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Abstract. Most of the current state-of-the-art methods for tumor segmentation are based on machine learning
models trained manually on segmented images. This type of training data is particularly costly, as manual delin-
eation of tumors is not only time-consuming but also requires medical expertise. On the other hand, images with
a provided global label (indicating presence or absence of a tumor) are less informative but can be obtained at a
substantially lower cost. We propose to use both types of training data (fully annotated and weakly annotated)
to train a deep learning model for segmentation. The idea of our approach is to extend segmentation networks
with an additional branch performing image-level classification. The model is jointly trained for segmentation and
classification tasks to exploit the information contained in weakly annotated images while preventing the network
from learning features that are irrelevant for the segmentation task. We evaluate our method on the challenging
task of brain tumor segmentation in magnetic resonance images from the Brain Tumor Segmentation 2018
Challenge. We show that the proposed approach provides a significant improvement in segmentation perfor-
mance compared to the standard supervised learning. The observed improvement is proportional to the ratio
between weakly annotated and fully annotated images available for training. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.034002]
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1 Introduction
Today, cancer is the third highest cause of mortality worldwide.
In this paper, we focus on segmentation of gliomas, which are
the most frequent primary brain cancers.1 Gliomas are particu-
larly malignant tumors and can be broadly classified according
to their grade into low grade gliomas (grades I and II defined by
World Health Organization) and high grades gliomas (grades III
and IV). Glioblastoma multiforme is the most malignant form of
glioma and is associated with a very poor prognosis: the average
survival time under therapy is between 12 and 14 months.

Medical images play a key role in diagnosis, therapy plan-
ning, and monitoring of cancers. Treatment protocols often
include evaluation of tumor volumes and locations. In particular,
for radiotherapy planning, clinicians have to manually delineate
target volumes, which is a difficult and time-consuming task.
Magnetic resonance (MR) images2 are particularly suitable for
brain cancer imaging. Different MR sequences (T2, T2-FLAIR,
T1, T1 + gadolinium) highlight different tumor subcomponents,
such as edema, necrosis, or contrast-enhancing core.

In recent years, machine learning methods have achieved
impressive performance in a large variety of image recognition
tasks. Most of the recent state-of-the-art segmentation methods
are based on convolutional neural networks (CNNs).3,4 CNNs
have the considerable advantage of automatically learning
relevant image features. This ability is particularly important
for the tumor segmentation task. CNN-based methods5–8 have
obtained the best performances on the four last editions of the
Multimodal Brain Tumor Segmentation Challenge (BRATS).9,10

Most of the segmentation methods based on machine
learning rely uniquely on manually segmented images. The

cost of this annotation is particularly high in medical imaging,
where manual segmentation is not only time-consuming but
also requires high medical competences. Image intensity of
cancerous tissues in MRI or CT scans is often similar to
one of the surrounding healthy or pathological tissues, making
the exact tumor delineation difficult and subjective. In the case
of brain tumors, according to Ref. 9, the inter-rater overlap of
expert segmentations is between 0.74 and 0.85 in terms of
Dice coefficient. For these reasons, high-quality manual tumor
segmentations are generally available in very limited numbers.
Segmentation approaches able to exploit images with weaker
forms of annotations are therefore of particular interest.

In this paper, we assume that the training dataset contains
two types of images: fully annotated (with provided ground
truth segmentation) and weakly annotated, with an image-level
label indicating the presence or absence of a tumor tissue
within the image (Fig. 1). We refer to this setting as “mixed
supervision.” The latter type of annotations can be obtained
at a substantially lower cost as it is less time-consuming,
potentially requires less medical expertise, and can be obtained
without the use of a dedicated software.

We introduce a CNN-based segmentation model, which
can be trained using weakly annotated images in addition to
fully annotated images. We propose to extend segmentation net-
works, such as U-Net,11 with an additional branch, performing
image-level classification. The model is trained jointly for both
tasks on fully annotated and weakly annotated images. The goal
is to exploit the representation learning ability of CNNs to learn
from weakly annotated images while supervising the training
using fully annotated images to learn features relevant for
the segmentation task. Our approach differs from the standard
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semisupervised learning as we consider weakly annotated data
instead of totally unlabeled data. To the best of our knowledge,
we are the first to combine pixel-level and image-level labels
for training of models for tumor segmentation.

We perform a series of cross-validated tests on the challeng-
ing task of segmentation of gliomas in MR images from the
BRATS 2018 Challenge. We evaluate our model both for binary
and multiclass segmentation using a variable number of ground
truth segmentations available for training. Since all three-dimen-
sional (3-D) images from the BRATS 2018 contain brain
tumors, we focus on the two-dimensional (2-D) problem of
tumor segmentation in axial slices of an MRI and we assume
slice-level labels for weakly annotated images. Using approxi-
mately 220 MRI with slice-level labels and a varying number of
fully annotated MRI, we show that our approach significantly
improves the segmentation accuracy when the number of fully
annotated cases is limited.

2 Related Work
In the literature, there are several works related to weakly super-
vised and semisupervised learning for object segmentation or
detection. Most of the related works were applied to natural
images.

The first group of weakly supervised methods aims to local-
ize objects using only weakly annotated images for training.
When only image-level labels are available, one approach is
to design a neural network, which outputs two feature maps per
class (interpreted as “heat maps” of the class), which are then
pooled to obtain an image-level classification score penalized
during the training.12–16 At test time, these heat maps are used
for detection (determining a bounding box of the object) or seg-
mentation. To guide the training process, some works use self-
generated spatial priors13–15 or inconsistency measures16 in the
loss function. To obtain an image-level score, in Refs. 12 and 15,
global maximum pooling is used. Application of the maximum
function on large feature maps may cause optimization prob-
lems as training of neural networks is based on the computation
of gradients.17 LogSumExp approximation of the maximum18 is
therefore used in the works13,14 to partially limit this problem.
Average pooling on small feature maps was used by Wang
et al.16 for the problem of detection of lung nodules.

Dubost et al.19 propose to extend a network similar to 3-D
U-Net with a subnetwork performing image-level regression
of the number of present lesions. The model is trained using
only image-level labels (lesion counts) and the weights learned
by the regression subnetwork are used during the test phase to
construct heat maps of lesions. Detection of lesions is obtained
by thresholding of the heat maps. The common point with our
model is the extension of U-Net with a subnetwork performing
an image-level task. One of the key differences is that our model
is trained using both image-level and pixel-level labels and has
a dedicated segmentation layer (trained with pixelwise labels
and producing the final segmentation).

Another type of weakly supervised methods aims to detect
objects in natural images based on the classification of image
subregions20,21 using pretrained classification networks such
as VGG-Net22 or AlexNet.23 In fact, one particularity of natural
images is their recursive aspect: one image can correspond to a
subpart of another image (e.g., two images of the same object
taken from different distances). A classification network trained
on a large dataset may, therefore, be used on a subregion of an
image to determine if it contains an object of interest.

Pretrained classification networks were also used to detect
objects by determining image subregions, whose modification
influences the global classification score of a class. Simonyan
et al.24 propose to compute the gradient of the classification
score with respect to the intensities of pixels and to threshold
it in order to localize the object of interest. However, these
partial derivatives represent very weak information for tumor
segmentation, which requires a complex analysis of the spatial
context. The method proposed in Ref. 25 is based on replacing
image subregions by the mean value to measure the drop of the
classification score.

Overall, the reported segmentation performances of weakly
supervised methods are considerably lower than the ones
obtained by semisupervised and supervised approaches. In
absence of pixel-level labels, a model may learn irrelevant
features due, for example, to co-occurrences of objects or image
acquisition differences in the case of multicenter medical data.
Despite the cost of manual segmentation, at least few fully
annotated images can still be obtained in many cases.

In standard semisupervised learning26 for classification, the
training data is composed of both labeled samples and unlabeled

Fig. 1 Different levels of supervision for training of segmentation models. Standardmodels are trained on
fully annotated images only, with pixel-level labels. Weakly supervised approaches aim to train models
using only weakly annotated images, e.g., with image-level labels. Our model is trained with a mixed
supervision, exploiting both types of training images.
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samples. Unlabeled samples can be used to enforce the model
to satisfy some properties on relations between labels and the
feature space. Common properties include smoothness (points
close in the feature space should be close in the target space),
clustering (labels form clusters in the feature space), and low-
density separation (decision boundaries should be in low-
density regions of the feature space). Semisupervised learning
based on these properties can be performed by graph-based
methods such as the recent work of Kamnitsas et al.27 The main
idea of such methods is to propagate labels in a fully connected
graph, whose nodes are samples (labeled and unlabeled) and
whose edges are weighted by similarities between samples.
The use of graph-based semisupervised methods is difficult for
segmentation, in particular, because it implies computation of
similarity metrics between samples, whereas every single image
is generally composed of millions of samples (pixels or voxels).

Relatively, few works were proposed for semisupervised
learning for image segmentation. Some semisupervised
approaches are based on self-training, i.e., training of a machine
learning model on self-generated labels. Iterative algorithms
similar to expectation–maximization28 were proposed for natu-
ral images29 and medical images.30 Recently, Hung et al.31 pro-
posed a method based on generative adversarial networks,32

where the generator network performs image segmentation and
the discriminator network tries to determine if a segmentation
corresponds to the ground truth or the segmentation produced
by the generator. The discriminator network is used to produce
confidence maps for self-training. The approaches based on self-
training have the drawback of learning on uncertain labels (pro-
duced by the model itself) and training of such models is
difficult.

Other approaches assume mixed levels of supervision similar
to our approach. Hong et al.33,34 proposed decoupled classifica-
tion and segmentation, an approach for segmentation of objects
in natural images based on a two-step training with a varying
level of supervision. This architecture is composed of two sep-
arate networks trained sequentially, one performing image-level
classification and used as encoder, and the other one taking as
input small feature maps extracted from the encoder and per-
forming segmentation. An important drawback of such design,
in the case of tumor segmentation, is that the segmentation net-
work does not take as input the original image and can, there-
fore, miss important details of the image (e.g., small tumors).

Our approach is related to multitask learning.35 In our case,
the goal of training for two tasks (segmentation and classifica-
tion) is to exploit all the available labels and to guide the training
process to learn relevant features. The approach closest to ours is
the one of Shah et al.36 In this work, the authors consider three
types of annotations: segmentations, bounding boxes, and seed
points at the borders of objects. A neural network is trained
using these three types of training data. In our work, we exploit
the use of a significantly weaker form of annotations: image-
level labels.

3 Joint Classification and Segmentation
with Convolutional Neural Networks

3.1 Deep Learning Model for Binary Segmentation

We designed a deep learning model, which aims to take advan-
tage of all available voxelwise and image-level annotations.
We propose to extend a segmentation CNN with an additional
subnetwork performing image-level classification and to train

the model for the two tasks jointly. Most of the layers are shared
between the classification and segmentation subnetworks to
transfer the information between the two subnetworks. In this
paper, we present the 2-D version of our model, which can be
used on different types of medical images, such as slices of
a CT scan or a multisequence MRI.

The proposed network takes as input a multimodal image of
dimensions 300 × 300 and extends U-Net,11 which is currently
one of the most used architectures for segmentation tasks in
medical imaging. The different image modalities (e.g., sequen-
ces of an MRI) correspond to channels of the data layer and are
the input of the first convolutional layer of the network (as in
most of the currently used CNNs for image segmentation).
U-Net is composed of an encoder part and a decoder part, which
are connected by concatenations between layers at the same
scale, to combine low-level and local features with high-level
and global features. This design is well suited for the tumor
segmentation task since the classification of a voxel as tumor
requires comparison of its value with its close neighborhood but
also taking into account a large spatial context. The last convolu-
tional layer of U-Net produces pixelwise classification scores,
which are normalized by softmax function during the training
phase. We apply batch normalization37 in all convolutional
layers except the final layer.

We propose to add an additional branch to the network,
performing image-level classification (Fig. 2) to exploit the
information contained in weakly annotated images during the
training. This classification branch takes as input the second
to last convolutional layer of U-Net (representing rich informa-
tion extracted from a local and a long-range spatial context) and
is composed of one mean-pooling, one convolutional layer, and
seven fully connected layers.

The goals of taking a layer from the final part of U-Net as
input of the classification branch are to guide the image-level
classification task and to force the major part of the segmenta-
tion network to take into account weakly annotated images. This
also helps the optimization process by taking advantage of the
connectivity of layers in U-Net, helping the flow of gradients of
the loss function during the training (in particular, note the con-
nection between the first part and the last part of U-Net).

The second to last layer of the segmentation network outputs
64 feature maps of size 101 × 101 from which the classification
branch has to output two global (image-level) classification
scores (tumor absent/tumor present). We first reduce the size
of these feature maps by applying a mean-pooling with kernels
of size 8 × 8 and the stride of 8 × 8. We use the mean pooling
rather than max-pooling to avoid information loss and optimi-
zation problems. One convolutional layer, with ReLU activation
and kernels of size 3 × 3, is then added to reduce the number of
feature maps from 64 to 32. The resulting 32 feature maps of
size 11 × 11 are the input of the first fully connected layer of
the classification branch.

According to our experiments, a relatively deep architecture
of the classification branch with a limited number of parameters
and a skip-connection between layers yields the best perfor-
mance. This observation is in agreement with current common
designs of neural networks. Deep networks have the capacity to
learn more complex features due to applied nonlinearities. The
connectivity between layers at different depths helps the optimi-
zation process (e.g., Res-Net38). In our case, we use seven fully
connected layers with ReLU activations (except the final layer)
and we concatenate the outputs of the first and the fifth fully
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connected layer. The role of this concatenation is similar to the
one connecting the first and the last sequence of convolutional
layers in U-Net. The concatenation is used before the second to
last layer in order to have one layer to process the mixed infor-
mation (concatenation of two layers) before the final decision
in the seventh fully connected layer. We use only one concat-
enation as the subnetwork is composed of only a few layers
while concatenations increase the number of parameters in
the network. The last fully connected layer outputs image-level
classification scores (tumor tissue absent or present).

The model is trained on both fully annotated and weakly
annotated images for the two tasks jointly (segmentation and
classification). We can distinguish between three types of
training images. First, images containing a tumor and with pro-
vided ground truth segmentation are the most costly ones. The
second type corresponds to images that do not contain tumor,
which implies that none of their pixels corresponds to a tumor.
In this case, the ground truth segmentation is simply the zero
matrix. The only problematic case is the third one, when the
image is labeled as containing a tumor but without provided
segmentation.

To train our model, we propose to form training batches con-
taining the three mentioned types of images: k positive cases
(containing a tumor) with provided segmentation, m negative
cases, and n positive cases without provided segmentation.

Given a training batch b and the network parameters θ,
we use a weighted pixelwise cross-entropy loss on images of
types 1 and 2: Lossbs ðθÞ ¼ −

Pkþm
i¼1

P
ðx;yÞ w

i
ðx;yÞ log½pl

i;ðx;yÞðθÞ�,
where pl

i;ðx;yÞ is the classification score given by the network to

the ground truth label for pixel ðx; yÞ of the i’th image of the
batch and wi

ðx;yÞ is the weight given to this pixel. The weights

are used to limit the effect of class imbalance since tumor pixels
represent a small portion of the image. Weights of pixels are set
automatically according to the composition of the training batch
(number of pixels of each class) so that pixels associated with
healthy tissues have a total weight of t0 in the loss function and
the pixels of the tumor class have a total weight of t1, where t0
and t1 are target weights fixed manually. It means that if the

training batch contains Nt pixels labeled as tumor, then each
tumor pixel has a weight of t1∕N1 (the pixelwise weight is
high when the number of tumor pixels is low). This type of loss
function was used in our previous work.39

The classification loss is a standard cross-entropy loss on all
images of the training batch: Lossc¼− 1

kþmþn

Pkþmþn
i¼1 log½pl

iðθÞ�,
where pl

i is the global classification score given by the network
to the ground truth global label for the i’th image of the batch.
In particular, fully annotated images are also used for training
of the classification branch in order to transfer the knowledge
from the segmentation task to the image-level classification.
We do not apply weights on the classification loss as image-level
labels are balanced through the sampling of training batches
(having a fixed number of nontumor images).

Since both segmentation and classification losses are normal-
ized, we define the total loss as a convex combination of the
classification and segmentation losses: Loss ¼ a � Losss þ
ð1 − aÞ � Lossc.

We train our model with a variant of stochastic gradient
descent (SGD) with momentum,40 used also in our previous
work.39 The main differences with the standard SGD are to di-
vide the gradient by its norm and to compute gradients on sev-
eral training batches in each iteration to take into account many
training examples while bypassing GPU memory constraints.

3.2 Extension to the Multiclass Problem

We extend our model to the multiclass case, where each pixel has
to be labeled with one of the K classes, such as the four ones con-
sidered in the BRATS Challenge (nontumor, contrast-enhancing
core, edema, nonenhancing core).We now assume that image-level
labels are provided for each class (absent/present in the image).

Extension of the segmentation subnetwork to the multiclass
problem is straightforward by changing the number of final
feature maps to match the number of classes. However, image-
level labels are not exclusive, i.e., an image may contain several
tumor subclasses. For this reason, we propose to consider one
image-level classification output per tumor subclass, indicating
the absence or presence of the given subclass.

Fig. 2 Architecture of our model for binary segmentation. The numbers of outputs are specified below
boxes representing layers. The height of rectangles represents the scale (increasing with pooling
operations). The dashed lines represent concatenation operations. The proposed architecture is an
extended version of U-Net, with a subnetwork performing image-level classification. Training of the model
corresponds to a joint minimization of two loss functions related, respectively, to segmentation and
image-level classification tasks.
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According to our experiments, better performances are
obtained when each subclass has its dedicated entire classification
branch (Fig. 3). A possible reason is that the image-level
classification of tumor subclasses is a challenging task requiring
a sufficient number of dedicated parameters.

Training batches are sampled similarly to the binary case,
however, each tumor subclass has to be present at least once
in each training batch. In our implementation, we store lists of
paths of images containing tumor subclasses to sample from
these lists during the training of the model.

In the segmentation loss, we empirically fix the following
target weights for the four classes (nontumor, nonenhancing
tumor core, edema, enhancing-core): t0 ¼ 0.7, t1 ¼ 0.1, t2 ¼
0.1, and t3 ¼ 0.1 (all tumor subclasses have equal weight in the
loss function). The loss associated with each classification
branch is the same as in the binary case and the total classifi-
cation loss is the average across all classification branches.

4 Experiments

4.1 Data

We evaluate our method on the challenging task of brain tumor
segmentation in multisequence MR scans, using the “training”
dataset of the BRATS 2018 Challenge. It contains 285 multi-
sequence MRI of patients diagnosed with low-grade gliomas
or high-grade gliomas. For each patient, manual ground truth
segmentation is provided. In each case, four MR sequences are
available (Fig. 4): T1, T1 + gadolinium, T2, and fluid-attenuated
inversion recovery (FLAIR). Preprocessing performed by the
organizers includes skull-stripping, resampling to 1 mm3 reso-
lution, and registration of images to a common brain atlas. The
resulting volumes are of size 240 × 240 × 155. The images were
acquired in 19 different imaging centers. In order to normalize
image intensities, each image is divided by the median of
nonzero voxels (which is supposed to be less affected by the

tumor zone than the mean) and multiplied the image by a fixed
constant.

Each voxel is labeled with one of the following classes: non-
tumor (class 0), contrast-enhancing core (class 3), nonenhancing
core (class 1), and edema (class 2). The benchmark of the chal-
lenge groups classes in three regions: “whole tumor” (formed by
all tumor subclasses), “tumor core” (classes 1 and 3, correspond-
ing to the visible tumor mass), and “enhancing core” (class 3).

Given that all 3-D images of the database contain tumors
(no negative cases to train a 3-D classification network), we
consider the 2-D problem of tumor segmentation in axial slices
of the brain.

4.2 Test Setting

The goal of our experiments is to compare our approach with
the standard supervised learning. In each of the performed tests,
our model is trained on fully annotated and weakly annotated
images and is compared with the standard U-Net trained on fully
annotated images only. The goal is to compare our model with
a commonly used segmentation model on a publicly available
database.

We consider three different training scenarios, with a varying
number of patients for which we assume a provided manual
tumor segmentation. In each scenario, we perform a fivefold
cross-validation. In each fold, 57 patients are used for the test
and 228 patients are used for training. Among the 228 training
images, few cases are assumed to be fully annotated and the
remaining ones are considered to be weakly annotated with
slice-level labels. The fully annotated images are different in
each fold. If the 3-D volumes are numbered from 0 to 284,
then in k’th fold, the test images correspond to the interval
½ðk − 1Þ × 57; k × 57 − 1�, the next few images correspond to
fully annotated images and the remaining ones are considered
as weakly annotated (the folds are generated in a circular way).
In the following, FA denotes the number of fully annotated cases

Fig. 3 Extension of our model to the multiclass problem. The number of final feature maps of the
segmentation subnetwork is equal to the number of classes (four in our case). As image-level labels
(class present/absent) are not exclusive, we consider one classification branch per tumor subclass.
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and WA denotes the number of weakly annotated cases (with
slice-level labels). In particular, note that the split training/test
is on 3-D MRIs, i.e., the different slices of the same patient are
always in the same set (training or test).

In the first training scenario, five patients are assumed to be
provided with manual segmentation and 223 patients have slice-
level labels. In the second and third scenarios, the numbers of
fully annotated cases are, respectively, 15 and 30 and the num-
bers of weakly annotated images are, therefore, respectively,
213 and 198. The three training scenarios are independent,
i.e., folds are regenerated randomly (the list of all images is per-
muted randomly and the folds are generated). In fact, results are
likely to depend not only on the number of fully annotated
images but also on qualitative factors (for example, the few
fully annotated images may correspond to atypical cases), and
the goal is to test the method in various settings. Overall, our
approach is compared to the standard supervised learning on
60 tests (fivefold cross-validation, three independent training
scenarios, three binary problems, and one multiclass problem).

We evaluate our method on both binary segmentation prob-
lems (separately for each of three tumor regions considered in
the challenge) and the end-to-end multiclass segmentation prob-
lem. In each binary case, the model is trained for segmentation
and classification of one tumor region (whole tumor, tumor core,
or enhancing core).

Segmentation performance is expressed in terms of Dice
score quantifying the overlap between the ground truth (Y) and
the output of a model (Ỹ):

EQ-TARGET;temp:intralink-;e001;63;148DSCðỸ; YÞ ¼ 2jỸ ∩ Yj
jỸj þ jYj : (1)

In order to measure the statistical significance of the obtained
results, we perform two-tailed and paired t-tests. Pairs of obser-
vations correspond to segmentation scores obtained with the

standard supervised learning (U-Net trained on fully annotated
images) and with our approach. Dice scores for all patients from
fivefolds are concatenated to form a set of 285 pairs of observa-
tions. The statistical test is performed for each training scenario
and for each segmentation task (three binary problems and one
multiclass problem). We consider the significance level of 5%.

4.3 Model Hyperparameters

4.3.1 Loss function and training of the model

The main introduced training hyperparameter is the parameter a
corresponding to the trade-off between classification and seg-
mentation losses. We report mean Dice scores obtained with
a varying value of the parameter a on a validation set of 57
patients (20% of the database used for testing and 80% used for
training) in the case with 5 fully annotated cases and 223 weakly
annotated cases. Segmentation accuracy obtained for the whole
tumor in the binary case is reported in Fig. 5. The peak of per-
formance is observed for a ¼ 0.7 (improvement of approxi-
mately 12 points of Dice over the standard supervised learning
on this validation set), i.e., for the configuration, where the
segmentation loss accounts for 70% of the total loss. With high
values of a, the improvement over the standard supervised learn-
ing is limited: around 2.5 points of Dice for a ¼ 0.9. In fact,
setting a high value of a corresponds to giving less importance
to the image-level classification task and therefore ignoring
weakly annotated images. For too low values of a, segmentation
accuracy decreases too, probably because the model focuses on
the secondary task of image-level classification. In the end-to-
end multiclass case (Fig. 6), lower values of a seem more suit-
able, possibly because of an increased complexity of the image-
level classification task. In all subsequent tests, we fix a ¼ 0.7

for binary segmentations problems and a ¼ 0.3 for the end-to-
end multiclass segmentation.

Fig. 4 Examples of multisequence MRI from the BRATS 2018 database. While T2 and T2-FLAIR high-
light the edema induced by the tumor, T1 is suitable for determining the tumor core. In particular,
T1 acquired after injection of a contrast product (T1c) highlights the tumor angiogenesis, indicating
the presence of highly proliferative cancer cells.
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Training batches in our experiments contain 10 images,
including 8 images with tumors (4 images with provided
tumor segmentation and 4 without provided segmentation) and
2 images without tumors. The number of images was fixed to fit
in the memory of the used GPUs (Nvidia GeForce GTX 1080 Ti),
i.e., to form training batches for which backpropagation can be
performed using the memory of the GPU. In each training batch,
there are only two images without tumors because most of the
pixels of tumor images correspond to nontumor zones.

The parameters tc, corresponding to target weights of classes
in the segmentation loss, were fixed manually. In both binary
and multiclass cases, we chose t0 ¼ 0.7, which corresponds
to giving a target weight of 70% to nontumor voxels. In fact,
tumor pixels represent approximately 1% of pixels of the train-
ing batch and, therefore, nontumor pixels account approxi-
mately for 99% of nonweighted cross-entropy segmentation
loss. With t0 ¼ 0.7, the relative weight of nontumor pixels is
therefore decreased compared to the standard, nonweighted
cross-entropy while still giving the nontumor class a high

weight to avoid oversegmentation. In the multiclass setting,
we fixed the same target weight to all three tumor subclasses,
i.e., t1 ¼ 0.1, t2 ¼ 0.1, and t3 ¼ 0.1. As a good convergence
of the training was obtained in terms of Dice scores of tumor
subclasses, we did not further need to optimize these hyper-
parameters. Moreover, U-Net trained with these weights and
using 228 fully annotated images obtained a mean Dice score
of almost 0.87 for whole tumor (last row of Table 1), which is a
satisfactory performance for a model independently processing
axial slices without any postprocessing.

4.3.2 Model architecture

One of the most important attributes of our method is the
architecture of classification branches extending segmentation
networks. We perform experiments to compare our model with
alternative types of architectures of classification subnetworks.
We report the segmentation accuracy obtained on the previously
defined validation set of 57 patients.

In the binary case, we consider two alternative architectures
of classification subnetworks. The first one is composed of four
fully connected layers having, respectively, 2000, 500, 100,
and 2 neurons. It corresponds, therefore, to a shallow variant of
the classification subnetwork with a relatively high number of
parameters. We name this architecture “shallow” model. The
second variant has the same architecture as our model (seven
fully connected layers) but with removed concatenation between
the first and the fifth fully connected layer. We name this archi-
tecture “deep-sequential.” The comparison of segmentation
accuracy for the whole tumor obtained by these two variants
and by our model is reported in Fig. 7. All three models using
a mixed level of supervision obtain a better segmentation accu-
racy than the standard U-Net using five fully annotated images
(64.48). Among the three architectures, the shallow variant
yields the lowest accuracy (72.29). Our model obtains the
highest accuracy (76.56) and performs slightly better than its
counterpart with removed concatenation, deep-sequential model
(75.78). The improvements over the standard model and the
shallow model were found statistically significant (two-tailed
and paired t-tests).

We also report results obtained with an alternative architec-
ture of the multiclass model. In our model, we considered

Fig. 5 Mean Dice scores for the “whole tumor” region obtained with
a varying value of the parameter “a,” corresponding to the trade-
off between segmentation and image-level classification losses.
Segmentation scores are evaluated on a validation set of 57 MRI
in the training scenario, where 5 fully annotated MRI and 223 weakly
annotated MRI are available for training. The case a ¼ 1.0 corre-
sponds to ignoring the classification loss and therefore ignoring
weakly annotated images.

Fig. 6 Mean Dice scores for whole tumor and “tumor core” regions
obtained with a varying value of the parameter a in the multiclass
case. Segmentation scores are evaluated on a validation set of 57
MRI in the training scenario, where 5 fully annotated MRI and 223
weakly annotated MRI are available for training. The case a ¼ 1.0
corresponds to ignoring the classification loss and weakly annotated
images.

Fig. 7 Mean Dice scores for the whole tumor region obtained by the
standard U-Net and by different models using a mixed level of
supervision. Standard deviations are represented by error bars. The
segmentation scores are evaluated on a validation set of 57 MRI in
the training scenario, where 5 fully annotated MRI and 223 weakly
annotated MRI are available for training. Our model corresponds to
U-Net extended with a classification branch composed of seven fully
connected layers and containing one skip-connection.
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separate classification branches for all tumor subclasses. We
consider an alternative architecture, having only one classifica-
tion branch (with the same architecture as our model for binary
segmentation and classification) shared between the three final
fully connected layers performing image-level classification.
In this configuration, the classification layer of each tumor
subclass takes as input the sixth fully connected layer of the
shared classification branch. We name this architecture “shared
classification.” The comparison with our multiclass model (sep-
arate classification branches for all tumor subclasses) on the
same validation set as previously is reported on Fig. 8. Our
model obtains the highest accuracy for the three tumor subre-
gions while the alternative model (shared classification) obtains
higher accuracy than the standard multiclass U-Net for whole
tumor and tumor core. The improvements of our model over the
standard model were found statistically significant for the whole
tumor and tumor core regions. The improvements over the alter-
native model with mixed supervision (shared classification)
were not found statistically significant (p-values >0.05).

4.4 Results

The main observation is that our model with mixed supervision
provides a significant improvement over the standard supervised
approach (U-Net trained on fully annotated images) when the
number of fully annotated images is limited. In the two first
training scenarios (5 FA and 15 FA), our model outperformed the
supervised approach on the three binary segmentation problems
(Table 1) and in the multiclass setting (Table 2). The largest
improvements are in the first scenario (5 FA) for the whole
tumor region, where the improvement is of eight points of the
mean Dice score in the binary setting and of nine points of Dice
in the multiclass setting. Results on different folds of the second
scenario (intermediate case, 15 FA) are displayed in Table 3 for
the binary problems and in Table 4 for the multiclass problem.
Our approach provided an improvement in all folds of the second
scenario and for all tumor regions, except one fold for enhancing
core in the binary setting. In the third scenario (30 FA + 198WA),
our approach and the standard supervised approach obtained
similar performances. Furthermore, we observe that standard
deviations are consistently lower with our approach in all

Fig. 8 Mean Dice scores for the whole tumor region obtained by the
standard multiclass U-Net and by different multiclass models using
mixed level of supervision. The error bars represent standard devia-
tions. The segmentation scores are evaluated on a validation set of
57 MRI in the training scenario, where 5 fully annotated MRI and
223 weakly annotated MRI are available for training. Our model is
multiclass U-Net extended with three separate classification branches
(for each tumor subclass), each branch having the same architecture
as in the binary segmentation/classification problem.

Table 1 Mean Dice scores (fivefold cross-validation, 57 test cases in
each fold) in the three binary segmentation problems obtained by the
standard supervised approach and by our model trained with mixed
supervision. The numbers in brackets denote standard deviations
computed on the distribution of Dice scores for all patients of the
fivefolds.

Whole tumor Tumor core
Enhancing

core

Standard supervision
5 FA

70.39 (21.78) 48.14 (28.31) 55.74 (26.73)

Mixed supervision
5 FA + 223 WA

78.34* (13.01) 50.11* (25.95) 60.06* (22.72)

Standard supervision
15 FA

77.91 (16.77) 58.33 (29.00) 62.88 (25.80)

Mixed supervision
15 FA + 213 WA

80.92* (11.17) 63.23* (26.40) 66.61* (23.12)

Standard supervision
30 FA

83.95 (11.84) 66.17 (25.61) 69.15 (23.51)

Mixed supervision
30 FA + 198 WA

83.84 (9.68) 68.30* (23.73) 67.18 (21.69)

Standard supervision
228 FA

86.80 (8.47) 77.09 (18.58) 72.20 (19.11)

Note: The bold values highlight the higher accuracy in a given test
(comparison of the two models).
*Statistically significant improvements (p-value <0.05) provided by
our method compared to the standard supervised learning.

Table 2 Mean Dice scores (fivefold cross-validation, 57 test cases in
each fold) obtained by the standard supervised approach and by our
model in the multiclass setting. The numbers in brackets denote stan-
dard deviations computed on the distribution of Dice scores for all
patients of the fivefolds.

Whole tumor Tumor core
Enhancing

core

Standard supervision
5 FA

67.61 (22.24) 51.12 (26.98) 58.15 (24.65)

Mixed supervision
5 FA + 223 WA

76.64* (14.14) 56.30* (22.65) 58.19 (23.05)

Standard supervision
15 FA

74.46 (18.04) 59.87 (25.97) 61.85 (24.86)

Mixed supervision
15 FA + 213 WA

79.39* (12.99) 63.91* (24.72) 65.71* (23.07)

Standard supervision
30 FA

81.10 (14.29) 67.48 (24.78) 68.67 (22.79)

Mixed supervision
30 FA + 198 WA

81.23 (10.90) 66.33 (24.12) 67.69 (21.87)

Standard supervision
228 FA

85.67 (9.66) 78.78 (18.31) 74.14 (19.62)

Note: The bold values highlight the higher accuracy in a given test
(comparison of the two models).
*Statistically significant improvements (p-value <0.05) provided by
our method compared to the standard supervised learning.
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Table 4 Results obtained in the multiclass setting on different folds in the case with 15 fully annotated images and 213 weakly annotated images.
The numbers in brackets denote standard deviations computed on the distribution of Dice scores for all patients.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Standard supervision, whole tumor 74.31 (13.78) 78.91 (15.41) 67.57 (23.14) 75.55 (17.59) 75.96 (16.85) 74.46 (18.04)

Mixed supervision, whole tumor 77.53 (12.81) 82.20 (9.39) 73.72 (16.37) 80.96 (13.40) 82.55 (9.38) 79.39 (12.99)

Standard supervision, tumor core 61.17 (23.64) 63.89 (22.79) 55.72 (26.34) 55.36 (28.33) 63.18 (27.06) 59.87 (25.97)

Mixed supervision, tumor core 62.83 (24.65) 65.26 (22.63) 62.23 (25.82) 61.99 (27.87) 67.23 (21.74) 63.91 (24.72)

Standard supervision, enhancing core 66.15 (24.58) 64.83 (23.14) 53.83 (25.52) 61.68 (24.38) 62.77 (24.77) 61.85 (24.86)

Mixed supervision, enhancing core 68.33 (21.70) 68.39 (18.55) 59.51 (26.07) 68.63 (21.76) 63.70 (25.14) 65.71 (23.07)

Note: The bold values highlight the higher accuracy in a given test (comparison of the two models).

Table 3 Results obtained for the three binary problems (whole tumor, tumor core, enhancing core) on different folds in the case with 15 fully annotated
images and 213weakly annotated images. The numbers in brackets denote standard deviations computed on the distribution of Dice scores for all patients.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Standard supervision, whole tumor 76.23 (14.68) 78.15 (19.24) 78.13 (16.88) 77.67 (18.46) 79.35 (13.76) 77.91 (16.77)

Mixed supervision, whole tumor 82.36 (9.28) 81.03 (10.21) 78.96 (12.47) 79.88 (13.60) 82.35 (9.16) 80.92 (11.17)

Standard supervision, tumor core 61.46 (28.94) 61.17 (26.55) 56.68 (27.90) 56.42 (28.63) 55.94 (32.17) 58.33 (29.00)

Mixed supervision, tumor core 63.15 (25.92) 66.82 (21.74) 63.45 (26.73) 60.83 (27.22) 61.91 (29.40) 63.23 (26.40)

Standard supervision, enhancing core 66.33 (24.51) 61.08 (26.49) 57.86 (25.85) 68.09 (22.40) 61.02 (27.82) 62.88 (25.80)

Mixed supervision, enhancing core 68.72 (23.66) 70.65 (17.91) 60.34 (25.84) 67.55 (20.49) 65.80 (25.46) 66.61 (23.12)

Note: The bold values highlight the higher accuracy in a given test (comparison of the two models).

Fig. 9 Comparison of our approach with the standard supervised learning for binary segmentation of the
whole tumor region. Each row represents the same test example (first image of Fig. 4) from a different
training scenario (5, 15, or 30 fully annotated scans available for training). FA andWA refer, respectively,
to the number of fully annotated MRI and weakly annotated MRI (with slice-level labels). The results are
displayed on MRI T2-FLAIR sequence. The performance of both models improves with the number of
manual segmentations available for training.
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training scenarios and for all tumor subregions. The results
obtained with mixed supervision are therefore more stable than
the ones obtained with the standard supervised learning.

All improvements were found statistically significant for
binary segmentation problems. In the multiclass case, all
improvements were found statistically significant except for
enhancing core in the first training scenario and for whole tumor
in the third training scenario.

Qualitative results are displayed in Figs. 9–11. Each figure
shows segmentations of one tumor region (whole tumor, tumor
core, and enhancing core) produced by models trained with a
varying number of fully annotated and weakly annotated images
available for training.

Segmentation performance increases quickly with the first
fully annotated cases, both for the standard supervised learning
and the learning with mixed supervision. For instance, mean
Dice score obtained by the supervised approach for whole tumor
increases from 70.39, in the case with 5 fully annotated images,

to 77.9 in the case with 15 fully annotated images. Our approach
using 5 fully annotated images and 223 weakly annotated
images obtained a slightly better performance (78.3) than the
supervised approach using 15 fully annotated cases (77.9). This
result is represented on Fig. 12.

From Fig. 13, we report cross-validated results obtained with
a varying number of weakly annotated while images keeping a
fixed number of fully annotated images. This complementary
experiment is performed for segmentation of whole tumor in the
first training scenario (five fully annotated images). We observe
that the improvement slows down with the number of added
weakly annotated scans. Inclusion of the first 100 weakly anno-
tated MRIs yields an improvement of approximately five points
of the cross-validated mean Dice score (from 70.39 to 75.28),
whereas the addition of the remaining 123 weakly annotated
images improves this score by three points (from 75.28 to 78.34).

Note that each fully annotated case corresponds to a large
3-D volumewith voxelwise annotations. Eachmanually segmented

Fig. 10 Comparison of our approach with the standard supervised learning for binary segmentation of
the tumor core region (test example corresponding to the bottom image of Fig. 4). Each row corresponds
to a different training scenario (5, 15, or 30 fully annotated scans available for training). FA and WA refer
to the numbers of fully annotated and weakly annotated scans. The results are displayed on MRI T1
+gadolinium. The observations are similar to the problem of binary segmentation of the whole tumor
region. In particular, in the first training scenario, the standard supervised approach does not detect
the tumor core zone in contrast to our method.
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axial slice of size 240 × 240 corresponds to 57,600 labels, which
represents indeed a huge amount of information compared to
one global label simply indicating the presence or absence of
a tumor tissue within the slice.

In terms of the annotation cost, manual delineation of tumor
tissues in one MRI may take about 45 min for an experienced

oncologist using a dedicated segmentation tool. Determining the
range of axial slices containing tumor tissues may take 1 to 2 min
but can be done without specialized software. More importantly,
determining global labels may require less medical expertise
than performing an exact tumor delineation and can, therefore,
be performed by a larger community.

5 Conclusion and Future Work
In this paper, we proposed a deep learning approach for tumor
segmentation, which takes advantage of weakly annotated medi-
cal images during the training of neural networks, in addition to
a small number of manually segmented images. In our approach,
we propose to use neural networks producing both voxelwise
and image-level outputs. The classification and segmentation
subnetworks share most of their layers and are trained jointly
using both fully annotated and weakly annotated data. We per-
formed a large number of cross-validated experiments to test
our method in both binary and multiclass settings. Our experi-
ments showed that the use of weakly annotated data improves
the segmentation performance significantly when the number of
manually segmented images is limited. Our model is end-to-end
and straightforward to implement with common deep learning
libraries, such as Theano41 or TensorFlow.42 To encourage other
researchers to continue the research in the field, the code of our
method will be made publicly available on https://github.com/
PawelMlynarski/segmentation_mixed_supervision.

In our paper, we focused on the 2-D segmentation problem,
in particular, because all 3-D images from the BRATS 2018
database contain tumors, whereas we also need nontumor
images to train the classification part of our model. A practical
difficulty of collecting databases containing both tumor and
nontumor 3-D scans is the heterogeneity of available imaging
modalities. For example, MRI + gadolinium, commonly used
for tumor imaging, is generally available for patients with sus-
pected tumors or vascular problems (requiring imaging of blood
vessels using a contrast product). In this paper, we chose to
focus only on the problem of available ground truth annotations,
assuming the availability of the same imaging modalities for all
patients, for both supervised learning and learning with mixed
supervision. Dealing with the variability of available modalities
is a very important problem of medical imaging and is beyond
the scope of this paper.

Extension of our model to an end-to-end segmentation of
entire 3-D scans could be difficult with the current GPUs
because of computational costs of CNNs. One advantage of

Fig. 11 Comparison of our approach with the standard supervised
learning for binary segmentation of the “enhancing core” region.
Each row corresponds to a different training scenario (5, 15, or 30 fully
annotated scans available for training). FA and WA refer to the num-
bers of fully annotated and weakly annotated scans. The results are
displayed on MRI T1+gadolinium. The example shows false positives
obtained by the model trained with standard supervision. The number
of false positives decreases with the number of fully annotated images
available for training. No false positives are observed for our model
trained with mixed supervision, in any of the three training scenarios.

Fig. 12 Illustration of the improvement provided by the mixed supervision for binary segmentation of
the whole tumor region (mean Dice scores and their standard deviations). Mixed supervision using
5 fully annotated MRI and 223 weakly annotated MRI obtains a slightly better performance than the
standard supervised approach using 15 fully annotated MRI. The improvement provided by the weakly
annotated images decreases with the number of available ground truth segmentations.
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a 3-D model would be to take into account a richer spatial con-
text in the case of MRI or CT scans. Furthermore, volume-level
labels require less effort than slice-level labels and would, there-
fore, be easier to obtain, even if these labels are also less inform-
ative. However, 2-D CNNs still perform reasonably well on 3-D
scans. As reported in the last row of Table 1, U-Net processing
independently axial slices obtains a mean Dice of almost 0.87
for the whole tumor region and of 0.77 for the tumor core region,
using 228 fully annotated images (80% of the database of
BRATS), without any postprocessing.

In our tests, we used approximately 220 weakly annotated
MRI, which is a relatively limited number. An important future
step would be to test our method on a database containing
a considerably larger number of weakly annotated images
(thousands, millions).
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