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ABSTRACT. Vision gets obscured in adverse weather conditions, such as heavy downpours,
dense fog, haze, snowfall, etc., which increase the number of road accidents yearly.
Modern methodologies are being developed at various academics and laboratories
to enhance visibility in such adverse weather with the help of technologies. We
review different dehazing techniques in many applications, such as outdoor surveil-
lance, underwater navigation, intelligent transportation systems, object detection,
etc. Dehazing is achieved in four primary steps: the capture of hazy images, esti-
mation of atmospheric light with transmission map, image enhancement, and resto-
ration. These four dehazing procedures allow for a step-by-step method for resolving
the complicated haze removal issue. Furthermore, it also explores the limitations of
existing deep learning-based methods with the available datasets and the chal-
lenges of the algorithms for enhancing visibility in adverse weather. Reviewed tech-
niques reveal gaps in the case of remote sensing, satellite, and telescopic imaging.
In the experimental analysis of various image dehazing approaches, one can learn
the effectiveness of each phase in the image dehazing process and create more
effective dehazing techniques.
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1 Introduction
Vision through adverse weather is the most important issue to be resolved for any vision-based
application, be it transportation system, navigation, or surveillance. During winter, land transport
faces a tremendous problem of low visibility due to fog, and it affects the daily lives of people.1

During low visibility, drivers rely mainly on the headlight of the vehicle. But during unfavorable
weather (rain, haze, snowfalls, and fog), the headlight fails to enhance the clarity of visibility due
to the scattering of light by the precipitation. Precipitations scatter the light across a wide range of
angles, and this disturbs the vision of the driver.1–3 As a result, accidents happen, sometimes
causing loss of life. Hence, there is a compelling demand for vision algorithms capable of
maintaining robust performance in challenging real-world scenarios characterized by adverse
weather and varying lighting conditions.
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1.1 Constituents for Adverse Weather
The knowledge about the constituents of adverse weather, their formation, and concentrations are
essential to carrying out research in the domain.2–5 The major constituents are air, haze, fog,
cloud, and rain. The weather conditions differ mainly due to particle size, type, and concentration
in the space. Particle size and concentration are the two most important parameters that affect the
variation in weather conditions. Particles with larger size and lesser concentration may lead to
similar conditions caused due to smaller size and higher concentration. The weather conditions
can degrade or fluctuate because of the larger sizes of particles present in the atmosphere, as
presented in Table 1.

Haze is responsible for producing a dark or pale blue tint, which has an impact on visibility.
It is a composition of smoke and road–dust mixed in a scattered manner from set sources, includ-
ing plant hydrolysis, volcanic dust, sea salt, and combustible materials.2 The condensation of
water vapor forms fog into tiny water droplets, which remain suspended in the air.3,4 The dis-
tinguishing features between the cloud and the fog can be accurately observed at more significant
elevations rather than at ground level. The majority of the clouds are composed of haze-like water
crystals, whereas others are formed of lengthy snow chunks and glacier dust particles.5 Rain is
the form of water droplets that condense from the atmospheric water vapor and then become
heavy enough to fall on the earth’s surface under gravity. Optical features of the weather particles
make irregular spatial and temporal changes in the images.6 But this change is challenging to
analyze in case of heavy rain and snowfall.

1.2 Mathematical Expression of Atmospheric Scattering for the Creation of
Haze

Clear vision is dependent on two important factors contrast and brightness. Airlight and attenu-
ation are the resulting phenomena due to the scattering of atmospheric particles. Airlight affects
the brightness of the scene. Attenuation diminishes the color contrast of the region of interest.
The inverse relationship between the airlight and attenuation can provide a theoretical basis for
degradation mechanisms for hazy images.2 That is why vision in adverse weather should be
described using the airlight model [Fig. 1(a)] and the light attenuation model. Scattering is the

Table 1 Adverse weather, as well as the varieties and concentrations of particles associated.

Condition Concentration (cm−3) Radius (μm) Particle type

Rain 10−2 to 10−5 102 to 104 Water drop

Cloud 300 to 10 1 to 10 Water droplet

Fog 100 to 10 1 to 10 Water droplet

Haze 103 to 10 10−2 to 1 Aerosol

Fig. 1 (a) Light diffraction from a source to a camera several. (b) An illuminated and measured unit
area of randomly oriented colloidal matter.
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reflection of electromagnetic wave/energy by small particles suspended in a medium of different
refractive indexes.2,4,5 There are three types of scattering, as described in Table 2. The ratio of
particle diameter ðDÞ to light wavelength ðλÞ determines the type and efficiency of scattering.4

Figure 1(b) can be observed for an overview of simple illumination and detection geometry.
The usage of different suspended particles in a scattering medium is exposed by spectral irra-
diance EðλÞ per cross-sectional area. In the direction of θ is the observer, the radiant intensity
Iðθ; λÞ of the unit volume equals to

EQ-TARGET;temp:intralink-;e001;117;519Iðθ; λÞ ¼ βðθ; λÞEðλÞ: (1)

The radiant intensity Iðθ; λÞ is the flux radiated per unit of solid angle, per unit volume of
the medium. Where βðθ; λÞ is the angular scattering coefficient,2 and EðλÞ denotes the spectral
irradiance per cross-sectional area.2 The total flux interacting over the scattered shape can be
described as

EQ-TARGET;temp:intralink-;e002;117;447θðλÞ ¼ βðλÞEðλÞ: (2)

Airlight is a phenomenon caused by the effect of scattering of environmental illumination
by the particles suspended in the atmosphere when the atmosphere acts as a light source.7

Environmental illumination can come from a variety of sources, including diffused skylight,
direct sunshine, and light reflected from the surface. Airlight increases the apparent brightness
of a scene point with depth. Attenuation refers to the change in the brightness of a light source as
the distance increases through a transmission medium.4,6,8 The cross-sectional view of a colli-
mated beam of light that incidents on the atmospheric medium passes through a very thin sheet
with a thickness of dx. The fractional change in irradiance at x can be calculated as follows:

EQ-TARGET;temp:intralink-;e003;117;327

dEðx; λÞ
Eðx; λÞ ¼ −βðλÞdx (3)

Between the boundaries X ¼ 0 and X ¼ d, integrated both sides

EQ-TARGET;temp:intralink-;e004;117;277Eðd; λÞ ¼ E0ðλÞe−
R

d

0
βðλÞdx; (4)

where E0ðλÞ is the irradiance at the source X ¼ 0. This is Bouguer’s attenuation exponential law.2

Attenuation owing to scattering is sometimes described in terms of T ¼ ∫ d
0βðλÞdx is the optical

thickness. It is commonly assumed that the coefficient βðλÞ is constant for horizontal paths. The
scattering coefficient is independent of distance in this situation; thus, the attenuation law can be
modified as follows:

EQ-TARGET;temp:intralink-;e005;117;188Eðd; λÞ ¼ e−βðλÞd

d2
I0ðλÞ: (5)

The radiant intensity4,5 of the point sources is I0ðλÞ. All scattered flux has been considered to
be extracted from the absorption coefficient. A transmission rate is the amount of energy that is
represented by Eq. (5).

Hence, the mitigation of haze in images requires the estimation of an airlight map, as
highlighted.2–5,8 Airlight estimation is essential for determining the depth information within
hazy images, relying on scene-specific characteristics. The initial stage of any haze removal
method typically involves contrast enhancement and image restoration.9,10 The second category

Table 2 Different types of scattering.

Visible light scattering λ = wavelength of light, D = particle diameter

Types D (μm) Particles D∕λ

Rayleigh 0.0001 to 0.001 Air molecules <1

Mie 0.01 to 1.0 Aerosols ≈1

Geometric 10 to 100 Cloud droplets >1
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of image dehazing methods leverages conventional and non-learning-based image degradation
processes for depth information.9,11 These approaches have captured multiple real-time images
under different weather conditions of the same scene to enhance the actual image by reversing the
degradation process.9–13

This paper presents a review of the prior research on various techniques of image enhance-
ment and restoration employed to ensure visual clarity under hazy conditions. Apart from this,
the article also reviews various sensor-based atmospheric scattering models of a hazy image. In
addition, different learning-based methodologies have been assessed based on their outcomes
and thoroughly examined by different haze-removal datasets.

The significant contributions of the review paper made the following:

1. The article provides an in-depth review of over 150 recent papers, highlighting their con-
tributions. This comprehensive review is valuable for new researchers in the allied field, as
it will allow them to gain a rapid understanding of the historical context, current advance-
ments, and potential scope of future research in the domain of real-time image dehazing.

2. The paper reviews conventional methods with advantages and limitations based on the
transmission parameter estimation for single and multiple-image dehazing.

3. A comprehensive review of the different learning-based image dehazing techniques is also
conducted toward proper visualization of non-homogeneous real-time images.

4. Experimental evaluations have been conducted on the different dehazing datasets to com-
pare the different state-of-the-art models on real-time foggy images with their advantages
and limitations.

The current article is organized as follows; Sec. 2 elaborates on the different aspects of image
dehazing and a basic framework of haze removal. The complete review and mathematical model
of haze removal techniques with their limitations are discussed in Sec. 3. An experimental evalu-
ation of different image dehazing techniques on benchmarking datasets are provided in Sec. 4.
Finally, challenges and future research trends are discussed in Secs. 5 and 6, respectively.

2 Aspects of Image Dehazing
Outside images are generally susceptible to different atmospheric conditions, especially haze,
fog, and heavy rainfall. The resulting images generated by these atmospheric conditions are the
images with low contrast, distorted colors, and reduced original scenes. Image enhancement with
depth map estimation9 is a very active research area to provide the basic framework for haze
removal, as shown in Fig. 2. This depth map estimation can be derived in terms of an airlight
map and transmission map. Some methods have estimated the depth of information from the
scene properties, as shown in Fig. 2. The scene properties can be shading function or con-
trast-based cost function. Once depth information is estimated, it is easier to restore the image
using the fog model.9

The first stage in any haze removal process is to capture a picture from the real world. The
camera and image sensors are used to capture this picture. The acquisition procedure takes ad-
vantage of the sensor plane.1 Several sensors have been used along with the camera modules for
improving visibility, as shown in Fig. 3, and environmental models due to adverse weather
conditions.5 Reputed automotive navigation systems mainly depend on a large number of differ-
ent sensors to increase visibility. In adverse weather conditions, sensors usually provide reliable
scanned data that can be fed to vision-based algorithms for object detection, depth estimation, or
semantic scene understanding in order to improve safety and avoid accidents. Dannheim et al.7

Fig. 2 A basic framework for haze removal.
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used LiDAR technology to enhance visibility in different weather conditions. This technology is
highly sensitive to light and has a perfect solution for providing robust information to the com-
mand station for controlling an autonomous vehicle in adverse weather. LiDAR and IR cameras
first acquire the data from the environment with adverse weather. After that, apply sensor fusion
technology for clear vision in adverse weather conditions. Dong et al.6 proposed a methodology
that has a huge positive impact on advanced driver-assistant systems and autonomous navigation
systems. The proposed method used the extended Kalman filter for detection and tracking
obstacles using sensor fusion technology. Rablau et al.14 introduced an image-processing tech-
nique to detect vehicles in a foggy environment for collision avoidance. LiDAR and IR cameras
have been used to increase the performance ratio. Image frames from the camera have been
captured and retrieved from adverse weather.

Image enhancement has been performed on hazy images using the adaptive Gaussian filter-
ing technique. This process yields a clear new image by changing the threshold values. Loce
et al.15 proposed a sensor fusion technology that can improve the sensor’s performance and effi-
ciency by optimizing the mathematical error of the sensor readings. The fusion of multiple-sensor
data always provides improved accuracy than single-sensor data in the case of controlling an
autonomous vehicle. Rasshofer et al.16 proposed a multisensory mechanism for autonomous
driving assistance systems. Laser, radar, and lidar have been used for the present mechanism
to obtain a more accurate distance. The RF-based signal transmission and reception operate these
types of long-range finders. Transmission models are applied for signal transmission in the new
model-based sensor system. Pinchon et al.17 presented a comparative study on vision systems,
traffic signal control, and lane detection for safe autonomous driving. The authors have tried to
draw attention to visualization through camera and distance measurement using sensors (such as
Lidar, radar, etc.) for experiments in adverse weather conditions. The sensors mentioned in
Table 3 are used to get the values of the standard parameters for constructing an environmental

Fig. 3 Visual quality of basic framework in image restoration methods: (a) real-time haze image,
(b) estimate transmission, (c) depth map, and (d) dehaze image.

Table 3 Application of some environment monitoring sensors.

Type of sensor (non-intrusive) Application

Radar Estimation of the vehicle volume, speed, and
identification of heading of vehicle17

Lidar Negative obstacle detection, quick identification, and
avoiding high-risk terrains and obstacles6,8

Infrared sensor Speed, vehicle distance measurement7

CCD/CMOS camera RFID
(radio-frequency identification)

Vehicle detection over multiple lanes, with the ability to classify
vehicles by length, occupancy, and velocity for each class7

used to track vehicles mainly for object identification8
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model that enhances visibility in degraded weather conditions and climate factors, such as fog,
rain, and snow significant impact. In adverse weather conditions, the sensor data provide a quick
interpretation of an environmental condition to the drivers respond in a variety of ways, including
accelerating and operating in the proper lane, among other things. The challenge lies in the inter-
pretation of sensor data, minimization of the response time of the driver, and providing a precise
view of the road rather than simply installing them.

After the image acquisition, the atmospheric scattering model is commonly applied in image
processing and computer vision to characterize the creation of a hazy image, as shown in
Fig. 1(a). The mathematical model of the haze component is given as

EQ-TARGET;temp:intralink-;e006;114;628xAðBÞ ¼ ZðBÞTðBÞ þ KAð1 − TðBÞÞ; (6)

where the color index of the RGB channel is A, KA indicates atmospheric light, ZA is a color
image without haze, T is the transmission medium, ZAðBÞTðBÞ gives the attenuation constraint,
KAð1 − TðBÞÞ is the airlight, dðBÞ is unknown depth information

EQ-TARGET;temp:intralink-;e007;114;569TðBÞ ¼ e−αdðBÞ; (7)

EQ-TARGET;temp:intralink-;e008;114;533ZAðBÞ ¼ xAðBÞ þ
�

1

TðBÞ − 1

�
ðxAðBÞ − KAÞ; (8)

where ð 1
TðBÞ − 1Þ refers to the transmission factor and ðxAðBÞ − KAÞ refers to the detail layer.

3 Haze Removal Methods
This section provides a thorough analysis of the most effective haze reduction methods. The
classifications of the haze removal methods are shown in Fig. 4. Different approaches have been
utilized for image dehazing, where the dehazing algorithm is employed to determine an estimate
of the scene depth and quantify haze thickness.18–20 Single and multiple image dehazing are the
two main categories under which image dehazing is divided, as shown in Fig. 4. Two or more
frames are utilized in multiple image dehazing to estimate scene depth and other parameters of

Image
Dehazing

Single image
Dehazing

Non-Learning
based

Contrast
Maximizing

[62]

Dark Channel
Prior
[36]

Dehaze net
[63]

AdaFM- Net
[12]

MPAB
[91]

QCNN-H [72] Deep-CNN [87] LIDN [85] RRANet [13]

NLNet
[92]

DLA
[94]

SCR- Net
[93]

AFF-Net
[84]

LMFAN
[89]

LSA-Module
[88]

CBAM
[90]

Proximal DehazeNet
[105]

NIN Dehazenet
[111]

MSCNN
[64]

AOD net
[67]

Improved
Dark Channel

[61]

DCP Using
Histogram

Specification
[19]

DCP Using
Guided Filter
[22,25,26,29]

ICA [39] Dark Channel Anisotropic
diffusion

[38]

Color
Attenuation

Prior
[60]

Attention
Mechanism

based
GAN based

Learning
based

Polarization
[42,18,58,43]

Scene depth
[20,33,34,44]

Multiple image
Dehazing

GFN
[71]

RefineDNet
[109]

Conditional GAN
[107]

Dehaze-GAN
[100]

Water GAN
[98]

CycleGAN
[101,150]

EPDN
[102]

Nested GAN
[99]

Fig. 4 Classification of different image dehazing techniques.

Shit and Ray: Review and evaluation of recent advancements in image dehazing. . .

Journal of Electronic Imaging 050901-6 Sep∕Oct 2023 • Vol. 32(5)



images taken in various environmental conditions.15 The most difficult thing is to recover the
depth from a single image and present the single image dehazing.

3.1 Conventional Single and Multiple-Image Dehazing Methods
Dehazing techniques are designed to deal with the problems faced by the transport industries so
that accidents can be avoided. In this sense, a system can be designed to fulfil various kinds of
traffic management and reduce accidents. The correlation between airlight and direct attenuation
models has offered numerous conventional techniques; nevertheless, the primary problem with
most of them is the requirement for multiple images of the same scene. It is necessary to find
recent research trends on which new improvements will be incorporated as shown in Tables 4–6.
Nayar et al.2 described the development of vision systems for outdoor applications. The knowl-
edge of atmospheric optics helped to make the ideas about the size of atmospheric particles and
their scattering model. Components of light scattering, absorption, and radiation are the three
basic categories in which they can be classified. Based on that classification, the properties of
the atmospheric conditions are measured (such as color, intensity, brightness). The algorithm
has introduced a model for object (in the scene) detection in adverse weather without making
assumptions about different atmospheric conditions. The proposed model is based on the dichro-
matic atmospheric scattering model. It has produced fog removal and depth estimation tech-
niques by determining spectral distribution. The final spectral distribution received by the
observer has been estimated from the summation of the airlight and direct transmission light.

Narasimhan et al.3 developed a system to enhance vision in bad weather. This system
becomes robust by incorporating the knowledge of the atmospheric scattering model and the
size of the atmospheric particles (haze, dust, rain fog, etc.). The color model has been used
to change with the scattered light in the atmosphere. Authors have improved the dichromatic
model to make it capable even when scene color varies due to different but unknown atmospheric
conditions.2 The color of airlight has been calculated by averaging a dark object on a hazy day or
foggy or from scene sites with a black direct transmission color.3 Proposed methods have been
applied to photos of the site taken under extreme weather conditions. The structure of the arbi-
trary scene has been constructed from two unknown adverse weather conditions with two differ-
ent horizon brightness values.

Cozman et al.4 proposed to use depth from scattering methods to make it applicable for both
indoor and outdoor environments. Attenuation of power and sky intensity are the two most
dependable phenomena for atmospheric scattering. Due to the linear characteristics of the light
propagation, the combined effects of scattering are used to measure the object intensity. This
method provides better results but fails to cover the outdoor environment of larger dimensions.

Sun et al.55 tried to draw the researcher’s attention to a survey of vision-based vehicle detec-
tion for transportation systems using optical sensors. According to this survey, the use of optical
sensors for on-road vehicle detection can reduce injury and death statistics in cases of vehicle
crashes. Singh et al.56 used the image-restoring technique for a vision system for different adverse
weather conditions. This is applicable to image extraction of outdoor transportation systems,
object tracking, and detection. Samer et al.57 described detecting rain streaks and restoring
an image from the camera using a bilateral filter, guided filter, and morphological component
analysis (MCA),23 as summarized in Table 4.

Zheng et al.10 pointed out clear weather as an important condition for navigation and
tracking applications. This paper focuses on removing fog from hazy weather by applying image
enhancement followed by image restoration. Rakovic et al.42 proposed a polarization method
based on the effects of scattering on light polarization, which has been utilized as an edge
to remove fog in images. Coulson et al.18 mentioned that photographers often employ polarizing
filters to eliminate haziness in landscape photographs because the illumination from the land-
scapes is usually unpolarized. Jobson et al.19 incorporated Retinex theory, the most common
method used for histogram equalization and its variants. However, this method does not always
maintain good color fidelity. Oakley et al.20 described a contrast enhancement-based model
where the scene geometry is known. The main cause behind contrast degradation is the atmos-
pheric particles, such as haze and fog. To address these problems, a temporal filter structure is
presented. The low spatial frequency will be removed if an enhancement-based method is applied
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locally. A considerable improvement in image quality is achieved using the contrast enhancement
approach with a temporal filter.

Walker et al.58 focused on the polarization-based method to reduce haze in images. The main
area of interest is underwater imaging. In most underwater imaging systems, the object is illu-
minated by the light source, which reduces visibility. An image-subtraction approach has been
adopted here. This method has assumed that extra reverse scattered light primarily degraded the
inverse image. Bu et al.59 proposed an approach of using a statistical model to detect the existence
of airlight in any image. This method can be applied to both gray and color images. It can correct
the contrast loss by estimating the airlight level. Monte Carlo simulation with a synthetic image
model has been used to validate the accuracy of the method. This algorithm will produce
an accurate result with the assumption that the airlight is constant throughout the image. But
it fails in the case of non-uniform airlight over the image. Hautiere et al.33 developed a fast
visibility restoration algorithm. The algorithm has addressed the depth maps ill-posed problem.
This optimization problem has been formalized under the constraint 0 ≤ Aðx; yÞ ≤ Wðx; yÞ,

Table 5 Comparison of various restoration-based non-learning methods for fog removal.

Number of
input images Method Outcomes and limitations

Single images Polarization based18 The radiance from the landscapes is generally unpolarized

Retinex theory19 These methods do not always maintain good color fidelity

Restoration algorithm33 When there are discontinuities in the scene depth,
the restored image quality is not as good

Interactive11 These interactive methods are practically not applicable for
images where there is no depth information available

A cost function based on
the human visual model34

Regions are segmented uniformly to estimate the regional
contribution of airlight. This algorithm gives better results
but fails to cover a wide range of scene depth

Based on blackbody theory
and graph-based image
segmentation35

Segmentation of the control parameter is difficult for
foggy images

DCP and soft matting36 The algorithm’s shortcoming is that when the scene objects
are luminous, similar to the ambient light, the method’s core
precepts are no longer true

Interactive37 The algorithm is based on the use of a 3D model

Anisotropic diffusion38 The proposed method can be applied for color as well as
gray foggy images, hence does not require intervention

Independent component
analysis39

This method is based on color information but cannot be
applied to the gray image because the foggy image is
colorless

Linear operation40 This method requires many parameters for adjustment

Iterative bilateral filter41 This method gives good results, but the iterative process is
slow

Multiple images Polarization based42 Based on the effects of scattering on light polarization,
however, in scenes with intense fog, this strategy does not
provide an adequate improvement

Knowledge of scene
depth20

These enhancement-based methods can be used locally,
but low spatial frequencies will be lost

Polarization43 This method works instantly without relying on changes in
weather conditions

Uniform bad weather
conditions44

Weather conditions give easy limitations for detecting
scene depth discontinuities and computing scene structure
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where Aðx; yÞ is airlight, andWðx; yÞ is a minimal intensity component for each pixel. The speed
of this algorithm is its primary benefit. Its difficulty is just on the order of the number of image
pixels. This speed is the reason for using it for real-time implementation of the fog removal
algorithm. However, the recovered image quality is insufficient when there are disruptions in
the scene depth.

Narasimhan et al.11 proposed an interactive method using user-defined depth and sky inten-
sity information. Here, two types of user input have to be provided to interpolate scene point
distance. One is the approximate location of the point at the largest distance, along with the
distance increasing in nature. Next, the user has to provide approximate minimum and maximum
distances. Other scene points distances can be interpolated as

EQ-TARGET;temp:intralink-;e009;114;251d ¼ dmin þ αðdmax − dminÞ; (9)

where α ∈ ð0;1Þ refers to a tiny image distance of a pixel to the vanishing point. For d ¼ dmin,
α ¼ 0, and d ¼ dmax, α ¼ 1. These interactive methods are practically not applicable for images
where no depth information is available.

Kumar et al.34 improved the method proposed by Oakly and Bu59 in the case of non-uniform
airlight over the image. As airlight contribution can be varied according to the region, this method
uses region segmentation in order to estimate the airlight for each region. The RGB color is
essentially required during airlight estimation. Three color components have been fused to gen-
erate a luminance image. A human visual model-based cost function has been then applied to the
luminance image in order to estimate the airlight. This estimation can reflect the depth variation
within the image. Linear regression is used to generate the airlight map subtracted from the foggy
image to restore. This algorithm projects better results but does not cover a wide range of scene
depth. Xuan et al.35 used graph-based image segmentation to get segments of the underwater
color image. According to the blackbody theory, the transmission map has been derived at the
initial level. The refinement of this map has been done by using a bilateral filter. The choice of

Table 6 Techniques adopted for non-learning based different haze removal with applications.

Methods Advantages/limitations Applications

Multiscale tone method45 For excessively fuzzy images, the approach
does not produce reliable results

Outdoor images

Wavelet transform46 Efficient noise suppression Natural images

Fast wavelet transform
technique47

The fog was completely erased, and the image
was sharpened at the same time

Natural images

The median filter and gamma
correction48

This method takes less time to calculate and
improves visual quality, but it does not maintain
the corners in the reconstructed images

Outdoor images

Guided joint bilateral filter49 This method has also suffered from halo artifact Underwater image
enhancement

Weighted guided image
filtering50

Compared to previous techniques, this process
takes the least amount of time to calculate and
improves the brightness of the acquired images

Underwater
images

Image fusion technique with
boost filtering51

This procedure improves the visual clarity of
the scene while also increasing the efficiency of
the execution times

Outdoor images

The variational method based
on DCP52

The method of dealing with the sky region is
not good enough

Outdoor images

Enhanced variational image
dehazing53

Under very vast uniform areas, chromatic artifact
can still be seen

Natural images

Meta-heuristic method based
on genetic algorithm54

Although the evolutionary algorithm achieves
the best dehazing parameters, it does not assure
a perfect result

Natural images
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control parameters for segmentation has become difficult in the case of foggy images. Tables 4
and 5 summarize the comparison of different conventional-based restoration methods with their
outcomes and extracting techniques for image dehazing. Table 6 represents the other adopted
techniques for non-learning-based methods on a review of different haze removal applications.

Zhang et al.43 applied polarization as a fog removal technique. Two or more pictures with
varying degrees of polarization have been selected through which a fog removal technique is
applied. There are no major or minor effects of any weather conditions on this method.

He et al.36 proposed an approach based on the dark channel prior (DCP) and soft matting,
as summarized in Table 5. The DCP is based on the fact that most local areas in foggy outdoor
images have pixels with low intensities in at least one color component. As a result (Fig. 5),
the dark channel for an image is defined as

EQ-TARGET;temp:intralink-;e010;117;433jdarkðxÞ ¼ min
c∈fr;g;bg

ð min
y∈ΩðxÞ

ðjcðyÞÞÞ; (10)

where Ω is a local patch in the image and c ∈ fr; g; bg, ðx; yÞ ∈ Ω. But the assumptions of this
algorithm become invalid if the intensity of the scene objects is equal to the ambient light.

Color attenuation prior60 technique estimates the transmission map and removes haze
through the atmospheric scattering model. Color changes and sky regions in the dehazed image
appear significantly noisy when using DCP. Zhang et al.61 proposed an improved DCP-based
technique that described the resolution of this problem by identifying the sky regions of the haze
and computing the variability of atmospheric light and DCP. Finally, the brightness and contrast
of the outcomes of reconstructed images are increased. After that, the transmission of non-sky
and sky regions are separately evaluated as shown in Fig. 6.

Xu et al.37 proposed a strategy based on the utilization of a three-dimensional (3D) model
of the scene, as summarized in Table 5. After measuring the width at each pixel, reducing the
influence of blur is as simple as applying a mathematical framework:

EQ-TARGET;temp:intralink-;e011;117;258Ik ¼ I0fðzÞ þ Að1 − fðzÞÞ: (11)

Fig. 5 Results obtained by He et al.36 using DCP technique:36 (a) hazy image, (b) recovered depth-
map, and (c) dehazed image.

Fig. 6 Results obtained by Zhang et al.61 using improved DCP technique,61 (a) hazy image,
(b) before enhancement, and (c) after enhancement technique.
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The initial intensity reflected toward the camera from the corresponding scene point is I0,
A is the airlight, and fðzÞ ¼ eð−βzÞ is the depth-dependent attenuation intensity indicated as a
function of distance owing to scattering.

González et al.44 developed an approach that involves taking many photographs of the same
scene in various weather conditions. Xu et al.37 proposed a strategy based on the utilization of
a 3D model of the scene, as summarized in Table 5. Modifications in scene pixel intensities
across various weather conditions give easy restrictions for detecting scene depth disruptions
and computing image structure.

Tripathi et al.38 developed a fog removal algorithm with two major steps: airlight map esti-
mation followed by map refinement, as summarized in Table 5. The DCP has been selected
for estimating the airlight, and refinement has been carried out using anisotropic diffusion,
as presented in Fig. 7. Different objects may be at various angles and distances from the camera.
As a function of those distances, airlight should vary for different objects. The requirement of
above-distance inequality and inter-region smoothing can be fulfilled by anisotropic diffusion.
The algorithm requires histogram equalization and stretching as pre-processing and post-process-
ing, respectively. In case of an extreme color image (presence of pixel intensities 0 and 255),
histogram stretching fails to produce a processed image.

Tan et al.62 suggested a method for converting a single color image to a multicolor image
based on spatial regularization, as shown in Fig. 8. The author removed the fog by maximizing
the contrast of the direct transmission while assuming a smooth layer of airlight. Here, the fog
model is assumed as follows:

EQ-TARGET;temp:intralink-;e012;114;313Iðx; yÞ ¼ I0ðx; yÞtðx; yÞ þ I∞ð1 − tðx; yÞÞ; (12)

where I is the observed intensity of foggy image, I0 is the scene radiance, I∞ is the atmospheric
light, and t is the medium transmission. Based on this model, the author assumed that for a patch
with uniform transmission t, visibility is reduced by the fog since t < 1:

EQ-TARGET;temp:intralink-;e013;114;253

X
ðx;yÞ

k∇Iðx; yÞk ¼ t
X
ðx;yÞ

k∇I0ðx; yÞk <
X
ðx;yÞ

k∇I0ðx; yÞk: (13)

The result is regularized using the Markov random field model. Here, the restored image
looks saturated and produces some halos of depth discontinuities in the scene.

Fig. 7 Results obtained by Tripathi et al.38 using anisotropic diffusion technique:38 (a) hazy image
and (b) haze-free image.

Fig. 8 Results obtained by Tan et al.62 using contrast maximization technique,62 (a) input haze
image, (b) direct attenuation model, and (c) airlight.
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3.2 Learning-Based Methods for Single-Image Dehazing
Learning-based image dehazing is a crucial technique that involves the elimination of fog or haze
from images. It plays a significant role in various applications, including visualization, surveil-
lance, outdoor photography, and autonomous driving. The article defines some potential future
directions for the advancement of image dehazing.

3.2.1 Deep learning-based methods

The field of image dehazing has significant advancements with the emergence of deep learning
techniques. The results achieved so far have paved the way for developing even more advanced
deep-learning models for this task in the future.

The transmission map is estimated using a learning-based algorithm without prior knowl-
edge. DehazeNet uses a convolutional neural network (CNN) to evaluate the transmission
map.63 Coarse-scale network and fine-scale network predicted transmission maps are estimated
locally in the novel hybrid approach multi-scale convolutional neural network (MSCNN).64

Fundamentals of the suggested single-image dehazing algorithm create hazy images and asso-
ciated transmission maps using a depth image dataset to train the multi-scale network.64 In the
test stage, employing the model that was trained to estimate the transmission map of the input
hazy image, then generating the transmission map to produce the dehazed image. MSCNN64 uses
a coarse-scale network to predict a comprehensive transmission map from a hazy image and
transmits it to the fine-scale network to produce an enhanced transmission map. The coarse-scale
network has been developed into four major parts, which are CNN, max-pooling, up-sampling,
and linear combination. The convolutional module with a feature map can be defined as

EQ-TARGET;temp:intralink-;e014;117;459fkþ1
r ¼ σ

�X
s

ðfks � lkþ1
r;s Þ þ ckþ1

s

�
; (14)

EQ-TARGET;temp:intralink-;e015;117;411fkþ1
r ð2m − 1∶2m; 2n − 1∶2nÞ ¼ fkrðm; nÞ; (15)

where fks and fkþ1
s denote features maps of layer k and the next kþ 1 layer. lkþ1

r;s is the kernel with
the size ðr; sÞ, and ckþ1

s denotes the bias with σ as the rectified linear unit (ReLU)65 activation
function. fkrðm; nÞ is the feature map of the pixel value at the location ðm; nÞ with a max-pooling
size of 2 × 2 in the upsampling layer. CNN architecture for deep learning, as opposed to end-to-
end mapping.66 All-in-one dehazing (AOD) net employs linear mapping to integrate transmission
maps (TðxÞ) and atmospheric light (A) and uses CNN to learn its parameter.67 The mathematical
equation is formulated on the AOD-net67 methods as

EQ-TARGET;temp:intralink-;e016;117;321JðxÞ ¼ CðxÞIðxÞ − CðxÞ þ b; (16)

EQ-TARGET;temp:intralink-;e017;117;285CðxÞ ¼
1

TðxÞ ðIðxÞ − AÞ þ ðA − bÞ
IðxÞ − 1

; (17)

where 1
TðxÞ and A are combined into the new module CðxÞ and this module is dependent on the

input image IðxÞ, where b is the constant bias and JðxÞ is the output dehazed image.
A multiclass CNN68 is employed to select an optimal window range. Subsequently, a vec-

tored minimum mean value-based detection technique is applied to the pixel currently under
operation within a specific image kernel to identify noise and choose the best window size
around the pixel. The affected pixel is processed using an adaptive vector median filter69 inte-
grated with particle swarm optimization (PSO)70 if it is determined that the pixel is corrupted
after differentiating between haze and haze-free pixels. The novel fusion method directly restores
a clean image from a foggy input image.71 Frants et al.72 developed a novel quaternion neural
network (QCNN-H) that demonstrated their improved performance capacity for single image
dehazing. The methods provided a novel quaternion encoder–decoder structure with multilevel
feature fusion and quaternion instance normalization. Quaternion operations73 enable modeling
spatial relations involving rotation for real-time computer vision and deep learning applications.
The advantages of QCNNs74 provide a desirable option for improving efficiency on different
computational image processing and visualization tasks, especially when combined with a newly
developed effective quaternion convolutions technique75,76 built around matrix decompositions.
Quaternion convolution is characterized by the Hamiltonian product of a quaternion input,
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denoted as Q̂, and a quaternion convolutional kernel, represented by Ŵ. Real-valued convolution
is used to operate on the quaternion feature map’s constituent parts. The real component of the
input quaternion feature maps is captured by the first group, which consists of K

4
feature maps.

There are then three more groups with K
4
feature maps each, which are used to represent the

hypothetical components that correspond to the i; j, and k quaternion elements, accordingly.
The method performs quaternion-valued convolution on the input quaternion Q̂, which is

written as Q̂ ¼ Q0 þQ1iþQ2jþQ3k and kernel Ŵ ¼ W0 þW1iþW2jþW3k is defined as

EQ-TARGET;temp:intralink-;e018;114;643

Q̂ 0 ¼ Ŵ ⊗ Q̂ ¼ ðW0Q0 −W1Q1 −W2Q2 −W3Q3Þ þ ðW0Q1 þW1Q0 þW2Q3 −W3Q2Þi
þ ðW0Q2 −W1Q3 þW2Q0 þW3Q1Þjþ ðW0Q2 þW1Q2 −W2Q1 þW3Q0Þk:

(18)

The method increases training time and decreases the risk of vanishing gradients by correctly
randomizing the network weights ðWÞ. The technique enhances efficiency in both uniform and
nonuniform hazy weather conditions.

Retinex-based13 suggested method such as robust Retinex decomposition network (RRDNet)
77 has been implemented for an image’s restoration process. The reflection, illumination, and
haze are each estimated using one of the three parts of RRDNet. Gamma transformation78,79

is computed to modify the brightness map and haze-free reflectance. The restored output is
produced when the modified illumination and restored reflectance are combined.

The mathematical expression of the robust Retinex model has been defined as

EQ-TARGET;temp:intralink-;e019;114;461IrðXÞ ¼ RðXÞ · LðXÞ þ NðXÞ; (19)

where Ir, R, L, and N are denoted as underexposed image, reflectance, illumination, and haze,
respectively. The illuminating element is modified during the restoration process using a gamma

transformation as L̂ðXÞ ¼ LðXÞγ where γ denotes the adjustable parameter. The haze-free reflec-

tance can be defined as R̂ðXÞ ¼ ðIrðXÞ−NðXÞÞ
LðXÞ after combining the modified illuminating and the

outcome can be calculated as

EQ-TARGET;temp:intralink-;e020;114;365ÎrðXÞ ¼ R̂ðXÞ · L̂ðXÞ: (20)

The hazy images are divided into detail, and the base components are further improved; hazy
and haze-free base parts are mapped.80 These models are expected to incorporate more advanced
architectures, such as attention mechanisms and generative adversarial networks, in order to
enhance their performance further.

Attention mechanisms. Incorporating attention mechanisms into dehazing models can
prove highly beneficial since they enable the model to concentrate selectively on specific regions
of the input image. Different approaches, such as spatial and channel attention, can be employed
to integrate attention mechanisms into dehazing models to minimize the feature loss between
encoder and decoder modules.81–83

An illustration of attention mechanism-based dehazing methods includes the AOD-Net67

and AdaFM-Net.12 The AOD-Net67 adopts a multi-scale CNN architecture64 that incorporates
a spatial attention module. This mechanism allows the model to selectively attend to significant
regions of the input image. On the other hand, the AdaFM-Net works as an adaptive feature-
based modulation technique to amplify or suppress features based on their relevance, providing
the model with the flexibility to adjust to changing levels of importance in different regions of
the image.12 The methodology suggested a continuous modulation technique by incorporating
an adaptive feature modification layer associated with the modulating approach, also intended to
add a module to the system for adjusting the statistics of the filters to a different restoration level.
Following each convolution layer, before applying the activation function ReLU,65 include a
depth-wise convolution layer, which is formulated as

EQ-TARGET;temp:intralink-;e021;114;87AdaFðXiÞ ¼ Gi � Xi þ bi; 0 < i ≤ N; (21)
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where Xi denotes the input feature map of the image, Gi and bi are the filter and bias, and
N denotes the number of image features. The batch normalization (BN) layer is also incorporated
in the AdaFM-Net module, which is formulated as follows:

EQ-TARGET;temp:intralink-;e022;117;700AdaFðXiÞ ¼ GiXi þ bi; BNðXiÞ ¼ α

�
Xi − μ

δ

�
þ β; (22)

where β and μ are the standard deviations and mean of the batch size, α and δ are denoted as
affine parameters.

Zhou et al.84 proposed an attention-based feature fusion network (AFF-Net) for low-light
image dehazing. The AFF-Net comprises a feature extraction module, an attention-based residual
dense block (ABRDB), and a reconstruction module. The ABRDB includes a spatial attention
mechanism that focuses on the selective regions of the input image while suppressing the non-
selective regions. The attention mechanism is learned through trainable weights, which are
updated during training. The light invariant dehazing network (LIDN)85 has been introduced
for end-to-end real-time image dehazing. In order to train the LIDN, the quadruplet loss
coefficient86 is implemented, which results in a sharper dehazed image and fewer artifacts.
The method has a faster inference time and produces accurate accuracy.

Xiao et al.87 developed a blind image dehazing technique based on deep CNN. The network
consists of three modules, which are the perceptual enhancement, feature extraction, and regres-
sion network module. The technique can estimate the accuracy of scores of real-time image
dehazing and effectively develop visual representations of features. The perceptual section with
the attention module and multiscale convolution module has been used to extract the perceptual
feature for image dehazing prediction. The perceptual enhancement module (Ie) with an input
image feature denotes I and size X∕2 × ðH ×WÞ. The channel-wise statistics Is with average
pooling can be defined as

EQ-TARGET;temp:intralink-;e023;117;433Is ¼ FðIÞ ¼ 1

H ×W

XH
m¼1

XW
n¼1

Iðm; nÞ; (23)

EQ-TARGET;temp:intralink-;e024;117;379Ie ¼ W1 ⊗ I; (24)

where W1 denotes the weights of the attention module and ⊗ is an elementwise multiplication
operator. The final score (S) of the feature fusion module for image dehazing is calculated as

EQ-TARGET;temp:intralink-;e025;117;350S ¼
PNi

j¼1 sjwjPNi
j¼1 wj

; (25)

where sj, Ni, and wj are denote quality score, sample image features, and weight of image
features module, respectively.

Yin et al.88 proposed a spatial and channel-wise feature fusion model based on Adam’s
hierarchy for image dehazing. The network consists of a lightweight spatial attention module
followed by an Adams module and a combining hierarchical feature fusion module. The
Adams module (multi-step optimal control method) uses a gating mechanism to selectively
filter out the haze in the input image, whereas the channel-wise attention module is designed to
enhance the features in the input image by selectively weighting the feature channels.

Liu et al.89 introduced an attention-based local multi-scale feature aggregation network
(LMFAN) to solve image dehazing. The LMFAN consists of three main components: a multi-
scale feature extraction module, a multi-scale attention module, and a reconstruction module.
The multi-scale attention module comprises a global attention mechanism that detects the overall
haze distribution in the input image and a local attention mechanism that identifies the local
texture information. For each channel, distinctive horizontal and vertical encodings are applied
to a specific input I, utilizing spatial ranges defined by the pooling kernel as ðH; 1Þ or ð1;WÞ.
Consequently, the output of channel o at height r can be expressed as

EQ-TARGET;temp:intralink-;e026;117;109zroðrÞ ¼
1

W

X
0≤p≤W

Ioðr; pÞ; (26)
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EQ-TARGET;temp:intralink-;e027;114;410zsoðsÞ ¼
1

H

X
0≤q≤H

Ioðq; sÞ; (27)

where p and q are the positions of the pixel, and s is the width of the channel o. The feature map
of the network has cascaded with 1 × 1 convolution, and the feature map (f) is defined as

EQ-TARGET;temp:intralink-;e028;114;352f ¼ αðFðZr; ZsÞÞ; (28)

where α is the RELU activation function, and the middle feature map is f ∈ Rc∕n×ðHþWÞ.
Attention mechanism-based methods have exhibited promising results, and continued

research in this field has the potential to enhance real-time image dehazing techniques for
numerous applications. The significant advantages and limitations are listed as shown in Table 7.

In scenarios for real-time applications where the fog is excessively dense, attention-based
mechanisms may not perform well since they depend on the visible features in the input image.
The lack of adequate information in the real-time input images can hinder the ability of the
attention mechanism to effectively dehaze the images. This is particularly challenging in extreme
all-weather conditions.

Generative adversarial networks based image dehazing. Generative adversarial
nets (GAN) have several uses, including text-to-picture and image-to-image translation.66,95,96

It has been suggested to use a U-net architecture97 for the generator, which directly maps input
to output image and aids in restoring signal independence from noise. WaterGAN is a technique
that produces an accurate depth map from an underwater image.98 Hierarchically nested GANS
enhance both picture fidelity and visual constancy.99 Dehaze-GAN, a reformulation of GANs
into an atmospheric scattering model, has been developed by Zhu et al.100 Dehaze-GAN com-
prises a generator, denoted as G 0, and a discriminator, denoted as D 0, which undergoes alternate
training to engage in a competitive process.D is refined to effectively discern synthesized images
from genuine ones, and G is trained to D by generating counterfeit images. More specifically,
the optimal states of G and D are achieved through participation in the following two-player
minimax game:

Table 7 Advantages and limitations of different attention-based networks for image enhancement
and restoration.

Attention-based
network Advantages Limitations

Convolutional
block attention
module90

Learning to attend to spatial and channel
information improves performance on
tasks such as object detection and
image enhancement.

The methods are computationally
expensive, mainly when applied to
large images, and not adequate for
long-range dependencies

Multi-path
attention block91

It can improve accuracy and reduce
overfitting in various vision tasks

It may require significant hyperparameter
tuning for real-time application

It can be applied to different network
architectures, including convolutional
and recurrent networks

Non-local neural
networks92

The neural network’s performance is
significantly enhanced by the attention-
free non-local method, which also
ensures a fast and lightweight approach

The methods are not suitable for real-time
dense foggy conditions

Spatial channel
attention residual
network (SCR-Net)93

The SCR-Net utilizes extensive feature
data to blend input images into high-
quality outputs in a more expressive
and scientifically rigorous way, adapting
to the characteristics of each input image

SCRnet models are typically more
intricate than traditional attention models,
which could potentially increase the
challenges in fitting and interpreting them

Deep layer
aggregation94

The network is applicable for multi-scale
contextual information in a dense foggy
image

The method is computationally
expensive, especially for rainy images
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EQ-TARGET;temp:intralink-;e029;117;569G 0; D 0 ¼ arg min|{z}
G

max|{z}
D

γðD;G; X; ZÞ; (29)

where X and Z ∼ Nð0;1Þ denote the input image and random noise, and γ is the final GAN,
which is typically expressed as EX½log DðXÞ� þ EZ½logð1 −DðGðZÞÞÞ�.

CycleGAN, which enhances visual quality, has been created by combining sensory loss
and cycle consistency.101 Integrated GAN developed by booster EPDN has been proposed by
Qu et al.102 An extension of information theory, GAN, which can develop disentangled represen-
tations unsupervised has been proposed.103 Disentangled representative modeling GAN allows for
the learning of discriminative and generative representation. It is frequently employed in face and
emotion recognition. Due to the limitations of one-to-one image translation, multimodal unsuper-
vised image-to-image translation architecture has been developed that breaks down images into
style and information codes. A novel strategy that leverages adversarial training for physical proto-
type translation has been presented to address the shortcomings of image-to-image translation.104

Yang et al.105 proposed a unique deep-learning-based technique using dark channel and
transmission map on the haze model. This is achieved by creating an energy model in a proximal
dehazeNet as shown in Fig. 9.

Cai et al.63 described an end-to-end system on dehazeNet for transmission estimation. The
layers of CNN in the dehazeNet are designed to stand for prior image dehazing. BRelu (bilateral
rectified linear unit) based non-linear activation functions have also been used to enhance the
quality of recovered images. The medium of transmission map estimation is introduced to
achieve haze removal in dense haze conditions, as presented in Fig. 10.

The GAN-based techniques have shown great potential in generating high-quality dehazed
images for simple scenes. GANs have demonstrated encouraging outcomes in addressing image
dehazing tasks. However, GAN-powered methods for image dehazing possess certain limita-
tions. Their performance may not be as impressive for more complex scenes that contain multiple
objects or structures. This is because the generator employed in such cases may not capture all
the intricate details in the input image.

Fig. 9 Results obtained by Yang et al.105 using proximal dehazeNet technique105 (a) input haze
image and (b) dehaze image.

Fig. 10 Results obtained by Cai et al.63 using dehazeNet technique,63 (a) input haze image and
(b) dehaze image.
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4 Experimental Evaluation and Dehazing Dataset
The study of different dehazing techniques offers experimental measurement and the effective-
ness of state-of-the-art methods. The quantitative and qualitative measures to compare the effec-
tiveness of the dehaze methods are evaluated. Among the different haze removal, the most
frequently used methods include Fattal,39 Tarel,40 He,36 MSCNN,64 AOD Net,67 dehazeNet,63

Dehaze-GAN,100 SCR-Net,93 QCNN-H,72 Deep CNN,87 LIDN,85 and RRANet,13 which have been
reviewed and experimental evaluation carried out on the different available dehazing datasets.

4.1 Dehazing Datasets
Dehazing datasets comprise a set of indoor and outdoor images utilized to train and evaluate
algorithms to eliminate fog or haze from real-time images. Usually, these datasets contain a series
of paired images, consisting of hazy or foggy versions and corresponding ground truth clear
images, which are employed for evaluation and training purposes. However, obtaining a sub-
stantial real-world dataset for dehazing purposes is challenging due to the difficulty in collecting
dehazed images, thereby limiting the size of the available dataset. Table 8 presents information
on the commonly employed dehazing datasets, with specifics on their respective details.

Table 8 Summary of most relevant dehazing datasets.

Dataset Size Resolution Remarks

NYU267,105,106 2.4 GB The resolution of the RGB
images is 640 × 480 pixels,
and the depth images have a
resolution of 320 × 240 pixels

The dataset has 1449 labeled pairs of RGB
and depth images, and each pair comes with
corresponding camera calibration data.

Make3D107 685 MB 1224 × 368 The dataset contains 22,600 training images
and 697 test images

RESIDE71,108–113 5.00 GB 640 × 480 The dataset contains 14,520 training images
and 850 test images

HazeRD114–116 — 640 × 480 The dataset contains 75 synthesized hazy
images and offers precious resources for
evaluating dehazing algorithms in outdoor
environments that better simulate real-world
conditions

SOTS117,118 435 MB 480 × 640 The RESIDE-standard subset contains 6000
RGB-D images and subsets include scenes
with various indoor layouts

O-Haze113,119–121 547 MB 960 × 1280 The dataset contains 45 outdoor images,
which is relatively small compared to other
image datasets (homogeneous haze)

D-Hazy113 2 GB 1000×1500 The dataset contains 55 outdoor and indoor
images, which is relatively larger compared
to O-Haze datasets (homogeneous haze)

I-Haze113,120,121 312 MB 5616 × 3744 The dataset contains 30 images, which is
relatively smaller than O-Haze and D-Hazy
datasets (homogeneous haze)

NH-Haze120–122 330 MB 5456 × 3632 The dataset contains 55 pairs of outdoor
dense haze images. The dataset is the
pioneering collection of realistic images for
dehazing, featuring both non-uniformly hazy
images and their corresponding haze-free
ground truth counterparts

Haze4K123 — 2833 × 4657 The dataset contains 4000 hazy images.
Each hazy image in the dataset is paired with
its corresponding ground truths, which
include a latent clean image, a transmission
map, and an atmospheric light
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4.2 Implementation Details
The different state-of-the-art methods are compared on a Win10 operating system, utilizing an
Intel® Core™ i5-8265U CPU, 16 GB RAM, and GPU NVIDIA GeForce MX250 with a 32 GB
memory capacity. The deep learning library with Pytorch1.8.1 is used, here Adam serving as the
model optimizer. We set the initial learning rate at 0.0001 and the total training epoch to 60.
To optimize GPU memory and computational efficiency, we set the batch size to 20. Upon com-
pletion of the training phase, we conduct model inference using half-precision to conserve GPU
memory and enhance processing efficiency.

4.3 Quantitative Measurements
Adverse weather causes a number of road and rail accidents each year. For example, seven people
were killed when a vehicle collided due to heavy fog in Haryana.124 Two cars coming from
Chandigarh were hit by another car. The accident took place as there was limited visibility due
to heavy fog.124 Figure 11 presents the number of accidents caused due to adverse weather in
India during 2017 to 2021.125–128 Image dehazing is a challenging problem, requiring refined
algorithms that can effectively estimate the depth of the scene, and remove the scattering and
absorption effects of the haze. These algorithms must be able to operate in real-time, with limited
computational resources, and be robust to variations in lighting, weather conditions, and other
environmental factors. The quality of the haze removal algorithm is evaluated using quantitative
measurements, as shown in Table 9.

In haze removal methods, quantitative measurements are divided into two types: a ground
truth image is provided, with another is not provided ground truth image. The ground truth image
is provided or not provided for the quality measurements such as peak signal-to-noise ratio
(PSNR),129,130 mean squared error (MSE),130 structural similarity index metric (SSIM),61,129 natu-
ral image quality evaluator (NIQE),131 visibility index (VI),132–137 and realness index (RI).72,85,87

Ground truth image is a haze-free image of the same original hazy image. However, haze-free is
produced when some haze removal techniques are applied to the hazy image datasets. MSE130

has measured the error that is evaluated to compare the ground truth and dehaze image. The
mathematical expression of MSE is as follows:

EQ-TARGET;temp:intralink-;e030;117;388MSE ¼ 1

M × N

XM
p¼1

XN
q¼1

½GTIðp; qÞ −DIðp; qÞ�2: (30)

GTIðp; qÞ represents the pixel intensities of the ground truth image andDIðp; qÞ is the pixel
values of the dehaze image, where p and q denote the feature value of image pixel coordinates,
respectively.

Fig. 11 Accidental statistics due to different adverse weather conditions in India.125–128
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PSNR129,130 is applied to evaluate MSE after applying dehazing methods. Maximum PSNR
values represent the visibility of the image is enhanced, and PSNR can be represented as follows:

EQ-TARGET;temp:intralink-;e031;117;712PSNR ¼ 10 log10ð2552∕MSEÞ: (31)

The SSIM129 is the similarity between images with and without haze. SSIM always lies
between 0 and 1. When the SSIM value is close to 1, the two images are mostly similar. The
SSIM score around the pixels can be calculated as follows:

EQ-TARGET;temp:intralink-;e032;117;651SSIMðpÞ ¼ 2μxðpÞμyðpÞ þ C1

μ2xðpÞ þ μ2yðpÞ þ C1

·
2σxyðpÞ þ C2

σ2xðpÞ þ σ2yðpÞ þ C2

; (32)

where μxðpÞ and σxðpÞ represent the mean and standard deviation of the dehaze image Iout,
respectively. Similarly, μyðpÞ and σyðpÞ represent the mean and standard deviation of the haze
image Iin, respectively, and σxyðpÞ represent the covariance between σxðpÞ and σyðpÞ.

The NIQE131 is built around developing a high standard aware set of statistical attributes that
use a simple but effective space area on a typical scene. The NIQE131 measured is a technique for
evaluating an image’s naturalness that uses a model of the human visual technique’s response to
natural scene images. The NIQE calculates an image’s naturalness by comparing its statistical
features with natural scene images. The NIQE can be expressed numerically as

EQ-TARGET;temp:intralink-;e033;117;515NIQE ¼ W1 � Feature1 þW2 � Feature2 þW3 � Feature3 þ : : : þWn � Featuren; (33)

where W1;W2;W3; : : : : : : :Wn are the weights that are supported by each images feature:

EQ-TARGET;temp:intralink-;e034;117;480Featuren ¼ E½rn� þ α � σn; (34)

where E½rn�, α, and σn denote the expected values of images feature, scaling factors, and standard
deviation, respectively.

The VI132–138 evaluates the quality of an image that has been hazed or dehazed. It compares
the visibility of the image in question to a clear reference image. This resemblance is calculated
by analyzing transmission and gradients. Koschmieder’s law133,134 reveals that the degree of haze
is directly proportional to transmission. As a result, the similarity between the transmission maps
of the hazy image and the reference can be used to estimate the amount of haze present. The
transmission information135 of the dehaze and hazy images are T1ðRÞ and T2ðRÞ at pixel R,
the transmission similarity StðRÞ is defined as

EQ-TARGET;temp:intralink-;e035;117;349StðRÞ ¼
2T1ðRÞ:T2ðRÞ þ C1

T2
1ðRÞ þ T2

2ðRÞ þ C1

; (35)

where C1 is a constant with a positive value chosen to improve stability. The transmission map is
defined as TðRÞ ¼ e−βdðRÞ where β and dðRÞ are extinction coefficients and observing distances
of R.

EQ-TARGET;temp:intralink-;e036;117;274VI ¼
P

R¼Ω SGMðRÞ · ½StðRÞ�αTpðRÞP
R¼Ω TpðRÞ

; (36)

where SGMðRÞ is represented by the gradient module that can explore the gradient features of
images. Mathematically, it is defined as

EQ-TARGET;temp:intralink-;e037;117;212SGMðRÞ ¼
2G1ðRÞ:G2ðRÞ þ C2

G2
1ðRÞ þ G2

2ðRÞ þ C2

; (37)

where GðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

aðRÞ þ G2
bðRÞ

p
and R is the feature of images. G2

aðRÞ and G2
bðRÞ are partial

derivatives of the image at R. G1ðRÞ and G2ðRÞ are the gradient modules of the dehaze and haze
images, α is the adjustable parameters between the gradient module and transmission map.
Several dehazing techniques13,72,85,87,132–137,139–147 introduce artifacts or distort the image, which
reduces visibility. As an outcome, while the initial hazy images are original images without these
degradations, some methods also have to consider the accuracy of the dehazing outcomes when
evaluating a dehazing technique. Thus, the RI72,85,87,138 evaluates the dehazed image’s reality by
utilizing the similarity between the dehazed image and the haze-free reference in feature spaces.
The RI is defined as
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EQ-TARGET;temp:intralink-;e038;114;736RI ¼
P

R¼Ω SPConðRÞ · ½ScfðRÞ�βWmðRÞP
R¼Ω WmðRÞ

; (38)

where SPConðRÞ is the phase congruency module145 of the feature similarity index (FSIM),146

which is calculated as

EQ-TARGET;temp:intralink-;e039;114;680SPConðRÞ ¼
2Pcon1ðRÞ:Pcon2ðRÞ þ C3

P2
con1ðRÞ þ P2

con2ðRÞ þ C3

; (39)

where Pcon1 and Pcon2 are the chrominance features of the different images and ScfðRÞ is the total
similarity of chrominance features, which is defined as

EQ-TARGET;temp:intralink-;e040;114;618ScfðRÞ ¼
2F1ðRÞ:F2ðRÞ þ C4

F2
1ðRÞ þ F2

2ðRÞ þ C4

·
2G1ðRÞ:G2ðRÞ þ C4

G2
1ðRÞ þ G2

2ðRÞ þ C4

; (40)

where F1ðRÞ, G1ðRÞ, F2ðRÞ, and G2ðRÞ are chrominance features extracted from two different
images, and C3, C4 are positive constants andWmðRÞ is the FSIM146 weights of maximum chro-
minance features in multiple orientations, where β is the adjustable parameter between the phase
congruency and chrominance features module.

The quantitative measurements of the different dehazing techniques are described in Table 9.
A comparison to a wide range of cutting-edge methods, that include Fattal,39 Tarel,40 He,36

MSCNN,64 AOD Net,67 dehazeNet,63 Dehaze-GAN,100 SCR-Net,93 QCNN-H,72 Deep CNN,87

LIDN,85 and RRANet13 was conducted on different benchmark datasets. The authors provided
some models based on information techniques trained on indoor and outdoor dehazing datasets.
The NIQE131 has been employed to measure the naturalness of the haze-free image, in which
lower results showed more accurate visual efficiency, and the VI132–137 and RI72,85,87 were
employed for additional application to measurement the accuracy of real-time dehaze images.
Increased SSIM, PSNR, VI, and RI scores demonstrate greater efficiency. In the case of NIQE,
a lower result indicates improved visibility.

Table 9 shows the PSNR, SSIM, VI, and RI methodologies with the highest visibility resto-
ration on different benchmark datasets. He,36 dehazeNet,63 Dehaze-GAN,100 SCR-Net,93 LIDN,85

QCNN-H,72 RRANet,13 and Deep CNN87 on the NYU2,67,105,106 Make3D,107 RESIDE,71,108–113

HazeRD,114–116 SOTS,117,118 O-Haze,113,119–121 D-Hazy,113 I-Haze,113,120,121 and NH-Haze120–122

datasets can be attained higher SSIM and PSNR values (bold) also outperform on perception
metrics NIQE, VI, and RI (bold). Table 9 also demonstrates that recently introduced method-
ologies, such as QCNN-H,72 Deep CNN,87 LIDN,85 and RRANet,13 surpass other dehazing
methods (Fattal,39 Tarel,40 He,36 AOD Net,67 dehazeNet63) in terms of VI and RI by effectively
eliminating non-homogeneous weather and enhancing sharpness through its trained datasets. The
time-consumption comparison of benchmarking dehazing methods with resolutions of images
640 × 480 is also performed in Table 9 on different indoor and outdoor datasets. RRANet13

method has a faster processing time on GPU NVIDIA GeForce MX250 with NYU2,67,105,106

I-Haze,113,120,121 and NH-Haze120–122 datasets. Similarly, QCNN-H72 and SCR-Net93 methods also
have faster processing time on Make3D,107 SOTS,117,118 RESIDE,71,108–113 and HazeRD114–116

datasets that are executed using the same GPUs for real-time dehazing applications.

4.4 Qualitative Measurements
Several haze removal techniques from the aforementioned categories have been chosen to be
evaluated primarily for performance analysis to compare the effects of various techniques and
test the efficiency of qualitative evaluation (Figs. 5–10). Different real-time outdoor haze image
has been selected as an experimental evaluation of images by comparing the other methods,
including Fattal,39 Tarel,40 He,36 AOD Net,67 dehazeNet,63 Dehaze-GAN100 and SCR-Net,93

QCNN-H,72 deep CNN,87 LIDN,85 and RRANet13 in Figs. 12–18 on the NYU2,67,105,106

RESIDE,71,108–113 HazeRD,114–116 SOTS,117,118 O-Haze,113,119–121 D-Hazy,113 and NH-Haze120–122

datasets, respectively.
Figures 12(c) and 12(e) demonstrate that He36 and AOD Net67 generate unwanted noise

while also losing the real original colors of the dehazing images. On the other hand, the Dehaze-
GAN,100 QCNN-H,72 and Deep CNN87 methods effectively remove haze from the real-time
image without color loss, as evidenced by Figs. 12(g), 12(i), and 12(j), but these methodologies
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are not working correctly in non-uniform weather conditions on the NYU267,105,106 dataset.
LIDN85 frequently leaves hazy areas behind and is inconsistent in removing haze, as shown
in Fig. 12(k). When there is a dense haze, RRANet13 has trouble, as shown in Fig. 12(l). As
shown in Figs. 13(b)–13(d), non-CNNmethods such as He,36 Fattal,39 and Tarel40 are more likely
to excessively boost the contrast of hazy images. As a result, the dehazing methods generate a
large number of artifacts that significantly reduce the reality of the restored images. On the other
hand, as shown in Figs. 13(e)–13(l), CNN-based techniques such as AOD Net,67 QCNN-H,72

LIDN,85 Deep CNN,87 RRANet,13 dehazeNet,63 SCR-Net93 and Dehaze-GAN100 can generate
outcomes that are very similar to real-world images. As a result, virtually all CNN-based methods
perform better than non-CNN-based methods in terms of RI and NIQE. In Figs. 13(d), 13(f),
12(i), and 12(j) the Tarel,40 dehazeNet,63 QCNN-H,72 and Deep CNN87 methods were visually
evaluated and demonstrate their ability to eliminate the color cast and fog from the real-time
image. The fast visibility restoration40 method is based on the parameter changes of the transfer
function using an optimized way. The dehazeNet63 method produces an enhanced image
that only partially removes the color cast and is ineffective in recovering the genuine color
information.

As observed in Figs. 14(e)–14(h) utilizing AOD Net,67 dehazeNet,63 Dehaze-GAN,100

and SCR-Net93 methodologies, it becomes evident that the visibility of the images experiences
significant enhancement. In contrast, when evaluated using SSIM and PSNR, most other
measurement approaches fail to rank these improvements effectively. In addition, VI and RI are
measured on QCNN-H,72 LIDN,85 Deep CNN,87 and RRANet,13 effectively increasing visibility
in Figs. 14(i)–14(l) on outdoor heterogeneous images. The images in Figs. 14(i) and 14(k)
have some artifacts and have been slightly degraded. The attention-based enhancement approach
eliminates color cast and reinstates the original color features, as it considers both color and
contrast as the primary parameters for enhancement. However, the methods fall short of enhanc-
ing the overall brightness of the degraded input image, as shown in Figs. 14(c), 14(d), and 14(g).
The images of Figs. 14(h) and 14(j) also experience severe degradation and glaring halo effects.
In contrast to other metrics, RI can evaluate these differences and produce results that are con-
sistent with human perceptions.

Fig. 12 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the NYU267,105,106 dataset. (a) Hazed image, (b) Fattal,39

(c) He,36 (d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93

(i) QCNN-H,72 (j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13
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Figure 15 shows the evaluation of the real-time non-homogeneous image of different
state-of-the-art methods on the SOTS117,118 dataset. But Fattal,39 He,36 and Tarel40 fail to produce
fog-free images in non-homogeneous conditions that are shown in Figs. 15(b) and 15(d). The
conventional enhancement methods are not appropriate for defogging because they are unable to

Fig. 13 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the RESIDE71,108–113 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13

Fig. 14 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the HazeRD114–116 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13
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address the degradation restored by fog, which is closely associated with the depth of the scene.
While the QCNN-H,72 RRANet,13 and LIDN85 techniques exhibit strong performance on the
O-Haze113,119–121 dataset as shown in Figs. 16(i), 16(l), and 16(k), this success is primarily
attributed to overfitting. Unfortunately, when applied to the genuine SOTS117,118 dataset, these
methods prove to be ineffective. Figures 16 and 17 show the real-time qualitative evaluation on

Fig. 15 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the SOTS117,118 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13

Fig. 16 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the O-Haze113,119–121 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13
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dense foggy images, where the Tarel40 and AOD Net67 visibility range not more than 100 m and
highly distorted the original image’s color. The SCR-Net93 and RRANet13 methods successfully
eliminate fog while exhibiting fewer color distortions, as shown in Figs. 16(h), 16(l), 17(h), and
17(l). Moreover, the dehazed image produced by methods (Figs. 16 and 17) resembles the dehaze
image on the O-Haze113,119–121 and D-Hazy113 datasets, respectively.

Qualitative analysis of various methods on real-time dense foggy images is presented in
Fig. 18 on the NH-Haze120–122 dataset. The outcomes of Fattal39 and dehazeNet63 exhibit color
distortion, and the result produced by Dehaze-GAN100 in Fig. 18(g) suffers from over-bright-
ening when compared to the original dehaze image. Although AOD Net67 and SCR-Net93 suc-
cessfully removed the fog, some fog residue remains in the defogged output. It can be seen that
the QCNN-H,72 LIDN,85 Deep CNN,87 and RRANet13 techniques execute better than all other
approaches that were compared and have the ability to preserve the image’s color and contrast,
as shown in Figs. 18(i)–18(l) on the NH-Haze120–122 dataset.

The main focus of the qualitative experiment is to restore image visibility and enhance the
quality of images using the available datasets that are described in Table 8. However, all the
methods improve the visibility effect on different haze conditions. The literature also provided
some dehazing applications on standard datasets that are used in learning-based end-to-end
haze removal procedures. The application and dataset used in the learning-based haze removal
methods are displayed in Table 10.

5 Challenges and Discussions
Haze removal techniques are suitable for various vision-based applications. The limitations of
those existing techniques are already mentioned in Tables 4–7. So, the dehazing process is insuf-
ficient to produce a clear vision in adverse weather conditions. A clear view can only be obtained
through airlight estimation and by creating an environmental model based on different weather
sensors. The following assumptions have been made in all the reviews on image dehazing meth-
ods for clear visualization in adverse weather.

1. The essential assumption is to manage non-homogeneous weather. But this approximation is
invalid for long-distance ranges (in km) or remote sensing, satellite, and telescopic imaging.
Analysis of arbitrary scene structures in non-homogeneous weather is still an open problem.

Fig. 17 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the D-Hazy113 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13
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2. The computational complexity of current image dehazing methods is a significant problem
for their implementation in real-time applications. Therefore, the development of fusion-
based dehazing algorithms that are both highly accurate and computationally efficient is
still a topic of research interest.

3. While many image dehazing methods are currently available as learning-based methods,
most are trained on custom-made datasets for outdoor scenes and may not perform well in
complex backgrounds, changeable illumination, and different weather conditions (fog,
rain, and haze). Hence, there is a need to improve real-time dehazing systems that can
effectively handle the complexities associated with outdoor scenes.

4. Deep learning models can achieve outstanding results when trained on a specific dataset,
but their performance on other datasets with different haze types, lighting conditions, and
noise levels is not satisfactory. Thus, there is a need to develop deep learning-based models
that can achieve better performance on various datasets.

5. Most of the learning-based dehazing models have been developed for light foggy condi-
tions, and their performance may degrade significantly in dense foggy conditions.
Therefore, there is a requirement to develop specific architectures that can effectively han-
dle dense foggy weather conditions. This may be taken care of by fusion of the mmWave
RADAR data with the camera features. The mmWave RADAR is applicable for carrying
out improvement in the visibility range compared to the visual band. The proper design,
alignment, and calibration of the composite setup are challenging. Different illumination
zones are needed to be incorporated with the checkerboard setup for calibration. Some
real-time haze removal techniques are used under different weather conditions and also
different polarizer orientations. In the case of single images, such dehazing techniques
will not provide accurate results without using sensor fusion. Fog removal from a single
image is always an under-constrained problem due to the absence of airlight estimation.
Enhancement and improvement of existing models can interpret better results for dynamic
weather conditions. The use of pulsating light sources, along with the fusion of CCD,
thermal images, and mmWave RADAR sensor, can strongly validate the scene interpre-
tation in all adverse weather.

Fig. 18 Evaluation of experimental results on the real-time hazy outdoor image using different
state-of-the-art techniques on the NH-Haze120–122 dataset. (a) Hazed image, (b) Fattal,39 (c) He,36

(d) Tarel,40 (e) AOD Net,67 (f) dehazeNet,63 (g) Dehaze-GAN,100 (h) SCR-Net,93 (i) QCNN-H,72

(j) deep CNN,87 (k) LIDN,85 and (l) RRANet.13
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Table 10 Different dehazing methods validated on benchmark datasets and application.

Year Model Application Datasets
Quantitative
measure

2018 AOD-Net67 Dehazing NYU2 PSNR, SSIM,
MSE, mAP

Conditional generative
adversarial network107

Dehazing, image in
the painting

Make3D, NYU PSNR, SSIM

Gated fusion network71 Image editing RESIDE PSNR, SSIM

Proximal dehaze-net105 Image enhancement NYU2 PSNR, SSIM

2019 Wavelet U-Net110 Edge enhancement RESIDE PSNR, SSIM,
MSE, mAP

NIN-DehazeNet111 Video dehazing RESIDE PSNR, SSIM

Semi-supervised114 Real-time image
dehazing

RESIDE-C, HazeRD PSNR, SSIM

Deep multi-model fusion115 Dehazing Benchmark dataset PSNR, SSIM

2020 Domain adaptation148 Dehazing HazeRD, SOTS PSNR, SSIM

Y-net112 Halo artifacts RESIDE PSNR, SSIM

Dual-path recurrent network106 Color correction NYU2 depth, ImageNet PSNR, SSIM

Pyramid channel149 Image dehazing RESIDE PSNR, SSIM,
mAp

Reinforced depth-aware116 Image dehazing HazeRD, NYU,
Middlebury

PSNR, SSIM

2021 You only look yourself119 Image dehazing RESIDE, I-Haze,
O-Haze

PSNR, SSIM,
inference time

CycleGAN150 Underwater image
dehazing

Underwater imagery MSE, RMSE,
Euclidean

distance, SSIM

Haze concentration adaptive
network113

Image details recovery RESIDE, D-Hazy,
I-Haze, O-Haze

PSNR, SSIM,
run time

Model-driven deep learning117 Dehazing SOTS, NTIRE 2018 PSNR, SSIM

Two-branch neural network122 Non-homogeneous
dehazing

NH-Haze 2021
dataset

PSNR, SSIM

FIBS-Unet (feature integration
and block smoothing network)108

Environment image
dehazing

RESIDE PSNR, SSIM

RefineDNet (refinement
dehazing network)109

Supervised dehazing
approaches

RESIDE-unpaired PSNR, SSIM

2022 gUNet (gain-U-Net)123 Image dehazing Haze4K, RESIDE
and RS-Haze

PSNR, SSIM

DEA-Net (detail-enhanced
attention network)118

Single image
dehazing

RESIDE, ITS, OTS,
SOTS, RTTS, and
HSTS

PSNR, SSIM

SRDefog (structure
representation dense
non-uniform fog)120

Image dehazing D-Haze, I-Haze,
O-Haze, and
NH-Haze

PSNR, SSIM

EDN-GTM (encoder–decoder
network with guided
transmission map)121

Single image dazing I-Haze, O-Haze,
and NH-Haze

PSNR, SSIM
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6 Conclusions and Future Work
The progress of methods for removing haze from images is discussed in this study. Limitations
and advantages for the removal of haze have been presented, which motivate future research. The
haze removal technique is most suitable for many image processing areas of adverse weather
conditions. Satellite imagery, intelligent transportation systems, underwater computer vision,
image recognition, outdoor monitoring, object recognition, information extraction, and so on
are some important broad areas where haze removal methods are used. This review article is
divided into two major categories: single and multiple-image dehazing, which are further divided
into two sub-categories. Single-image dehazing approaches are classified as non-learning and
learning-based. However, multiple-image dehazing is categorized into polarization and scene
depth. Furthermore, a step-by-step evaluation of standard methodologies is described for ana-
lyzing image dehazing and defogging performance. A survey of recently released image dehaz-
ing datasets is also summarized.

An in-depth review and experimental results will assist readers in understanding various
dehazing approaches and will aid the creation of more advanced dehazing procedures. As a
result, future research will concentrate on improving depth estimation and visual quality resto-
ration. Fast and accurate estimation of airlight information increases the speed and perceptual
image quality. CNN and GAN have significantly succeeded in several higher-level image-
processing applications. Recent research works are not only based upon the atmospheric scatter-
ing model of airlight and attenuation. Still, they involve an end-to-end attention-based model to
learn the direct mapping from hazy to dehazing images. However, current learning-based tech-
niques are unable to restore the fine details of fog-based sky images, particularly in non-homo-
geneous foggy situations. In the future, two different deep neural networks will be combined with
a transformer and end-to-end attention module for a clear scene of the hazy image without any
feature loss.
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NH-Haze, which are publicly available and can be accessed by applying for the prior registration.
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property right restrictions, we will be able to share the code of the experimental evaluation and
relevant materials in a Github repository available at: https://github.com/sahadeb73 only after
the effective completion of the project.
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