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ABSTRACT. Thermophotovoltaics (TPV) is a technology that converts heat to electricity using a
thermal emitter and a matched photovoltaic (PV) cell. TPV is becoming increasingly
popular due to its advantages of silent power generation, higher power density
(>2.5 W∕cm2), reduced cost, no moving parts (thus, low maintenance costs), reach-
ing full power in less time as compared to turbines, operating at high temperatures,
and suitability for long-duration energy storage applications. This study conducts
a techno-economic analysis (TEA) of a solar energy conversion (using TPV) and
storage system (using phase-change materials). We optimize the levelized cost of
consumed energy (LCOE) and electricity (LCOEel) using the Nelder-Mead algorithm
for four scenarios (as identified in the reference study). These scenarios differ in
nominal-weighted average cost of capital (WACCnom), fuel and electricity inflation
rate, and capital cost factor (CAPEX) of high-temperature energy storage (HTES),
power generation unit (PGU), and PV systems. We perform a sensitivity analysis
that predicts a modest decrease in LCOE and LCOEel from the mean values of
$0.038/kWh and $0.128/kWh, respectively. We perform a Monte Carlo uncertainty
assessment and fit a probability distribution based on input variables’ historical data
from the literature. The fitted probability distribution for outputs (mean, the standard
deviation in brackets) is LCOE ($/kWh)—general extreme value (0.035, 0.009), and
LCOEel ($/kWh)—t (0.132, 0.016). The reduced mean values for the optimized
system indicate a massive potential for TPV to be economically feasible; however,
the LCOEel is higher than the current average electricity price of $0.124/kWh.
The box plot shows that lifetime, PV CAPEX, inflation rate, natural gas price, and
WACCnom significantly impact LCOE, and future research focused on them would
lead to a better adoption of TPV technology.
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1 Introduction
The adverse effects of climate change and global warming are showing up in numerous sectors,
including agriculture, decrease in crop productivity;1 food security, increase in food prices,1
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food inequalities, and risks and uncertainty in local and global food systems;2 biodiversity;3–5

water resources;6 and extreme weather events7 and are set to worsen in the coming decades. To
tackle these pressing impacts of climate change, a near-total decarbonization (carbon dioxide,
CO2 emission reduction by 50% to 90%) of the energy sector is recommended.8 One of the best
and the most prominent strategies to decarbonize the energy grid and limit global warming to
1.5°C (and thus reduce its harmful effects) is increasing the share of renewable energy technol-
ogies such as hydropower, solar photovoltaic (PV), and wind.9,10 Some economists argue that
supporting low-carbon technologies is the second-best strategy after carbon pricing.11

Thermophotovoltaics (TPV) is an emerging decarbonization and renewable energy technol-
ogy that converts heat to electricity. Figure 1 shows the TPV process schematic. It requires a heat
source that can be any of these four: solar, chemical, nuclear, or electrical.13–15 The heat from
these sources (in the range of 1300 to 2500 K)13,16 or waste heat sources17 are incident on the
absorber/emitter, which converts it into radiation. The absorber/emitter acts as an infrared (IR)
bandpass filter that absorbs IR photons from the heat source as a broadband blackbody spectrum
and emits filtered IR photons matching the bandgap of the PV cell for efficient power conversion.
An ideal emitter also serves as a heat barrier for the PV cell, blocking sub-bandgap photons
emitted from the heat source. The overall TPV system efficiency (ηTPV) is defined in Eq. (1).

12,18
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where Pout is the generated electrical power, Qh is the heat flow out of the emitter surface, SE is
the spectral efficiency, IQE is the internal quantum efficiency (SE and IQE combined represent
the amount of absorbed heat by the cell, Qabs converting to the product of short-circuit current,
Jsc and cell bandgap voltage, Vg), VF is the voltage factor (a measure of bandgap utilization, the
ratio of open-circuit voltage, VOC and bandgap voltage, Vg), FF is the fill factor (ratio of gen-
erated power, Pout, the product of maximum power point voltage, Vmpp and current, Jmpp and the
product of Jsc and VOC), and CE is the cavity efficiency (represents the emitter-cell combination
effectiveness as a ratio of Qabs and Qh).

12

1.1 Spectral Control
Spectral control refers to the employed techniques that increase the spectral efficiency by increas-
ing the in-band radiation/photons that reach the PV cell. Spectral control in the TPV system is
achieved using an IR emitter. There are two types of emitters: broadband and selective narrower
band emitters. A broadband emitter emits a broad spectrum of blackbody radiation, which
includes the undesired sub-bandgap photons. The sub-bandgap photons are reflected back into

Fig. 1 TPV process schematic showing heat conversion to electrical power by the emitter and
a PV cell (adapted from Burger et al.12).
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the cell absorber using either a back-surface reflector (BSR) (silver (Ag), gold (Au), aluminum
(Al),19 etc.) or a front-surface filter (FSF) to enhance photon recycling in the PV cell, a common
strategy to increase power efficiency of PV cells.20 The sub-bandgap photons’ reflection transfers
the sub-bandgap light energy and prevents the PV cell from heating, which increases spectral
efficiency and thus ηTPV[Eq. (1)]. Instead of using a BSR or an FSF, the emitter itself can be
modified (called a selective emitter) using rare earth metals/oxides21 to radiate only the valuable
part of the spectrum. Selective emitter allows using a low-temperature emitter (400 to 1400 K),
lower thermal stresses, a wide range of available materials, and improved material stability.22,23

Selective emitters help reduce thermalization in PV cells but reduce the in-band power density.24

The broadband emitters have higher in-band power density but reduce the overall efficiency;
thus, both the broadband and selective emitters have tradeoffs, and a suitable emitter is chosen
based on the application.

1.2 TPV Advantages
TPV is increasingly becoming popular as an energy conversion pathway due to its numerous
applications, some of which include energy storage, combined heat and power25 (CHP), waste
energy recovery,17,26 and in-space programs.12,27 It can be used for CHP applications as it pro-
vides electricity and heat (it can also store heat due to its compatibility with storage applications).
Due to its higher power density12 (>2.5 W∕cm2) and reduced cost, there has been an increasing
focus on energy storage using TPV, called thermal energy electrical storage (TEES) or thermal
energy grid storage (TEGS) that is competitive with electrochemical batteries.12,28 It also provides
modular and silent power generation,25 is compatible with a variety of fuels/heat sources (includ-
ing waste heat), and has no moving parts (thus low maintenance costs). TPV is often compared
with the most widespread method of power generation nowadays, power cycles using turbines. It
reaches full power in less time as compared to turbines (starting time in order of seconds as
compared with tens of minutes to an hour), operates at high temperatures29 (due to its con-
tact-less nature),30 and is suitable for long-duration energy storage applications.12,25 Due to
material and technological constraints, turbines have an upper limit on the operating temperature,
which is ∼1500°C for the Brayton cycle and 700°C for the Rankine cycle. The efficiency upper
limit is closely tied to this temperature limitation, around 38% for the Brayton cycle and 23% for
the Rankine cycle.27 TPV can operate at much higher temperatures (around 1700°C) and has an
efficiency approaching 40%.28 New TPV thermal energy storage technologies have the potential
for commercialization and deployment at a large scale.25 At the same time, turbine-based heat
engines are high-risk applications due to their low efficiencies and thus require a significant
capital investment.29 The literature has several new studies related to the spectral control, pro-
totyping, modeling, economic analysis, and energy storage applications of TPV systems.31,32

1.3 TPV Prototype and Modeling
There are a few models in the literature to predict experimental results from TPV technology and
help it scale up and build a practical design for a prototype. Woolf et al.33 modeled a TPV system
consisting of a selective emitter, a dielectric filter, and a PV cell. They predicted accurate photo-
voltaic conversion efficiency with the model. Hassan et al.34 modeled the optical (emitter-side
spectral and spatial subsystem) and photovoltaic subsystems for a TPV system and observed the
effects of emitter features on the optimum bandgap and overall efficiency. A recent innovative
TPV study used machine learning to automatically model and optimize multilayer thin film struc-
tures to design an ideal spectral response.35 Their deep learning-based model is efficient and
accurate (to predict target spectra) and reduces resource consumption compared with complex
numerical models.

1.4 TPV Economic Analyses
Some researchers have worked on evaluating the economic feasibility of TPV systems; however,
it is still in its developing stages. Bianchi et al. (2012)21,36 established an energy and economic
evaluation framework for a TPV system for combined heat and power (CHP) application in a
residential building. They calculate parameters such as primary and electrical energy consump-
tion, primary energy savings, cost of electricity, and money savings. They conclude that the TPV
system has immense potential as it reduces purchased grid electricity and increases monetary
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savings. Fraas et al.37 performed a preliminary techno-economic analysis (TEA) for a TPV fur-
nace-generator system suitable for CHP applications. It consisted of a silicon carbide (SiC) radi-
ant tube burner surrounded by a cylindrical silicon (Si)/gallium antimonide (GaSb) PV converter
array, along with an antireflection-coated tungsten foil and an infrared filter over the cells to
reduce out-of-band absorption. The system’s electrical efficiency with a Si array and a standard
furnace (without any furnace modifications) was found as 1.5% (and a power density of
0.3 Wcm−2), and for a system with the low-bandgap GaSab cells, it was found as 15% (higher
due to better spectral control, power density = 1 Wcm−2). Their proposed TPV CHP unit would
be economically feasible for integration into homes when the GaSb cells and arrays reach the
desired low production cost. Their fuel-powered TPV system is suitable for distributed CHP
applications and can be installed in homes for Winter, and renewable energy sources can be
utilized in summer. Durisch and Bitnar propose a novel design of a self-powered residential
electric heating system based on TPV technology.38 Their system consists of a ytterbium oxide
(Yb2O3) selective emitter and thin film solar cell materials (such as Si) or copper indium gallium
selenide (Cu(In,Ga)Se2) (CIGS). Thin film cells are typically 100 to 1000 times thinner than the
conventional crystalline Si solar cells, thus saving extensive material and fabrication costs. Yb2O3

produces a selective emission spectrum and has a suitable bandgap to be used with Si or CIGS
photocells. Their novel TPV system requires a production cost reduction to be feasible. However,
it has the potential to be a basis for next-generation TPV technology to power off-grid homes and
large-scale industries. The following section focuses on previous efforts in the literature on inte-
grating energy storage and TPV and its economic feasibility.

1.5 Energy Storage Using TPV
Renewable energy sources such as solar PV and wind have the disadvantage of intermittency:
they are only sometimes available throughout the day, which creates an imbalance between the
load and energy generation (especially during peak hours). Energy storage technologies help
tackle this problem by storing excess renewable energy that can be used when the energy
required by the load is higher than the energy generated and thus would be an integral part
of future grid networks to help increase power system flexibility and stability and ensure a
smooth transition for decarbonization.39,40 Electrochemical batteries (such as Li-ion) offer a
cheap solution for energy storage due to the abundance of Li and other metals like cobalt and
nickel used in electric vehicles and electricity storage batteries.41 Low prices are due to excess
supply and low demand, which did not meet the high demand expectations after the coronavirus
disease (COVID-19) pandemic in 2020. Low demand might not encourage their mining in the
future, but the demand is expected to go up; thus, there are high chances of high prices of these
metals (and batteries). In this paper, we consider storing renewable and grid electricity as an
emerging alternative to electrochemical batteries.

Storing electricity as heat, sometimes called electrothermal energy storage (ETES), is a pos-
sible solution to decarbonize industrial heating systems and can reduce up to 40% of 2022 global
natural gas use and 14% of global energy greenhouse gas (GHG) emissions.42 Many commer-
cially available technologies for storing energy as sensible heat for industrial processes require
high temperatures. Rondo Energy has designed a way to store excess renewable energy as high-
temperature heat in insulated material at more than 1200°C for industrial applications.43 Using
renewable energy for industrial processes would help reduce its significant GHG emissions,
especially from the two processes that release most emissions—the iron and steel industry44

(ISI) and cement manufacturing.45 The automotive and clean energy company Tesla mentions
in its master plan for sustainable energy that thermal batteries (with an annual energy capacity of
41 TWh) can meet global electricity and transportation storage demand, along with renewables
and other batteries.46 Octopus energy uses artificial intelligence, machine learning, and its soft-
ware system, Kraken, to balance power demand and supply using renewable energy storage
technologies.47 PV cell thermal energy storage technologies have the potential for commerciali-
zation and deployment at a large scale. In literature, there has been a focus on a few storage
mediums, such as Si/Si alloys (phase-change materials, PCMs having high-energy densities >
1 MWh∕m3 and low cost < 4€∕kWh ¼ 4.31 ∕kWh,25,48 graphite,49 Fe-Si-B alloy,25,50 alumina
fiber board.51 For long-duration energy storage systems (10 to 100 h), it is essential to reduce the
cost per unit energy (CPE) more than the cost per unit power (CPP) and round trip efficiency
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(RTE).25 Datas et al. analyzed a storage-integrated solar thermophotovoltaic (SISTPV) system,
combining the TPVand PCMs.52 They perform a steady-state analysis for a system using PCM to
store incoming heat as latent heat, which is then used to produce electricity via the TPV system.
Sensible heating systems need temperatures of more than 1500°C to operate, thus more chal-
lenging insulation requirements, but not latent heat units, as they operate at a constant discharge
temperature. In a subsequent paper, they performed a transient analysis for the same SISTPV
system.53 They obtained promising results but mentioned that future technological improvements
must be made to the model to perform an in-depth analysis. Datas et al.30 designed a thermal
energy storage system using phase change materials (PCMs) that convert electricity to latent heat
(stored in PCM), which is then converted to electrical energy via TPV cells. Electricity is stored
as heat in the PCM, which is inefficient, but it is economical to store heat that need not be con-
verted to electricity due to heating loads.25,49 As opposed to sensible heating storage mediums,
latent heat provides the benefit of almost constant discharge temperature, which ensures the
decoupling of energy storage and power generation capacity and operation at lower temperatures.
They considered ideal TPV cells with 100% internal luminescent efficiency ηint (the fraction of
electron-hole pairs that recombine radiatively within the semiconductor), a bandgap of 0.5 eV
and BSR reflectivity of 80% and 100% (which denote the practical and ideal values, respec-
tively). They obtained a maximum total energy density (thermal + electrical) of 1 MWh/m3 and
electrical energy densities of 200 to 600 kWh∕m3, comparable to the state-of-the-art lithium-ion
(Li-ion) batteries. Datas et al.25 estimate the levelized cost of electricity (LCOE), CPE, and CPP
for a latent heat TPV (LHTPV) system. Their latent heat TPV (LHTPV) system stores the incom-
ing power as heat with the help of a PCM (Si or FeSiB). First, the incoming power (from the grid
or solar panels) is converted to heat via a heater (ohmic/induction/microwave/arc system) using
an electric switch. The heat then melts the PCM (initially a solid), and the power is stored as
latent heat in it. When the TPV cells are introduced into the system, the heat is transferred to the
emitter of the TPV arrangement, and the PCM starts to solidify. For a detailed system embodi-
ment, readers are referred to the original paper.25 The PCM then converts heat to electricity as and
when required with the help of a TPV cell. Amy et al.29 presented a TEGS unit consisting of
integrating energy storage with multi-junction PV (MPV) cells. In their proposed system, they
first convert electricity to heat via joule heating of liquid Si. The heat is stored at 2400°C in
a storage tank, then converted back to electricity on demand via MPV cells. They introduce
a framework to evaluate economic feasibility using cost per unit energy (CPE), power (CPP),
and the RTE.29 They conclude that their TEGS system using MPV cells has the potential to be
economically feasible and can enable high renewable energy penetration in the grid. Kelsall et al.
modified the TEGS system presented by Amy et al. to include a multi-junction TPV cell, a solid
graphite storage tank, and tin (Sn) as a heat-transfer fluid instead of liquid Si tanks.19 This
replacement by graphite and Sn is because of their advantages of low melting point and low
solubility of Sn in graphite. Their TEA concludes that the CPE for their system can be below
the target value of €20∕kWhe

54 (= 21.55∕kWhe) after the production capacity reaches a 100 MW
target. A bottom-up TEA for highly concentrated PV modules suggests that the present PV cell
cost can be reduced from a present value of €2∕cm2 to €0:2∕cm2 by reusing the substrate and
reducing metallization costs, among other improvements.55 Thus, there is an immense potential
in energy storage using TPV, as seen from literature studies. Section 2 describes our methodology
to obtain our economic analysis and uncertainty assessment results.

This study performs a techno-economic analysis and uncertainty assessment (using Monte
Carlo simulations) and calculates the CO2eq. emissions of energy storage using TPV. We are not
aware of any literature studies performing Monte Carlo simulations for the TEA and CO2eq.
emissions of a TPV system. However, Monte Carlo simulations are essential for evaluating the
uncertainty in input parameters, which is essential for evaluating the robustness of emerging TPV
systems. The findings from this study could inform performance improvement targets and
metrics for various grid resilience applications.

2 Methodology
We calculate and optimize the levelized cost of consumed energy (LCOE) and electricity
(LCOEel) for a TPV system for a typical residential building in Boone, Iowa, based on a model
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built by Datas et al.56 Their energy storage system is depicted in Fig. 2. It includes three energy
sources—solar PV, electricity grid, and natural gas; a boiler (running on natural gas); two heat
storages: low-temperature energy storage (LTES) and high-temperature energy storage (HTES);
a power generation unit (PGU, here, it is a TPVunit); and a heat pump (either electric or thermal).
Their energy management algorithm is shown in Fig. 10, along with our modifications high-
lighted in yellow. It computes the energy going into each storage based on the electric and heat
demand and generation interplay. The algorithm details are provided in Appendix A.

We model this algorithm in Python (code available on GitHub57 and explanation provided in
Appendix E) and minimize LCOE and LCOEel, using the Nelder-Mead algorithm by varying the
power capacity of the PV (Pnom), HTES (HTESmax), and PGU (PGUmax) units. Nelder-Mead is a
classic, direct search (no gradient knowledge needed) function minimization method that uses a
simplex (function evaluations at different test points) and finds the following test points (the next
simplex) using operations of reflection, expansion, contraction, and shrinkage.58

The inputs to the model are mentioned in Tables 1 and 2. LCOE and LCOEel are defined in
Eqs. (3) and (4). Minimizing LCOEel also minimizes Pgrid and increases the amount of electricity
supplied from the HTES unit, as the LCOEel’s operating expenditure (OPEX) term increases
with Pgrid, as observed in Eqs. (3) and (4).

To consider parameter uncertainty, we perform a scenario analysis (as performed in the refer-
ence study56) that calculates LCOE and LCOEel based on current and future improvements and

Fig. 2 System model showing energy sources and energy transfers to satisfy electricity consump-
tion and heating and cooling loads (adapted from Datas et al.56).

Table 1 List of important input model parameters from the reference study56 and a report by
Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory.59

Input parameter Value Unit

HTES maximum capacity (optimized) 80 kWhth

LTES maximum capacity (optimized) 80 kWhth

PGU efficiency 25 %

PGU maximum generation capacity 1.5 kWel

Building annual electricity consumption 7.73 MWh

Building annual heat consumption 39.63 MWh
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tradeoffs in parameters such as HTES, PGU, PV capital cost, fuel (Inflfuel), and electricity (Inflel)
inflation rates, and the nominal weighted average cost of capital (WACCnom). It tells how
the LCOE and LCOEel would change if the present parameters change in the future due to
production scale-up and other changes. The scenarios are taken from the reference study and
are mentioned in Table 3, where the original prices in € are converted to $.60 From scenarios
1 to 4, the WACCnom and capital cost factor (CAPEX) values increase, and inflation rates
decrease. The brackets in the first column mention an easier way of scenario representation.
For example, scenario 1 is named W2I4C32,323,970 as for this scenario, WACCnom ¼ 2%,
Inflfuel ¼ Inflel ¼ 4%, and CAPEX of HTES (CAPEXHTES), PGU (CAPEXPGU), and PV
(CAPEXPV) = $32/kWhth, $323∕kWel, and $970∕kWel, respectively.

Sensitivity or scenario analysis does an excellent job of performing a preliminary uncertainty
analysis by considering a range of values for the uncertain parameters. However, it does not
adequately represent the uncertainty as they are still supplied as a fixed data point to the model
at a time (there are still uncertainties within each parameter).61,62 We thus perform a Monte Carlo
uncertainty assessment to better model the uncertainty in some input parameters. The Monte
Carlo method is an analysis tool that uses random numbers (generated using a probability
distribution for each parameter) to calculate the output for a modeled stochastic process.63

The Monte Carlo method is already being used for advanced energy management algorithms
for household systems,64 renewable energy hubs,65 and hospitals,66 to name a few. It has also
been used for TPV applications since 1997 when Gethers et al.67 used it to track millions of
photons from birth to death (by absorption or escape) and simulated individual probabilistic
events sequentially to evaluate the TPV array’s heat flux absorption and electrical performance.
Since then, it has also been used to model TPVefficiency68 and radiative energy transfer,69 among
other aspects.

The steps involved in the Monte Carlo method are listed in Appendix C.

Table 2 List of important input model economic parameters (capital cost of LTES unit, fixed cost of
grid electricity, and fixed cost of fuel obtained from the reference study56 and the rest from Monte
Carlo distributions—see Fig. 3).

Input parameter Value Unit

Capital cost of PV unit 914.98 kWel

Capital cost of PGU unit 1184.66 kWel

Capital cost of HTES unit 118.4 kWhth

Capital cost of LTES unit 32.32 kWhth

Variable cost of grid electricity 0.124 kWel

Fixed cost of grid electricity 53.87 kWel∕year

Variable cost of fuel 0.015 kWhth

Fixed cost of fuel 64.65 kWhth∕year

Lifetime 24.34 years

Table 3 Scenario analysis inputs (prices converted to $ from €).

Scenario
WACCnom

(%)
Inflel and
Inflfuel (%)

CAPEXHTES

($/kWhth)
CAPEXPGU

($/kWel)
CAPEXPV

($/kWel)

1 (W2I4C32;323;970) 2 4 32.325 323.25 969.75

2 (W2I4C108;970;1077) 2 4 107.75 1077.5 1293

3 (W3I2C108;1077;1293) 3 2 107.75 1077.5 1293

4 (W3I2C215;2155;1293) 3 2 215.5 2155 1293
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Our modifications to the original LCOE and LCOEel minimization done in Datas et al.56 are
listed below:

a. Replacing the PGU unit with a TPV unit and using its actual efficiency values
b. Modifications to the original energy management algorithm, as shown in Fig. 10
c. Updating input parameter values obtained from the literature and using actual building

energy consumption data
d. Providing a better estimate of LCOE and LCOEel after considering the uncertainty in input

parameters via a Monte Carlo uncertainty analysis
e. Performing a sensitivity analysis and quantifying the total CO2eq. emissions

3 Results and Discussion
First, we discuss the results obtained from the TEA of the TPV system for the scenarios in the
reference study (scenario analysis results). We then conduct a TEA from the updated scenario
inputs from the literature. We calculate the base case and optimized values for various param-
eters. The base-case value is the one without LCOE∕LCOEel optimization and thus has a higher
cost than the optimized case where the system size is varied for cost minimization.

3.1 Scenario Analysis Results
The results for scenario 1, W2I4C32,323,970, are displayed in Table 4 based on the inputs listed in
Tables 1, 2, and 3. We obtain the minimum base-case LCOE and LCOEel as $0.046/kWh and
$0.17/kWh, respectively.

From Table 4, for the base-case scenario, the power obtained from the grid = 5.13 MW
(= 55% of the total power demand), from solar PV = 3.93 MW (= 43% of the total power
demand), and from the PGU (by stored energy in HTES) = 0.18 MWh (= 2% of the total power
demand). These three sources satisfy entirely the power demand of 9.24 MW. HTES energy
losses constitute 79% of the incoming solar PV energy into HTES (=3.59 MW), and the rest
is mainly passed to the PGU (20%) or stored in HTES at the end of the year (less than 1%).
These numbers change for the optimized case, represented in the fourth column of Table 4. HTES
energy losses decrease to 66%, and the heat passed to the PGU increases to 33%. Less than 1% of

Table 4 Base-case and optimized inputs and results for scenario 1 (W2I4C32,323,970).

Parameter Base-case value Optimized value Unit

Solar PV size 9.5 5.0 kW

HTES maximum capacity 40.0 15.0 kWhth

PGU maximum generation capacity 1.0 0.504 kW

Power obtained from the grid 5.13 4.99 MW

Power supplied from PGU/TPV by stored energy in HTES 0.18 0.31 MWh

Power supplied from PV 3.93 3.93 MW

Power supplied by the system 9.24 MW

Heat supplied from LTES 0.38 0.57 MWh

Heat supplied from the external boiler 39.25 39.06 MWh

Heat supplied by the system 39.63 MWh

Power generated from PV 7.73 MW

Total system losses 3.31 2.96 MWh

Self-consumption ratio 57.18 61.68 %

LCOE 0.046 0.041 $/kWh
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the energy is stored in HTES at the end of the year, as most of it is passed to the PGU to satisfy the
electrical load. LTES supplies only 0.96% of the heating demand due to the algorithm’s priority
of HTES for energy storage over LTES (as defined in the reference study56). LTES stores energy
only when it is not fully charged, and the HTES is either almost entirely (> 99%) or fully
charged. The external boiler supplies the rest (99%) of the heating demand. These numbers
improve modestly after optimizing LCOE, and the LTES supplies 1.5% of heating demand, and
the external boiler supplies less energy = 98.5%. Thus, optimizing the system or searching for the
least LCOE increases the energy supply from both the energy storages. Using the energy man-
agement algorithm is beneficial as it reduces the LCOE and increases solar PV’s self-consump-
tion ratio (SCR) from 57.2% to 61.7%. Less PV energy is lost, and the consumer utilizes more.

The SCR [defined in Eq. (2)] represents the amount of PVenergy generated being utilized by
the load either directly as electricity or indirectly as stored energy in HTES or LTES.

EQ-TARGET;temp:intralink-;e002;117;592Self − consumption ratio ðSCRÞ ¼ 1 −
Total system losses

Total PV power generated
; (2)

where total system losses = sum of energy losses from HTES, LTES, PGU, and PV systems.
The optimal system configuration is nominal PV capacity ðPnomÞ ¼ 5 kWel, HTES

maximum capacity ðHTESmaxÞ ¼ 15 kWhth, and PGU maximum capacity ðPGUmaxÞ ¼
0.504 kWel. The base-case system configuration (Pnom ¼ 9.5 kWel, HTESmax ¼ 40 kWhth,
and PGUmax ¼ 1.0 kW) converges to the minimum bounds for two optimized variables and
is very close to the minimum for the third one, as seen in Table 5.

We observe that the optimal solution for the economically favorable scenarios (having lower
WACCnom and CAPEX values) converges to a somewhat larger PGU system, with its size being
0.504 kWel for scenario 1 (W2I4C32;323;970). It obtains a lower Pgridð¼ 4.99 MWhÞ, whereas
small systems (nominal PV capacity = 5 kWel, HTES max. capacity = 15 kWhth, and PGU max.
generation capacity = 0.5 kWel) are obtained for unfavorable economic conditions, including
high WACCnom and high capital cost of HTES, PGU, and PV systems (their values mentioned
in Table 5, column 1). Table 5 presents the scenario analysis results—the optimum system size
(HTES, PGU, and nominal PV capacity) and the optimum LCOE and LCOEel values. The base
case and optimum LCOE and LCOEel values are also shown in Fig. 3.

Unfavorable economic conditions produce a high optimum Pgrid (=5 MWh for scenario
4:W3I2C215;2155;1293). As economic conditions become favorable (lowWACCnom and low capital
cost), we obtain a large PGU system, which becomes favorable to accommodate a large system
(a large system is needed to store the produced PV energy). The same is true for LCOEel min-
imization—scenario 1: W2I4C32;323;970 (having the least WACCnom and CAPEX) produces a
system with PGU size = 0.519 kWel. In comparison, all the rest scenarios converge on the lower
bounds and give the result as nominal PV capacity = 5 kWel, HTES max. capacity = 15 kWhth,
and PGU max. generation capacity = 0.5 kWel (a small system). This phenomenon is illustrated
in Appendix D, and an explanation is provided in Table 6.

The optimized LCOE and LCOEel values mentioned in Table 5 seem counterintuitive: their
values for the favorable scenario are higher than some unfavorable ones. This is due to the higher

Table 5 Scenario analysis results showing optimized system size (nominal PV capacity, HTES
max. Capacity, and PGU max. generation capacity) and optimum LCOE and LCOEel values.

Scenario

Optimized system size = [nominal PV capacity
(kWel), HTES max. capacity (kWhth),
PGU max. generation capacity (kWel)] Optimum values

LCOE minimization LCOEel minimization LCOE LCOEel

1 (W2I4C32;323;970) [5, 15, 0.504] [5, 15, 0.519] 0.0403 0.144

2 (W2I4C108;970;1077) [5, 15,0.5] [5, 15, 0.5] 0.0420 0.152

3 (W3I2C108;1077;1293) [5, 15, 0.5] [5, 15, 0.5] 0.036 0.139

4 (W3I2C215;2155;1293) [5, 15, 0.5] [5, 15, 0.5] 0.038 0.149
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value of Inflfuel and Infle l for favorable cases, as assumed in the reference study. The LCOE
equation [Eq. (3)] has two terms involving inflation rates, and LCOEel [Eq. (4)] just has one.
This is why the effect is less pronounced for the LCOEel optimization case and more for LCOE.
Scenario 3 (W3I2C108;1077;1293) produces the least optimized LCOE and LCOEel, as it has the
right tradeoff between WACCnom and inflation rates.

Fig. 3 Base-case and optimum (a) LCOE and (b) LCOEel variation with scenarios.

Table 6 Mean parameter values, as obtained from the Monte
Carlo simulation fitted probability distributions.

Parameter Mean value

Lifetime (years) 24.34

WACCnom (%) 2.17

PGU efficiency (%) 27.45

Electricity price ($/kWh) 0.124

CAPEXPGU ($/kW) 1184.66

CAPEXPV ($/kW) 914.98

CAPEXHTES ($/kWhth) 118.4

Inflation rate (%) 2.31

Natural gas price ($/kWh) 0.015
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3.2 Sensitivity Analysis and Monte Carlo Risk Assessment Results
Based on historical data from the literature, the fitted distribution for the non-triangular distrib-
uted parameters—natural gas price is a general extreme value, Inflel and Inflfuel is t; CAPEXPV

70

is a general extreme value; and electricity price is Weibull distribution, as shown in Fig. 4, along
with their 10 and 90% confidence interval limits.

Now, we mention the results from the scenario analysis we used for our study. First, the base-
case and optimized LCOE and LCOEel for a mean scenario are illustrated in Fig. 5. For this
scenario, we chose the mean parameter values (listed in Table 6 and Fig. 4) from the fitted
Monte Carlo distributions. The values in Table 6 differ from the ones used in the four scenario
analyses previously as those values were obtained from the reference study,56 and these updated
values are obtained from the fitted probability distributions.

LCOE and LCOEel are defined in Eqs. (3) and (4). LCOE represents the cost of supplying
both heat and electricity; however, LCOEel only takes into account electricity costs. LCOEel was
defined in the reference study as an alternative to LCOE to lower the payback period (LCOE
minimization converges to a larger system, thus high investment and longer payback period) at
the cost of obtaining a higher value for LCOEel. For our study, Fig. 5 shows the base-case LCOEel

Fig. 4 Fitted probability distributions and 90% confidence limits for Monte Carlo parameters. Their
distributions, mean, and standard deviation are as follows: (a) Lifetime (triangular distribution:
24.34 years, 2.47 years), (b) WACCnom (triangular distribution: 2.17%, 0.31%), (c) PGU efficiency
(triangular distribution: 27.45%, 5.08%), (d) electricity price (Weibull distribution: $0.124/kWh,
$0.015/kWh), (e) CAPEXPGU (triangular distribution: $1184.66/kW, $373.18/kW), (f) CAPEXPV

(general extreme value distribution: $914.98/kW, $145.41/kW), (g) CAPEXHTES (triangular distri-
bution: $118.40/kWh, $37.60/kWh), (h) inflation rates—Inflfuel and Inflel (t distribution: 2.31%,
2.11%), and (i) natural gas price (general extreme value distribution: $0.015/kWh, $0.011/kWh).
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is $0.165/kWh, which is reduced by 22% to $0.129/kWh on optimization. The optimized value is
very close to the average price of electricity obtained in Monte Carlo simulations (Fig. 4) =
$0.124/kWh. Energy storage using TPV can thus be profitable in the future. To assess future
scenarios, we performed a sensitivity analysis and Monte Carlo simulations on the optimized
system, which reduced LCOE and LCOEel, and the results are mentioned in the next section.

LCOE has a much smaller value of $0.045/kWh and optimizes to $0.038/kWh. For both
LCOE and LCOEel, the optimum system converges to the smallest system size: nominal PV
capacity = 5 kWel, HTES max. capacity = 15 kWhth, and PGU max. generation capacity
kWel ¼ 0.5 kW. Based on this optimized system, we perform a sensitivity analysis based on
the same parameters we considered for the uncertainty assessment. The results are displayed
in Fig. 6 for parameters with values�25% from the mean values listed in Table 6. The parameters
having the most significant impact on LCOE and LCOEel are Inflfuel and Inflel, electricity price,
CAPEXPV, lifetime, and natural gas price (only for LCOE), with a potential cost reduction of
around 10% by the most dominant parameter (natural gas price for LCOE and Inflfuel and Inflel for
LCOEel). LCOEel does not change with natural gas prices because it only considers electricity,
not heating requirements.

Figure 7 shows the Monte Carlo uncertainty assessment results for LCOE and LCOEel (for
an optimized system: nominal PV capacity = 5 kWel, HTES max. capacity = 15 kWhth, PGU
max. generation capacity kWel ¼ 0.5 kW). We depict the confidence intervals for our large sam-
ple analysis and do not rely on the p-values as they offer little insight for large samples.71 The
fitted distribution for LCOE is a general extreme value distribution, with a mean of $0.035/kWh
and a standard deviation of $0.009/kWh, and that for LCOEel is a t distribution, with a mean of
$0.132/kWh and a standard deviation of $0.016/kWh. The previously obtained optimized
LCOE and LCOEel values listed in Table 5 (scenario analysis results) are within the 10% and
90% confidence limits. Thus, we obtained similar cost numbers to those in reference study56

even after updating the assumptions and input values. The optimized LCOE from Fig. 6 is
$0.033/kWh, close to the mean ($0.035/kWh) and median ($0.039/kWh) values obtained here,
and is much less than the electricity price mean ($0.124/kWh), but is higher than the natural gas
price mean ($0.015/kWh). LCOE represents the cost of consumed energy (heat and electricity)
and thus is compared with both mean values. Adding storage units and PV energy sources
increases the price of the supplied energy, but it can be reduced, as shown in sensitivity analysis
and uncertainty assessment results.

The optimized LCOEel, as mentioned in Fig. 5, is $0.129/kWh. The mean value calculated
from the uncertainty analysis is close, $0.132/kWh. Figure 7 depicts other statistical parameters
such as standard deviation = $0.016/kWh, 10%, and 90% confidence limits = (0.098, 0.165)

Fig. 5 Mean scenario (obtained from Monte Carlo results) analysis results for this study. The num-
ber on top of the bar denotes the total LCOEel∕LCOE, and the one below denotes the capital cost.
(a) Base-case LCOEel ¼ 0.165∕kWh. (b) Optimized LCOEel ¼ 0.129∕kWh. (c) Base-case LCOE =
$0.045/kWh. (d) Optimized LCOE = $0.038/kWh.
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$/kWh. It also shows the probability density function and the cumulative distribution function for
LCOE and LCOEel.

Box plots in Fig. 8 show the effects of each parameter’s uncertainty on LCOE and LCOEel.
The boxes’ left and right edges denote the 0.25 and 0.75 quartiles of the distributions (the width
of the box is termed inter-quartile region, IQR), the dotted line inside the box indicates the
median, and the whiskers and caps at the ends indicate the region from the box to the outermost
data point within 1.5 times the IQR. Figure 8 illustrates that lifetime, CAPEXPV, inflation rates,
natural gas, and electricity prices have the most considerable impact on LCOE (the same param-
eters for sensitivity analysis). LCOEel has all the same dominant parameters (except natural gas
price). A way to reduce LCOE and LCOEel would be to improve these parameters, as the boxes
primarily lean towards the left (which implies lower cost). Thus, an improvement would lead to
favorable economic results. The slightest uncertainty is observed in CAPEXPGU and PGU effi-
ciency; in other words, their variation does not have much effect on LCOE and LCOEel.

3.3 CO2eq. Emission Results
Based on the results in Fig. 5, we calculate the CO2eq. emissions from the energy system before
and after optimization using emission factors listed in Table 7. Here, we use the emission factors
for natural gas, grid electricity, and PV electricity and assume negligible emissions from the
HTES, LTES, and PGU/TPV units due to a lack of literature data. The results are shown in
Fig. 9. We observe that before using energy storage (using natural gas for heating and grid elec-
tricity), natural gas CO2eq. emissions are the highest (=7.166 tons/year) and reduce modestly for

Fig. 6 Sensitivity analysis results for (a) LCOE and (b) LCOEel with parameter values �25% from
the mean values listed in Table 6.
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the base case and optimized cases (both use energy storage). The total CO2eq. emissions for the
system with no energy storage are 9.98 tons/year. The total emissions reduce for the base case (b)
= 8.824 tons/year due to lesser dependence on natural gas and grid electricity and more utiliza-
tion of cleaner solar PVenergy to supply heat and electricity. The emissions are the lowest for the
optimized case (c) (=8.75 tons/year) due to an optimized system with less dependence on grid
electricity and an external boiler. Thus, according to our results, utilizing the energy management
algorithm for energy storage and optimizing the system reduces CO2eq. emissions by a modest
amount (12%), primarily due to less dependence on grid electricity. Renewable energy integra-
tion in future grids would reduce their environmental impact; thus, TPVenergy storage inclusion
might not significantly reduce emissions. However, a detailed life cycle assessment must be per-
formed to understand the process emissions better.

4 Conclusions and Future Work
Decarbonization using renewable energy is vital to achieving the environmental targets set by the
IPCC to keep global warming below 1.5°C. This paper performs a techno-economic analysis and
uncertainty assessment for a renewable energy technology, thermophotovoltaics (TPV). TPV
research is still in the beginning stages, with no working large-scale prototypes. Our analysis
shows that TPV still needs to be economically feasible based on previous scenarios from the
literature and updated inputs from the results of Monte Carlo simulations, but it has immense
potential. According to the authors’ knowledge, this is the first study that performs an uncertainty
assessment of the TPV technology. The critical results, conclusions, and future work from the
study are listed below:

1. From the scenario analysis (based on reference study data), we obtain a minimum LCOE
of $0.036/kWh and a minimum LCOEel of $0.139/kWh. These values are for the scenario

Fig. 7 Monte-Carlo risk uncertainty assessment results (probability density function, cumulative
distribution function, 10% and 90% confidence limits) for (a) LCOE: mean = 0.035, median = 0.039,
standard deviation = 0.009, 10% and 90% confidence limits = (0.028,0.064) (all in $/kWh) and
(b) LCOEel: mean = 0.132, median = 0.132, standard deviation = 0.016, 10% and 90% confidence
limits = (0.098, 0.165) (all in $/kWh).
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W3I2C108;1077;1293, where WACCnom ¼ 3%, Inflfuel ¼ Inflel ¼ 2%, CAPEXHTES ¼
108∕kWhth, CAPEXPGU ¼ 1077∕kWel, and CAPEXPV ¼ 1293∕kWel.

2. For the mean scenario (obtained from Monte Carlo results), base-case LCOEel ¼
0.165∕kWh, optimized LCOEel ¼ 0.129∕kWh; base-case LCOE = $0.045/kWh, and
optimized LCOE = $0.038/kWh. For both LCOE and LCOEel, the optimum system

Fig. 8 (a) LCOE and (b) LCOEel box plot representing parameter uncertainty.

Table 7 Emission factors for natural gas, grid electricity, and PV
electricity.

Parameter Value

Natural gas emission factor ðgCO2eq∕kWhthÞ 180.7872

Grid electricity emission factor ðgCO2eq∕kWhelÞ 304.1473

PV electricity emission factor ðgCO2eq∕kWhelÞ 43.0074
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converges to the smallest system size: nominal PV capacity = 5 kWel, HTES max. capacity
= 15 kWhth, PGU max. generation capacity kWel ¼ 0.5 kW.

3. The sensitivity analysis results show that the parameters having the most significant impact
on LCOE and LCOEel are inflation rates (Inflfuel and Inflel), electricity price, CAPEXPV,
lifetime, and natural gas price (only for LCOE), with a potential cost reduction of around
10% by the most dominant parameter (natural gas price for LCOE and Inflfuel and Inflel
for LCOEel).

4. According to the Monte Carlo simulations, the fitted distribution for LCOE is a general
extreme value distribution, with a mean of $0.035/kWh and a standard deviation of
$0.009/kWh, and that for LCOEel is a t distribution, with a mean of $0.132/kWh and
a standard deviation of $0.016/kWh.

5. Box plot results show that the lifetime, CAPEXPV, inflation rates, natural gas price, and
electricity price significantly impact LCOE (the same parameters for sensitivity analysis).
LCOEel has all the same dominant parameters (except natural gas price). A way to reduce
LCOE and LCOEel would be to improve these parameters; thus, there is an immense
potential for economic feasibility for TPV in the future.

6. According to the CO2eq. emissions results, the total CO2eq. emissions for the system with
no energy storage are 9.98 tons/year, for the base case are 8.824 tons/year, and for the
optimized case are 8.75 tons/year. Utilizing the energy management algorithm for energy
storage and optimizing the system reduces CO2eq. emissions by a modest amount (12%)
due to lesser dependence on natural gas for heating and grid electricity and higher utiliza-
tion of renewable solar PV energy.

5 Appendix A: Energy Management Algorithm
The energy management algorithm is shown in Fig. 10, along with our modifications highlighted
in yellow. It computes the energy going into each storage based on the electric and heat demand
and generation interplay.

The algorithm by Datas et al.56 follows this approach (which requires an input of power
consumed by the load and that produced by the solar PV system per hour): first, it computes
if there is excess electricity produced by the solar PV system [PgðtÞ] compared with the elec-
tricity consumption [PcðtÞ]. If yes, the excess energy is stored in HTES (which stores heat at high
temperature to supply to the PGU unit) if it is not fully charged; if it is fully charged and there is
a heating load, it is stored in LTES (which stores heat at low temperature and supplies it for
space and domestic hot water heating); if even this is full, this energy is lost.

Fig. 9 CO2eq. emissions in tons/year for (a) without energy storage (heat and electricity obtained
from an external boiler and the grid, respectively), (b) base case, and (c) optimized case. For each
column, the numbers represent the emissions from natural gas, grid electricity, and solar PV elec-
tricity (going from bottom to top).
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We modify their algorithm as the energy storage terms (EHTES and ELTES) for the (tþ 1)th
interval turn negative when their respective loss terms (Qloss;HTES and Qloss;LTES) begin to domi-
nate in the mass balance equation. In this modification, we make these assumptions:

1. When the loss term starts to dominate, it is possible to cut off the respective energy storage
unit. When Qloss;LTES dominates, we shut off the LTES unit for that iteration (all the inputs
and outputs are turned down to zero), the stored energy, ELTES (t), is carried forward to the

Fig. 10 Energy management algorithm from the reference study,56 with our modifications high-
lighted in yellow.
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(tþ 1)th interval, and the heat loads are supplied energy from the external boiler. Similarly,
for the HTES unit, whenQloss;HTES dominates, we shut it off for that iteration (all the inputs
and outputs are turned down to zero). The stored energy, EHTES (t), is carried forward to the
(t + 1)th interval, and the required electricity for that interval is supplied from the grid
(= Pgrid). There were a few instances when Pgrid turned out negative because electricity
generation was more significant than consumption. Solar PV supplies all the electricity
in that case, and Pgrid is reduced to 0.

2. When the heat output from LTES (Qout;LTES) is calculated as negative (due to the large
value of Eloss;LTES), it is possible to obtain the required heat energy from the external boiler
and not use LTES for that iteration.

The modifications we made are for the building energy values we considered, thus might not
work very well for other buildings. We suggest that researchers first use the original code from
the reference study and then decide whether our modifications are required for their building. A
benefit of using the modifications is that we would not obtain negative values for stored energy if
the loss terms dominate. However, a limitation is that cutting off the storage units or connecting
them back to the system in real time might be challenging.

6 Appendix B: LCOE, LCOEel, and Operating Expenditure (OPEX)
Equations

LCOE and LCOEel are defined in Eqs. (3) and (4).

EQ-TARGET;temp:intralink-;e003;114;473LCOE ¼
CAPEXþ P

T
t¼1

h
OPEXðtÞ

ð1þWACCnomÞt
i

P
T
t¼1

�P
8760

t¼1
ðceðtÞþ chðtÞÞΔt

ð1þWACCrealÞt
� ; (3)

where
EQ-TARGET;temp:intralink-;sec6;114;403

OPEXðtÞ ¼ ð1þ InflelÞt
�
OPEX�

elec;fix max½PgridðtÞþOPEX�
elec;var

X8760
t¼1

PgridðtÞΔt
�

þð1þ InflfuelÞt
�
OPEX�

fuel;fix þOPEX�
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X8760
t¼1

QextðtÞΔt
�

EQ-TARGET;temp:intralink-;e004;114;315LCOEel ¼
CAPEXþ P

T
t¼1

h
OPEXelðtÞ
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i

P
T
t¼1

�P
8760

t¼1
ceðtÞΔt

ð1þWACCrealÞt
� ; (4)

where

EQ-TARGET;temp:intralink-;sec6;114;265OPEXelðtÞ ¼ ð1þ InflelÞt
�
OPEX�

elec;fix max½PgridðtÞþOPEX�
elec;var

X8760
t¼1

PgridðtÞΔt
�

where CAPEX is equal to the total capital expenditure of the system, CeðtÞ is the electricity
consumption, ChðtÞ is heat consumption, WACCreal is the real weighted average cost of capital,
OPEX�elec;fix, OPEX�elec;var, OPEX�fuel;fix, and OPEX�fuel;var represent the fixed and variable
cost factors for fuel and electricity, and QextðtÞ is the heat obtained from the external boiler.

7 Appendix C: Monte Carlo Uncertainty Assessment Methodology
The steps involved in the Monte Carlo method are listed below:

1. The first step is identifying the key parameters to participate in the method. We use the
same parameters as we did for the scenario analysis. We also consider these additional
parameters—natural gas price, electricity price, PGU/TPVefficiency, and project lifetime.

2. The second step is identifying a best-fit probability distribution for each parameter. We fit
a triangular distribution for WACCnom, CAPEXHTES, CAPEXPGU, PGU efficiency, and
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lifetime. We specify their lowest, most probable (mode), and highest values to generate a
triangular distribution, which attempts to cover the range of values. For other parameters
(natural gas price, Inflel, and Inflfuel, CAPEXPV, and electricity price), we obtain their
historical data from the literature, and the distfit python package v1.4.0 identifies and fits
their probability distributions (shown in Fig. 6 of the main text).75 Here, we assume the
historical parameters’ variation would guide future variation in the form of probability
distributions.

3. The next step is to generate random numbers (5000 for our study) from the specified dis-
tributions for all the parameters and supply them, one at a time, to the Python algorithm
model, which generates an empirical distribution for the output variables (LCOE and
LCOEel). A data frame stores the LCOE and LCOEel values for each parameter input from
the random data set. Here, we choose the number of samples as 5000 as the results (mean
and standard deviation) converged for numbers greater than it (tolerance limit = 10−3).
We ran each simulation ten times.

4. The last step is to analyze the mean, standard deviation, significance, and uncertainty
levels of LCOE and LCOEel.

8 Appendix D: Scenario Analysis Results
Figure 11 shows that the smallest bounds have the lowest LCOE for scenario 4:
W3I2C215;2155;1293, whereas for scenario 1, W2I4C32;323;970, the optimum is not always at the
smallest system size. The PGU maximum capacity has an optimum LCOE at around 1 kWel—
favorable economic conditions can accommodate a larger system with lower cost. This is the
reason we obtain larger systems for favorable economic conditions. The variation of LCOE with
PGUmax. generation capacity for scenario 1 shows a discontinuous variation for the most part. It
is due to the direct effect of PGU capacity on Pgrid (see the code), which affects the operating
expenditure—an exponent function (summed over the entire lifetime of the project) to calculate
LCOE (the non-linear variation of operating expenditure dominates the linear variation of capital
expenditure). PGU capacity thus updates Pgrid and the power output from PGU at each time

Fig. 11 LCOE ($/kWh) variation with economic scenarios and system size.
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interval (and is responsible for LCOE fluctuations), which is not valid for the other two variables
plotted in Fig. 5 (main text)—PVand HTES capacities are not directly involved in the calculation
of the operating expenditure (an exponent function); they have a linear relationship with capital
expenditure, and thus, they have a continuous variation. Scenario 1 variation of LCOE with PGU
capacity is discontinuous. In contrast, scenario 4 is smooth and continuous as it has higher capital
expenditure (and low-operating expenditure), which dominates LCOE and produces a linear
variation.

9 Appendix E: GitHub Code
Our code allows anyone with their own input parameters to calculate the optimized LCOE and
LCOEel for their building’s energy storage system. Readers who wish to use our code as a tem-
plate are encouraged to go through the comments in the code for a better understanding.

In the GitHub link,57 follow these instructions:

1. The file “Optimization_and_CO2_emissions.py” contains the code to calculate and opti-
mize the levelized cost of energy (LCOE) and electricity (LCOEel) by following the energy
management algorithm from the original study (ref: https://doi.org/10.1016/j.apenergy
.2019.113935) along with our modifications according to our needs. It imports the Excel
file “TPV.xlsx” that contains the hourly electricity consumption and solar PV generation
data for a residential building in Boone, Iowa. The Python file also plots the base case and
optimized LCOE and LCOEel. It also calculates the CO2eq. emissions for a building with
no energy storage system and base case and optimized energy storage systems with a
TPV unit.

2. The file “Monte_Carlo_uncertainty_analysis.py” performs the Monte Carlo uncertainty
assessment on some input parameters by importing their historical data from the literature
(from the Excel file “Monte_Carlo_parameters.xlsx”). It then fits a probability distribution
to each parameter and supplies their values to the model to calculate LCOE. Then, it plots
the probability distribution and cumulative distribution functions for LCOE (for an opti-
mized system).
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