retina. The new vessels, unlike normal ones, are leaky and
they allow the fluid from the blood to enter the retina. This fluid distorts the vision and damages
the retina, killing the light-sensing cells, called photoreceptors. The CNV occurs in wet
AMD.

2.1 Related Work

Due to its advancement in recent years, artificial intelligence (Al) has increasingly been applied
in the medical field for tasks such as disease classification. There have been numerous studies
aimed at detecting and classifying retinal diseases.

Kang et al.® developed a deep learning model to detect treatment-requiring retinal vascular
diseases using multimodal imaging. The dataset used included images obtained through retinal
fundus photography, OCT, and fluorescein angiography. Hong et al.” created a hierarchical deep
learning framework for classifying multiple visual impairment diseases using a coarse to fine
approach. The hierarchy was derived from a predefined hierarchical eye disease taxonomy.
The training was carried out using ocular surface and retinal images independently. Perdomo
et al.® implemented a model for classifying three diabetes-related retinal diseases based on
OCT volumes, as well as highlighting relevant scan areas used by the model to classify a specific
disease.

All analyzed studies applied exclusively one developed model based on a specific CNN
architecture, without fine-tuning hyperparameters. Thus, the aim of this research was to evaluate
different models, on different CNN architectures accompanied by fine-tuning. Also, in compari-
son to the analyzed studies in the field of retinal diseases, a larger dataset was used for the given
analysis.
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Though there are other contemporary studies dealing with retinal image analysis, still they
do not classify retinal diseases. For example, Lal et al.” analyzed the adversarial attacks and
defenses on the retinal fundus images for the diabetic retinopathy recognition problem.
Their results obtained on the retinal fundus images, which are prone to adversarial attacks,
represent very promising results.

2.2 Dataset

Large dataset of labeled OCT and chest x-ray images® is a dataset containing thousands of
validated OCT and chest x-ray images. Images are labeled as (disease)—(randomized patient
ID)—(image number by this patient) and split into four directories, such as CNV, DME, drusen,
and normal.

The OCT images were selected from retrospective cohorts of adult patients from the Shiley
Eye Institute of the University of California San Diego, the California Retinal Research
Foundation, Medical Center Ophthalmology Associates, the Shanghai First People’s Hospital,
and Beijing Tongren Eye Center between July 1, 2013, and March 1, 2017. Before training, each
image went through a tiered grading system consisting of multiple layers of trained graders of
increasing expertise for verification and correction of image labels. Each image imported into the
database initially contained a label matching the most recent diagnosis of the patient. The first
tier of graders consisted of undergraduate and medical students who had taken and passed
an OCT interpretation course review. The evaluators consisted of undergraduate and medical
students, four ophthalmologists, and two senior independent retinal specialists.

3 Convolutional Neural Networks

The CNNs are a class of artificial neural networks that are particularly aimed at tasks related to
computer vision. These tasks include image classification, object detection, and object
segmentation.

One of the main advantages of CNNss is that there is no need for hand-engineered features,
which removes the requirement for domain experts when creating networks. The network is
capable of extracting significant features by itself, and therefore, problems in various fields can
be solved by people having no prior knowledge of the subject matter.

CNNs work by assembling patterns of increasing complexity using small and simple patterns
embossed in their filters. They consist of an input layer, several hidden layers, and an output
layer. Hidden layers can be either convolutional, pooling, or fully connected layers.

The convolutional layer is the core building block of a CNN. The layer’s parameters consist
of a set of learnable filters, or kernels, which have a small receptive field but extend through the
full depth of the input volume. During the forward pass, each filter is convolved across the width
and height of the input volume, computing the dot product between the filter entries and the
input, producing a two-dimensional activation map of that filter. As a result, the network learns
filters that activate when it detects some specific type of feature at some spatial position in
the input.

Pooling layers reduce dimensionality, by summarizing features in regions of the feature map
generated by a convolutional layer. All of the neurons in a particular cluster will be combined
into a single neuron in the next layer. The most common types of pooling are max and average.
On the one hand, max pooling takes up the maximum value in the region, whereas, on the other
hand, average pooling takes up the average value of the region.

Fully connected layers refer to layers every neuron of which is connected to every neuron in
the preceding layer. They are usually present in the final layers of a CNN. The flattened matrix
goes through fully connected layers, the last of which contains a number of neurons equal to
the number of classes. These layers are also called dense.

Nonlinear functions allow CNNs to learn more complex functions. When the activation func-
tion is nonlinear, then a two-layer neural network can be proven to be a universal function
approximator. This is known as the universal approximation theorem. If all of the layers are
linear, the entire network is equivalent to a single-layer model.
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Popular functions include Sigmoid, Tanh, rectified linear unit (ReLU), and Leaky ReLU.
ReLU is the most common activation function. It is often preferred because it trains the neural
network several times faster without a significant penalty to generalization accuracy. It is also
less susceptible to the vanishing gradient problem, but it still suffers from saturated neurons.

Hyperparameters are values that are determined prior to training and that greatly influence
performance. In order for the model to optimally solve the given problem hyperparameters
require tuning. Hyperparameters include: model architecture, batch size, learning rate, number
of epochs, activation function (for example: ReLU, Sigmoid, Tanh, Leaky ReL.U, etc.), weight
initialization, and dropout.

3.1 Popular CNN Architectures

ImageNet large scale visual recognition challenge is a famous competition fostering the develop-
ment and benchmarking of state-of-the-art algorithms. The objective is to classify images into
1000 categories. Some of the architectures that have achieved significant results in this com-
petition include AlexNet, VGG, Inception, and ResNet, and they have been used in many kinds
of research for face recognition'® or image recognition,'! also in medical decision systems.'*!?

AlexNet was submitted to the ImageNet competition in 2012. The network achieved a top
five error of 15.3%, >10.8 percentage points lower than that of the runner up. Some of the main
contributions of the AlexNet paper'* include using nonsaturating neurons and an efficient GPU
implementation of the convolution operation, as well as implementing data augmentation and
dropout to address overfitting. Up until AlexNet, the standard for nonlinear activations was either
Sigmoid or Tanh. The benefit of using ReLU is reflected in the fact that it enables the training
process to be accelerated.

Rather than using relatively large receptive fields (AlexNet used 11 X 11), VGG network
uses a small receptive field of 3 X 3 consistently throughout the network.”> The focus was
on creating a deeper model, and to that end other parameters of the architecture were fixed.
A stack of convolutional layers is followed by three fully connected layers. There are several
versions of the architecture, depending on the depth, namely VGG16 and VGGI9.

The Inception network was an important milestone in the development of CNN classifiers.
The hallmark of the Inception network is the Inception module.'® Rather than choosing a specific
filter size, the Inception module simultaneously uses multiple filter sizes at each layer, concat-
enating the results of each convolution to create the output.

Before the appearance of Inception network, creating better models relied mostly on going
bigger and deeper in terms of architecture and number of layers; however, this lead to overfitting
models and increased training time, due to growing number of parameters.

The ResNet'” addresses the problem of accuracy degradation. The ResNets use skip con-
nections, or shortcuts, to jump over some layers. These shortcuts allow networks to be signifi-
cantly deeper than previously, without suffering from decaying accuracy.

The fact that accuracy begins to degrade due to an increase in layers implies difficulties for
multiple nonlinear layers in approximating the identity mapping. With skip connections, if iden-
tity mappings are optimal, the optimizer can drive the weights of the multiple nonlinear layers
toward zero thereby approaching identity mappings.

4 Development of the System

This section will describe the used dataset analysis and preparation. Furthermore, the main chal-
lenges that appeared during implementation will also be outlined, among which are hyperpara-
meter and model architecture choices. The reasoning behind evaluation metric choices is also
explained.

4.1 Dataset Preprocessing

As already pointed out, the dataset is comprised of four subfolders, each representing a different
class: CNV, DME, drusen, and normal, respectively. Initial dataset exploration showed that all
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Table 1 Dataset class distribution.

Class Original size Duplicates Size after
CNV 37,455 5806 31,649
DME 11,598 450 11,148
Drusen 8866 840 8026
Normal 26,465 161 26,304

Table 2 Dataset image dimensions.

Dimensions Samples
512 x 496 34,781
768 x 496 19,553
1536 x 496 7559
1024 x 496 244
384 x 496 16
512x 512 14,974

classes contained duplicates that were removed because they hold no value in terms of training.
Table 1 shows the initial class distribution, number of duplicates in each class, and the final
number of samples.

Image dimensions varied across samples, which presented a problem as traditional CNN's
cannot handle images of varying sizes. Table 2 shows the different image dimensions and the
number of samples for each. This issue was solved by cropping out the center of each image, and
the size of the crop was equal to the smaller dimension of the image. After this step, all of the
images were resized to 128 X 128 pixels.

The dataset was split into train, validation, and test set in the proportion 8:1:1, using
packages for randomly splitting a dataset. Images in the dataset are in the .JPEG format, which
indicate three channels. However, the images are grayscale, meaning each channel carries
the same information, therefore we can reduce them to a single channel. After being reduced
to one channel, images are converted into tensors and normalized.

Standardization (or z-score normalization) is recommended for neural networks. The result-
ing dataset after standardization has features with a mean of 0 and a standard deviation of 1.
These properties help while training, due to the nature of gradient descent. Standardization was
performed by obtaining the mean and standard deviation on the training set, then subtracting the
mean, and subsequently, dividing by the standard deviation for the whole dataset.

4.2 Models

Model architectures were based on the previously mentioned CNNs, namely AlexNet, VGG,
Inception, and ResNet. The weight initialization will be explained first in this section.

Two types of initializations used in this research are Xavier and Kaiming initialization.
Xavier initialization'® sets weights to values chosen from a random uniform distribution that’s

NG . . . . .
bounded between + N where n; is the number of incoming network connections (fan-in)

to the layer, and n;, is the number of outgoing network connections (fan-out). Xavier initial-
ization is the recommended method for VGG networks. Kaiming initialization'® takes into
account the nonlinearity of activation functions, such as ReLLU. This initialization function is
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2
td= /| ———F, 1
° (1+ a?) x fan_in W

where a is the negative slope of the rectifier used after this layer (O for ReLU by default) and
fan_in is the number of input dimensions. There is another mode, fan_out. The difference is that
choosing fan_in preserves the magnitude of the variance of the weights in the forward pass, and
choosing fan_out preserves the magnitudes in the backward pass.

When using the ReLU activation function, it is desirable that the mean of the weights incre-
ments slightly, i.e., layer by layer. This is due to the nature of ReLU: if the input is bigger than
zero, it will return the input, otherwise it returns zero. This means that after ReL.U, all negative
values become zero, thus increasing the mean. With Kaiming initialization, the following two
conditions are fulfilled: the mean increments slowly and the standard deviation is close to 1 in
the feedforward phase.

Two networks were created inspired by the AlexNet architecture. The networks in this family
have a simple structure: stacks of convolutional, ReLU, and max pooling layers, followed by
fully connected linear layers with dropout at the end. Filter sizes are the same as the ones used in
the original AlexNet, the only differences being the number of channels and the overall number
of layers.

Three VGG-inspired architectures were implemented. Two of the architectures have the same
number of convolutional layers, only varying in the number of fully connected layers, whereas
the third one has two additional convolutions. These networks follow a simple sequential pattern
of stacking two or more convolutional and ReLU layers, followed by a max pooling. Filter size is
consistent throughout the network and is 3 X 3. The network ends with fully connected layers.

To create Inception Net inspired models, the Inception module should be created first. The
Inception module implemented in this research comes from the original paper by Szegedy et al.'®
Because the appearance of the reference,'® several other versions of the module have appeared,
featuring various performance improvements.

The input of the Inception module goes through four separate computations, the result of
which is concatenated. These computations include a 1 X 1, 3 X 3, and 5 X 5 convolution, as
well as a max pooling. The 3 X 3 and 5 X 5 convolutions are preceded by 1 X 1 convolutions,
which manipulate the number of channels and reduce dimensionality. A 1 X 1 convolution also
follows the max pooling layer. The max pooling layer is padded so that it can be easily added to
the output, otherwise its dimensions would be smaller and thus incompatible.

The Inception Net consists of input layers, inception layers, and output layers. The input
layers are usually a few convolutional layers, after which come stacks of inception layers with
max pooling in between. The number of output channels for each convolution and max pooling
must be specified for each Inception module, as well as the number of reduction channels for
3% 3 and 5 X 5 convolutions. The output layers consist of average pooling followed by fully
connected layers with dropout.

The main concept behind ResNets is residual blocks. The residual blocks implemented in this
research are bottleneck residual blocks, which mean there are three convolutions in the main
block manipulating the channel number. The channels are first reduced by a 1 X 1 convolution
before performing the 3 X3 convolution, after which they are restored by another 1 X1
convolution.

ResNets start with a few convolutional and batch normalization layers, followed by residual
blocks. Residual blocks are added using the function which specifies the type and number of
residual blocks that will be added. The network ends with an average pooling layer and fully
connected layers with dropout.

4.3 Training

This section will go over the training process, including hyperparameter tuning. The perfor-
mance of a neural network greatly depends on the combination of its architecture, optimizer,
and learning rate, as well as the problem itself.
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4.3.1 Baftch size

Batch size refers to the number of samples utilized in a single iteration of the algorithm. In mini
batch gradient descent (BGD), batch size falls somewhere between 1 [stochastic gradient descent
(SGD)] and the entire dataset (BGD). On the one hand, BGD computes the gradient using
the whole dataset in which case one moves directly towards an optimum solution, either a local
or global. This method is good for convex or relatively smooth error manifolds. However,
calculating the gradient over the whole dataset results in slower model updates and training
speed.

On the other hand, SGD works better for error manifolds that have a lot of local maxima/
minima. The noisier gradient calculated using a single sample can pull the model out of local
minima and advances much faster due to the batch size. However, this approach tends to be quite
noisy, making it hard for the algorithm to settle on an error minimum for the model.

A good balance is achieved when the minibatch size is small enough to avoid some of
the poor local minima, but large enough that it does not avoid the global minima or better-
performing local minima. Mini BGD has higher model update frequency than BGD, which
allows for a more robust convergence thereby avoiding local minima. The batched updates
provide a computationally more efficient process than stochastic gradient descent. Larger mini-
batches increase computational parallelism; however, smaller batch sizes have been shown to
provide improved generalization while having a significantly smaller memory footprint.

Some guidelines regarding batch size selection mention using power of 2 values, as well as
using 32 as a default.’® The paper by Masters and Luschi showed that ImageNet performs best
with batches between 16 and 64 with values 16 and 32 performing best for a wide range of
learning rates.”' Backed by this analysis, this research uses the default batch size of 32, while
experimenting with batch size of 16 where training time complexity allowed.

4.3.2 Epochs

An epoch defines the number of times that the learning algorithm works through the entire train-
ing dataset. This number was originally set to 100, which was enough for most networks to
sufficiently minimize the error. However, VGG-inspired networks needed more epochs to reach
convergence, so the number of epochs was increased to 200, because convergence was not
achieved for a value of 100. Early stopping was implemented to prevent overfitting. Early
stopping is a form of regularization.

4.3.3 Optimizer

There is no single optimizer that is best for a specific network architecture, and the optimal
performance also depends on the learning rate. According to Choi et al.”> more general opti-
mizers never underperform special cases. They found that, when carefully tuned, Adam and
other adaptive algorithms never underperformed momentum or SGD. It should be pointed out
that Adam and root mean square propagation (RMSprop) optimizers were used in this research.

There is a plethora of optimization algorithms for CNNs, out of which RMSprop and Adam
are among the most popular. RMSprop was proposed by Geoffrey Hinton in his course on neural
networks.”> RMSprop is a minibatch version of Rprop.?* The idea behind Rprop, short for resil-
ient backpropagation, is to use only the sign of the derivative when updating the weights. For
each weight, if there was a sign change of the partial derivative of the total error function com-
pared to the last iteration, the update value for that weight is multiplied by a factor #— where
n— < 1. If the last iteration produced the same sign, the update value is multiplied by a factor of
n+ where n+ > 1. The update values are calculated for each weight in the above manner, and
finally each weight is changed by its own update value. However, this approach does not work
well with minibatches, due to frequent updating of the weights based on noisy gradients.

To solve this, RMSprop keeps a moving average of the squared gradient for each weight and
then divides the learning rate by the square root of that average

v, = pog + (1= P)g’, 2)
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W = Wi — 1 Gt (3)

VU

where v, is the moving average of squared gradients, g, is the gradient of the cost function with
respect to the weight, 7 is the learning rate, and f is the moving average parameter (good default
value suggested by Hinton is 0.9).

The PyTorch implementation takes the square root of the gradient average before adding e,
which is a small term added to the denominator to improve numerical stability, making the
effective learning rate n/+/v; + €.

Adam, short for adaptive moment estimation, is an update of the RMSprop optimizer. Adam
is an adaptive learning rate method, meaning it computes individual learning rates for different
parameters. It is straightforward to implement, computationally efficient and has little memory
requirements.”

In addition to storing an exponentially decaying average of past squared gradients, such as
RMSprop, Adam also keeps an exponentially decaying average of past gradients. According to
the source paper, good default settings are a = 0.001, #; = 0.9, #, = 0.999, and £ = 10~ where
a is the learning rate; f; and f, are decay rates; and ¢ is a small rate that prevents division by
zero. We compute the decaying averages of past and past squared gradients m, and v, as follows

m, = pim,_y + (1 = f1)g,. “4)
v, = Poviy + (1= fo)gt, )

where m, and v, are estimates of the first moment (the mean) and the second moment (the uncen-
tered variance) of the gradients. As they are initialized as O vectors, the authors have observed
them to be biased towards zero, especially during the initial timesteps and when the decay rates
are small (f; and f3, are close to 1). This initialization bias can be easily counteracted, resulting in
bias-corrected estimates

= 3 6
R vy
= . 7
V=1 7 (7
These values are then used to update parameters
n N
We=Wig — =M. ®)

v, +e

4.3.4 Learning rate

Learning rate is perhaps the most important hyperparameter.’**® It controls the speed at which a
model learns by controlling the amount of the error that gets applied to the weights. The range of
values to consider when tuning the learning rate is <1 and >107%. However, smaller batch sizes
are usually more suitable to smaller learning rates, due to the noisy estimate of the gradient error.

4.3.5 Weight decay

According to the paper by Loshchilov and Hutter,”® L2 regularization and weight decay are
equivalent only for standard stochastic gradient descent, but this is not the case for adaptive
algorithms such as Adam. Common implementations of these algorithms use L2 regularization,
mistakenly referring to it as weight decay. Therefore, in the remainder of this paper, PyTorch
optimizer weight decay will be referred to as L2 regularization.

In the course of the training process, regularization was added whenever a network showed
tendency to overfit to data. The idea behind L2 regularization is that networks with smaller
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weights are observed to overfit less and generalize better. The regularization rate determines the
trade-off between minimizing the loss function and keeping weights small. L2 regularization
consists in adding to the loss function the sum of the squares of all the weights of the model,
multiplied by the regularization parameter.

4.3.6 Momentum

RMSprop takes momentum as an optional parameter. Momentum is a method that helps accel-
erate optimizers in the relevant direction and dampens oscillations. Momentum adds inertia to
the updates by causing many past updates in one direction to continue in that direction. It works
by adding a fraction y of the update vector of the past time step to the current update vector.

4.3.7 Loss function

When it comes to multiclass classification problems, softmax cross-entropy loss is the recom-
mended loss function. Cross-entropy loss measures the performance of a classification model,
the output of which is a probability between 0 and 1. Moreover, it increases as the predicted
probability diverges from the actual label.

The PyTorch implementation implicitly adds a softmax that normalizes the output layer into
a probability distribution. The loss function is defined as

loss(x, class) = —log (%) = —x]class] + log (Z exp(x[j})). )

4.4 Evaluation

Evaluation metrics quantify the performance of a classifier and also play a crucial role in guiding
further modeling. Metrics are calculated on an unseen test dataset to compare different combi-
nations of models and hyperparameters.

When it comes to multiclass classification, accuracy is not a good choice of a metric, espe-
cially in unbalanced datasets. Accuracy as an evaluation metric makes sense only if the class
labels are uniformly distributed. As previously mentioned, the dataset used in this research is
unbalanced, which makes the choice of evaluation metric an important one.

In this case a confusion-matrix is a good technique to summarize the performance of a clas-
sification algorithm. A confusion-matrix C is a square matrix where C;; indicates the number
of instances, which are known to belong to class i (true label), but were classified as class j
(predicted label).

Other precision metrics that work well for unbalanced datasets are precision, recall, and
F-measure. Precision summarizes the fraction of examples assigned the positive class that belong
to the positive class

True positive

Precision = (10)

True positive + False positive

Recall summarizes how well the positive class was predicted and is the same calculation as
sensitivity

Recall — True positive

(1)

True positive + False negative ’

Precision and recall can be combined into a single score that seeks to balance both concerns,
called the F-score or the F-measure. It is a popular metric for imbalanced classification
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F 2 X Precision X Recall (12)
-measure = .
4 Precision + Recall

Precision, recall, and F-measure are calculated per class and then averaged in one of two
ways: micro and macro. A microaverage aggregates the contributions of all classes to compute
the average metric, whereas a macroaverage computes the metric for each class independently
and then takes the average. Macroaveraging has been selected in this paper because it gives equal
importance to each class, whereas microaverage assigns equal importance to each sample, thus
preferring the majority class.

Another useful metric is ROC AUC score, which stands for area under the receiver
operating characteristic curve. A ROC curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier system as its discrimination threshold is varied. The ROC curve is
created by plotting the true positive rate against the false positive rate at various threshold
settings.

The ROC curve is applicable to binary classification, to apply it to multiclass classification
we must choose either one-vs-rest or one-vs-one mode. One-vs-rest computes the AUC of each
class against the rest. This mode is sensitive to class imbalance even when macro-averaging.
One-vs-one computes the average AUC of all possible pairwise combinations of classes and
is insensitive to class imbalance when using macroaveraging, which makes it the better choice
for this problem.

5 Experimental Results

This section will outline the findings and resulting metrics for each family of networks
separately. The best-performing instances from each class will be compared to determine the
advantages/disadvantages of each. The final model will be described in this section as well.

Every model has a unique name based on the architecture, serial number, optimizer, batch
size, learning rate, momentum (relevant only when using RMSprop), and L2 regularization rate.
For example, model AlexNetl_Adam_16_1r0.001_wd0.001 is a model inspired by the AlexNet
architecture, trained using Adam with a batch size of 16, learning rate of 0.001 and L2
regularization rate of 0.001.

There are two models for each combination of network architecture and hyperparameters.
The first one is achieved at the lowest validation loss, whereas the second one is achieved at the
end of training process. The better of the two is included in the final assessment.

5.1 AlexNet

Unsurprisingly, networks belonging to this family were among the worst performing models, but
they are simple and fast to train, which allowed for a large number of different hyperparameter
combinations to be tested.

Figure 1 demonstrates the advantage of using momentum with RMSprop. The momentum
factor was set to 0.99, which is a standard value. AlexNet2 converged significantly faster with
momentum than without.

From Fig. 2, we can conclude that AlexNet2, the deeper variation of the network, was able to
learn and reach convergence faster than AlexNetl for the same values of hyperparameters.
Figure 3 compare train losses for AlexNetl and AlexNet2 with batch sizes 16 and 32. For both
networks, it can be concluded that a batch size of 32 achieves better results.

From Fig. 4, it can be concluded that both RMSprop and Adam benefited from smaller learn-
ing rates. Table 3 shows combinations of model architectures and hyperparameters, and Table 4
displays the achieved results for the tested models. Only models that were able to converge are
listed. Both networks were unable to converge when trained with RMSprop with learning rate
0.0001, as well as when trained with Adam with a learning rate 0.01.

It can be concluded from this table that the best performing model on the test set,
based on every metric, is AlexNetl, trained using Adam with a learning rate of 0.0001 and
a L2 regularization rate of 0.001. It achieved a precision of 0.891, recall of 0.893, and
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Fig. 1 Train loss comparison for AlexNet2 RMSprop_32_Irie-5_wd0.001 with and without
momentum.
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Fig. 2 Train loss comparison for AlexNetl and AlexNet2—RMSprop_32_Ir1e-
06_m0.99_wd0.001 (left) and Adam_32_Ir0.001_wd0.001 (right).
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Fig. 3 Train loss comparison for different batch sizes—AlexNet1 RMSprop_Irie-
05_m0.99_wd0.001 (left) and AlexNet2 RMSprop_Irie-05_m0.99_wd0.001 (right).

an F-score of 0.891. This model is followed closely by AlexNet2 trained with the same
hyperparameters.

Based on the confusion matrix shown in Fig. 5, it can be observed that the network has the
worst performance classifying drusen, which is most likely due to the fact that drusen is the
minority class in the dataset and thus the network saw this class the least.
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Fig. 4 Train loss comparison for different learning rates—AlexNet2 RMSprop_32_
m0.99_wd0.001.

Table 3 Hyperparameters in the tested models based on the AlexNet architecture.

Batch Learning Weight
Model Architecture Optimizer size rate decay Momentum

AlexNet1_Adam_32_ AlexNet1 Adam 32 0.0001 0.001
1r0.0001_wd0.001

AlexNet2_Adam_32_ AlexNet2 Adam 32 0.0001 0.001
[r0.0001_wd0.001

AlexNet2_RMSprop_32_ AlexNet2 RMSprop 32 1.00E-06 0.001 0.99
Ir1e-06_m0.99_wd0.001

AlexNet1_RMSprop_32_ AlexNet1 RMSprop 32 1.00E-06 0.001 0.99
Ir1e-06_m0.99_wd0.001

AlexNet2_Adam_32_ AlexNet2 Adam 32 0.001 0.001
1r0.001_wd0.001

AlexNet1_Adam_32_ AlexNet1 Adam 32 0.001 0.001
1r0.001_wd0.001

AlexNet1_Adam_16_ AlexNet1 Adam 16 0.001 0.001
1r0.001_wd0.001

AlexNet2_RMSprop_32_ AlexNet2 RMSprop 32 1.00E-05 0.001 0.99
Ir1e-05_m0.99_wd0.001

AlexNet1_RMSprop_32_ AlexNet1 RMSprop 32 1.00E-05 0.001 0.99
Ir1e-05_m0.99_wd0.001

AlexNet2_RMSprop_16_ AlexNet2 RMSprop 16 1.00E-05 0.001 0.99
Ir1e-05_m0.99_wd0.001

AlexNet2_RMSprop_32_ AlexNet2 RMSprop 32 1.00E-05 0.001 0
Ir1e-05_m0_wd0.001

AlexNet1_RMSprop_16_ AlexNet1 RMSprop 16 1.00E-05 0.001 0.99
Ir1e-05_m0.99_wd0.001
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Table 4 AlexNet metrics.

Model Precision  Recall F-score ROC AUC Accuracy
AlexNet1_Adam_32_1r0.0001_wd0.001 0.89106 0.89307 0.8915 0.98404 0.92339
AlexNet2_Adam_32_|r0.0001_wd0.001 0.8841  0.88806 0.88578  0.98194 0.91755

AlexNet2_RMSprop_32_Ir1e-06_m0.99_wd0.001 0.85703 0.89387 0.87226  0.98347 0.90407

AlexNet1_RMSprop_32_Ir1e-06_m0.99_wd0.001 0.85333 0.89362 0.87007 0.98268 0.90161

AlexNet2_Adam_32_Ir0.001_wd0.001 0.85327 0.88934 0.86869  0.98105 0.90096
AlexNet1_Adam_32_1r0.001_wd0.001 0.85419 0.88465 0.86695  0.98029 0.90018
AlexNet1_Adam_16_1r0.001_wd0.001 0.85284 0.8796 0.86434 0.97887 0.89837

AlexNet2_RMSprop_32_Ir1e-05_m0.99_wd0.001 0.87228 0.84842 0.85664 0.9731 0.90018
AlexNet1_RMSprop_32_Ir1e-05_m0.99_wd0.001 0.83108 0.8778 0.84953  0.97935 0.88411
AlexNet2_RMSprop_16_Ir1e-05_m0.99_wd0.001 0.83107 0.86326 0.84445 0.97429 0.88229
AlexNet2_RMSprop_32_Ir1e-05_m0_wd0.001 0.81596 0.85426 0.83133 0.97086 0.87179

AlexNet1_RMSprop_16_Ir1e-05_m0.99_wd0.001 0.80738 0.85835 0.82465 0.97232 0.86349
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Fig. 5 AlexNet1_Adam_32_Ir0.0001_wd0.001 confusion matrix.

5.2 VGG

These networks showed a great sensitivity to the combination of optimizer and learning rate.
Namely, they were unable to converge using a learning rate of 0.001 when Adam was used. Next,
for RMSprop they were unable to converge for both 1e™* and 1e~>, only converging for 1e7° in
case of VGGI1 and VGG2. However, when they did converge, their performance was superior to
that of AlexNet inspired networks. In addition to this, they took significantly more epochs to
train when compared with AlexNet networks.

Table 5 displays the number of parameters and the number of layers for each network in this
family. The number of layers takes into account only layers with trainable parameters.

Figure 6 shows that VGG3, the deepest network, performed the best in terms of training.
VGG2 outperformed VGGI for both batch sizes, although it has approximately 2.6 times less
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Table 5 Number of parameters and layers per network.

Model Parameters Layers
VGG1 470,276 7
VGG2 178,100 6
VGG3 304,052 9
1413 VGG1 14 VGG1
VGG2 VGG2
12 — VGG3 12 —— VGG3
10 10
0 T 0
g \% g
= 038 % = 08
g 3 B
F 06 \\ k=06
e
e 04
04 \“\;\N\:;:“mw
0.2 0.2
0 20 20 60 8 100 0 75 100 125 150 175
Epoch Epoch

Fig. 6 Train loss comparison for VGG1, VGG2, and VGG3—Adam_16_Ir0.0001_wdO (left) and

Adam_32_Ir0.0001_wdoO (right).

Table 6 Hyperparameters in the tested models based on the VGG architecture.

Batch  Learning  Weight

Model Architecture  Optimizer size rate decay  Momentum
VGG3_Adam_16_Ir0.0001_wd0 VGG3 Adam 16 0.0001 0
VGG2_Adam_32_Ir0.0001_wd0 VGG2 Adam 32 0.0001 0
VGG2_Adam_16_1r0.0001_wd0 VGG2 Adam 16 0.0001 0
VGG3_Adam_32_Ir0.0001_wd0 VGG3 Adam 32 0.0001 0
VGG1_Adam_16_Ir0.0001_wd0 VGG1 Adam 16 0.0001 0
VGG1_Adam_32_Ir0.0001_wd0 VGG1 Adam 32 0.0001 0
VGG2_RMSprop_32_Ir1e-06_ VGG2 RMSprop 32 1.00E-06  0.001 0.99

m0.99_wd0.001

trainable parameters. This difference in parameters occurs mostly due to the fact that VGG2
contains one poorly connected layer, which is probably why it took the most epochs to train.

Table 6 shows the analyzed combinations of hyperparameters for VGG architecture. Table 7
shows metrics for every VGG-based model that converged for the given hyperparameters. The
best performing model is VGG3, trained with Adam, using a batch size of 16, learning rate of
0.0001 and no L2 regularization.

From Fig. 7, it can be observed that the model has the worst performance on classification of
the minority class.

5.3 Inception

Inception networks converged for every tried combination of optimizer and learning rate and
generally performed better than both AlexNet and VGG inspired networks. Figure 8 shows
that for Inception Nets as well, smaller learning rates perform better in terms of training.

032004-14

Journal of Electronic Imaging May/Jun 2023 « Vol. 32(3)



Stanojevi¢, Draskovi¢, and Nikoli¢: Retinal disease classification based on optical coherence tomography. ..

Table 7 VGG metrics.

Model Precision Recall F-score  ROC AUC  Accuracy
VGG3_Adam_16_Ir0.0001_wd0 0.91152  0.93648 0.92297  0.98645 0.94361

VGG2_Adam_32_Ir0.0001_wd0 0.91436  0.93066 0.92177  0.99164 0.94257
VGG2_Adam_16_1r0.0001_wd0 0.906 0.93408 0.91865 0.99239 0.93985
VGG3_Adam_32_1r0.0001_wd0 0.90318  0.93449 0.91721 0.98806 0.93842
VGG1_Adam_16_Ir0.0001_wd0 0.90846  0.92264 0.91523  0.98805 0.93868
VGG1_Adam_32_Ir0.0001_wd0 0.89958  0.92269 0.91 0.98834 0.93376

VGG2_RMSprop_32_Ir1e-06_m0.99_wd0.001  0.88769 0.9214  0.90232 0.98965 0.9265
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Fig. 7 Model confusion matrix.
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Fig. 8 Train loss comparison for different learning rates—Inception1 Adam_32_wd0.001 (left) and
Inception1 RMSprop_32_m0.99_wd0.001 (right).

Based on Fig. 9, it can be concluded that Inception2 performed only marginally better than
Inceptionl in the process of training, despite having two additional Inception modules.

Tables 8 and 9 display the analyzed combinations of hyperparameters as well as the achieved
metrics for each tried combination of Inception architecture. The network that performed the best
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Fig. 9 Train loss comparison for Inception1 and Inception2—RMSprop_32_Ir1e-6_m0.99_

wd0.001.

Table 8 Hyperparameters in the tested models based on the Inception architecture.

Batch Learning Weight

Model Architecture Optimizer size rate decay Momentum
Inception1_RMSprop_32_Ir1e-06_ Inception1 RMSprop 32 1.00E-06 0.001 0.99
m0.99_wd0.001
Inception2_RMSprop_32_Ir1e-06_ Inception2 RMSprop 32 1.00E-06 0.001 0.99
m0.99_wd0.001
Inception1_RMSprop_32_Ir1e-05_ Inception1 RMSprop 32  1.00E-05 0.0001 0.99
m0.99_wd0.0001
Inception2_RMSprop_32_Ir1e-06_ Inception2 RMSprop 32 1.00E-06 0.01 0.99
m0.99_wd0.01
Inception1_Adam_32_Ir0.001_wd0.001 Inception1 Adam 32 0.001 0.001
Inception1_Adam_32_1r0.0001_wd0.001 Inception1 Adam 32 0.0001  0.001
Inception1_RMSprop_32_Ir1e-05_ Inception1 RMSprop 32  1.00E-05 0.001 0.99
m0.99_wd0.001

Table 9 Inception metrics.
Model Precision Recall F-score ROC AUC Accuracy
Inception1_RMSprop_32_Ir1e-06_m0.99_wd0.001 0.9357 0.9381 0.93687 0.99291  0.95528
Inception2_RMSprop_32_Ir1e-06_m0.99_wd0.001  0.93109 0.94071 0.93576 0.99299  0.95359
Inception1_RMSprop_32_Ir1e-05_m0.99_wd0.0001 0.92138 0.94736 0.93257 0.99396  0.95048
Inception2_RMSprop_32_Ir1e-06_m0.99_wd0.01 0.92394 0.93931 0.93127 0.99202  0.95035
Inception1_Adam_32_r0.001_wd0.001 0.92568 0.92941 0.92729 0.99166 0.9475
Inception1_Adam_32_Ir0.0001_wd0.001 0.91285 0.93625 0.92295 0.99249  0.94296
Inception1_RMSprop_32_Ir1e-05_m0.99_wd0.001 0.9055 0.93504 0.91803 0.99255  0.93842
Journal of Electronic Imaging 032004-16 May/Jun 2023 « Vol. 32(3)
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Fig. 10 Inception1_RMSprop_32_Ir1 e-06_m0.99_wd0.001 confusion matrix.

is Inception| trained using the RMSprop optimizer, with a batch size of 32, learning rate of 1e~5,
momentum factor of 0.99 and a L, regularization rate of 0.001. Second best network is
Inception2 with the same hyperparameters.

It can be seen from Fig. 10 that although the network has high metrics, it classifies the
minority class quite poorly. This issue can be resolved by obtaining more samples for the minor-
ity class or, if this is not possible, then by means of oversampling the minority class while
training.

5.4 Residual Network

The implemented ResNet was resilient to different combinations of optimizer and learning rate,
and was able to converge every time, with similar results. From Fig. 11, it can be deduced that
smaller learning rates train faster, for both Adam and RMSprop.

Each hyperparameter combination for ResNet architecture is shown in Table 10, followed
by the metrics achieved by ResNet that are displayed in Table 11. The best performing
network, by a small margin, is ResNet trained using the RMSprop optimizer, with a batch
size of 32, learning rate of le~3, momentum factor of 0.99 and a L2 regularization rate of
0.0001.

Figure 12 shows that ResNet is much better at accurately classifying samples. It achieves
92% classification accuracy even for the minority class, without any data augmentation.
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Fig. 11 Train loss comparison for different learning rates—ResNet Adam_32_wd0.001 (left) and
ResNet RMSprop_32_m0.99_wd0.001 (right).
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Table 10 Hyperparameters in the tested models based on the ResNet architecture.

Batch Learning Weight

Model Architecture  Optimizer  size rate decay Momentum
ResNet_RMSprop_32_Ir1e-05_ ResNet RMSprop 32 1.00E-05 0.0001 0.99
m0.99_wd0.0001
ResNet_Adam_32_Ir0.0001_wd0.01 ResNet Adam 32 0.0001 0.01
ResNet_Adam_32_[r0.0001_wd0.001 ResNet Adam 32 0.0001 0.001
ResNet_RMSprop_32_Ir1e-06_ ResNet RMSprop 32 1.00E-06  0.001 0.99
m0.99_wd0.001
ResNet_Adam_32_Ir0.001_wd0.001 ResNet Adam 32 0.001 0.001
ResNet_RMSprop_32_Ir1e-05_ ResNet RMSprop 32 1.00E-05 0.001 0.99
m0.99_wd0.001

Table 11 ResNet metrics.
Model Precision  Recall F-score ROC AUC Accuracy
ResNet_RMSprop_32_Ir1e-05_m0.99_wd0.0001  0.90358 0.93603 0.9176 0.99144 0.93881
ResNet_Adam_32_r0.0001_wd0.01 0.90859 0.92695 0.91724  0.99019 0.9392
ResNet_Adam_32_|r0.0001_wd0.001 0.91271  0.91719 0.91436  0.98873 0.93803
ResNet_RMSprop_32_Ir1e-06_m0.99_wd0.001 0.89502 0.92633 0.90893  0.98907 0.93285
ResNet_Adam_32_r0.001_wd0.001 0.89624 0.92249 0.90654  0.99009 0.93065
ResNet_RMSprop_32_Ir1e-05_m0.99_wd0.001 0.88806 0.92492 0.90389  0.99043 0.92715
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Fig. 12 ResNet_RMSprop_32_Ir1e-05_m0.99_wd0.0001 confusion matrix.

5.5 Final Model
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The best performing model is Inception]l_RMSprop_32_Irle-06_m0.99_wd0.001. It achieved
a precision of 0.9357, recall of 0.9381, F-measure of 0.93687, ROC AUC score of 0.99291, and
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Fig. 13 Comparing loss on the train (left) and validation set (right).
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Fig. 14 Comparing validation accuracy.

an accuracy of 0.95528. However, its performance when classifying the minority class requires
further improvement.

When compared with models from other families that achieved the best metrics, Inceptionl is
superior in terms of number of epochs it took to train, as well as in minimizing validation loss
and maximizing validation accuracy.

Fig. 13 shows loss comparison on the training and validation sets for different model archi-
tectures, whereas Fig. 14 shows accuracy comparison.

The experiment was performed on a computer with AMD Ryzen 7 3700X processor, with
8 cores and 16 GB of RAM memory for training on central processing unit (CPU), NVIDIA
GeForce GTX 1060 graphics card with 1280 CUDA cores, and 6 GB of video random access
memory memory for GPU execution. For example, the VGG model underwent the average train-
ing that lasted several hours on the CPU to less than an hour on the GPU.

The experimental evaluation presents that the proposed architecture Inceptionl with selected
hyperparameters outperforms convolutional deep learning models from the state-of-the-art
reported research based on retinal diseases classification, as shown in Table 12. The table
indicates the year of the research, the models used, the datasets, the retinal anomalies detected,
the results, and the main contributions. The only limitation of our approach is the usage of
CNNs as slower networks, with many layers, so continued research will be oriented toward
EfficientNet.”’

With regard to the analyzed studies found in the related work section, this research showed
the best results on the largest dataset taking into account evaluation on the largest number of
models using different CNN architectures.
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6 Conclusion

This research paper has explored the possibilities of applying deep learning on classifying retinal
diseases. The main concepts behind CNNs have been explained, along with the importance of
proper hyperparameter tuning.”® Multiple architectures have been tested to find the optimal solution.

The analysis of different architectures that can be applied in the classification of retinal
diseases based on OCT images as well as the evaluation of the test set obtained by comparing
64 models with different hyperparameters represents the main contributions of this research.
The experimental evaluation presents the proposed architecture Inceptionl, with selected hyper-
parameters, as the best model, in relation to the state-of-the-art reported studies based on retinal
disease classification. The best metrics were obtained with Inceptionl when training using the
RMSprop optimizer with a batch size of 32, learning rate of 1e~®, momentum of 0.99, and L2
regularization rate of 0.001.

This solution can be used as a decision support system by ophthalmologists in the field of
medicine, particularly when determining retinal diseases. Such models recognize diseases with a
high accuracy level. This same approach can be further generalized and applied to most multi-
class classification problems.”*~*! However, a limitation of this study is the slow execution time
since models based on CNNs with a larger number of layers converge slowly.

In the last few years, many researchers in the field of application of Al in medicine use the
method of image segmentation.’>** Using image segmentation to identify significant areas in
images that are classified as diseases can be one of the further directions of this research.
The deep neural networks based on U-shaped architecture (U-net) and their variations have been
widely applied in a variety of medical image analyses.**>® Also, it is possible to expand the
current research to include EfficientNet. Further work could include dataset augmentation,
undersampling or oversampling to reduce overfitting and increase accuracy when classifying
the minority class.
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