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Abstract. Landslides are a recurring phenomenon in Brazil and have caused many socio-
economic losses and casualties. To monitor them, land use and land cover (LULC) and landslide
inventory maps are essential to identifying high susceptibility areas. In this sense, the main aim
of this study is to produce LULC classification focused on landslide detection via semi-auto-
matic methods, using data mining techniques with remote sensing time-series imagery. For that,
different indices, such as the normalized difference vegetation index, the normalized difference
built-up index (NDBI), and the soil adjusted vegetation index were extracted from Sentinel-2
imagery. Basic, polar, and fractal metrics were extracted from the time series. From the Shuttle
Radar Topography Mission digital elevation model, six geomorphometric features were
extracted. Then, classification was performed with random forest with four different approaches:
mono-temporal, bi-temporal, metrical, and all. In every approach, the NDBI index or metric
derived from it presented the highest importance, and the slope was ranked among the six first
predictors. The all approach showed the highest overall accuracy (OA) (88.96%), followed by
metrical (87.90%), bi-temporal (82.59%), and mono-temporal (74.95%). Briefly, the metrical
approach presented the most beneficial result, presenting high OA and low levels of commission
and omission errors. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.16.034518]

Keywords: mass movements; image time series; landslide inventory; random forest; machine
learning; remote sensing.

Paper 210779G received Dec. 2, 2021; accepted for publication Jul. 22, 2022; published online
Aug. 11, 2022.

1 Introduction

Landslides are a natural gravity-driven phenomenon, which consists of the movement of a
mass of soil or rock from the top of the hill toward the bottom. The occurrence of landslides
is registered all over the world, frequently in mountainous areas, where there has been extreme
precipitation events, earthquakes, or snow melting.1 Landslides happen with recurrence in Brazil
and have been the reason for many socioeconomic losses and casualties, for instance, the
consequences of the so-called Mega disaster in 2011 at Nova Friburgo in Rio de Janeiro state,
Brazil.2

Another example was seen in Rolante River catchment, in Rio Grande do Sul, Brazil, in
which an extreme precipitation event triggered a massive occurrence of landslides in January
2017. Previous works have detected more than 300 landslide scars deriving from this episode.3,4

To reduce the landslide risk, land use and land cover (LULC) and inventory maps are relevant
information. The LULC maps assist in the detection of areas that have experienced anthropo-
genic interventions that may induce landslides. According to Refs. 5–7, the land use change is
recognized as one of the most important factors influencing the occurrence of rainfall-induced
landslides. LULC may act as a predisposing factor for landslide occurrence since LULC char-
acteristics such as vegetation suppression and construction building on high slope areas can
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increase the susceptibility.5,8–10 In addition, LULC may also assist in estimating landslide con-
sequences, according to potential loss and damage.11

The landslide inventory map consists of identifying and registering information about mass
movement location, spatial distribution, types, and patterns, which can be useful in landslide
susceptibility modeling.12,13 Moreover, high-quality landslide inventories are also of utmost
importance to calibrate and validate statistical landslide susceptibility and hazard models as well
as to evaluate the performance of physically based slope stability models.14–17 Thus, the inven-
tory is crucial to support urban planning and disaster risk reduction.18

The inventory maps can be done by either conventional methods (field mapping and manual
vectorization by visual interpretation) or state-of-art techniques. The manual work and refine-
ment done using conventional methods usually guarantees a very accurate product, however the
process can be time and resource consuming.13,19 Semi-automatic methods, on the other hand,
can provide a rapid mapping via change detection and pattern recognition algorithms,13 espe-
cially through remote sensing images.

Earth observation sensors can provide data in several observation frequencies, such as
daily or weekly. Most of the methodologies used for LULC classification, however, use a dataset
only composed of cloud-free and mono-temporal observations.20 Nowadays, a large amount of
research has identified the benefits of incorporating a multi-temporal approach, recognizing
its many potentials, to deal with change detection and the monitoring of targets, which present
seasonal behavior (i.e., croplands). Hence, time series have been progressively used for LULC
mapping and to identify the nature of land cover changes.21 Remote sensing medium spatial
resolution optical time-series data have demonstrated a high capacity for characterizing envi-
ronmental phenomena, describing trends as well as discrete change events. The inclusion of
time series change in the land cover mapping process provides information on class stability
and informs on logical class transitions, both temporally and categorically.22

Previous studies show that different types of data have been explored to detect landslide
scars. Cloud coverage is a great challenge to deal with when optical remote sensing imagery
is used for landslide detection. This occurs because many of the events are triggered by rainfall,
so it is common that the images from dates close to the events appear with most of the area
covered by clouds. Many researches used synthetic aperture radar (SAR) and interferometric
SAR (InSAR), in which the sensors can overcome this issue.23,24 Moreover, in addition to the
contribution of SAR data, some difficulties are still present as for landslide detection in densely
forested areas. Considering that, the use of light detection and ranging technologies has been
gaining more space, presenting significant results.25,26 In addition to the aforementioned issues,
the most commonly used type of data to detect landslide scars is still the optical remote sensing
images. Several studies have focused on spaceborne or airborne (very) high-resolution optical
images, once it can provide information on a more detailed scale, usually resulting in higher
accuracy values.27,28

Out of remote sensing images, much spectral information can be extracted, and from an earth
observation time series, a diversity of properties can be calculated. A variety of predictors has
been successfully used on landslide classification. First, regarding spectral indices, the normal-
ized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI), proved to
be effective tools for landslide detection and LULC mapping.12,29 Also, the normalized differ-
ence build-up index (NDBI) has been applied to many LULC mapping researches, in addition to
some other recent papers on landslide detection that considered this index as a potential
variable.30 Moreover, the digital elevation model (DEM) and its derived geomorphometric attrib-
utes have significantly contributed to the landslide scars detection, as presented by Li et al.31 and
Pradhan and Mezaal.32 Metric variables can also be extracted from time series and incorporated
in the classification inputs, among them, there are the basic and polar metrics,33 in addition to the
fractal34 and phenological metrics.35

To tackle the challenge of landslide detection through semi-automatic methods, machine
learning and deep-learning classifiers are commonly used, such as the support vector machine
(SVM), maximum likelihood (ML), artificial neural network, random forest (RF), and the con-
volutional neural networks. SVM and ML have been used to identify landslides in São Paulo
state coast (SP, Brazil), in which the SVM presented better performance than ML, especially
when associated with the NDVI.36 Moreover, studies show that decision tree algorithms have
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been used in landslide detection37 and LULC mapping,38 and presented suitable results. The RF
algorithm can be used both for classification and regression modeling. As a classifier, it has been
widely used for the identification of landslide scars.27,39 A research of data mining-aided auto-
matic landslide detection compared the performance of SVM and RF, having the latter presented
a higher classification accuracy.40

It is important to elucidate that there are many approaches for landslide scars detection to
produce inventory maps. Most methods for producing landslide scars identification are based on
change detection, producing binary results (scar versus non-scar). Nonetheless, based on the fact
that both products (LULC and inventory map) are essential materials for landslide susceptibility
modeling (the most effective method in supporting territorial planning and disasters risk reduc-
tion), the methodology here applied unites both final products in one single workflow. One
should notice that, in addition to the inventory is derived from the LULC map, it does not mean
that the same combination of predictors will present the best performance for both purposes.
In other words, accuracy is analyzed separately, so an LULC classification, which considers
all classes, could have the best performance in one approach; however, for the landslide class,
specifically, some other approach could present a better accuracy.

Even though time series have already contributed for remote sensing imagery classification,
the unsolved question is: until what point the addition of variables is beneficial to the classi-
fication, taking into account both accuracy analysis and the procedure’s complexity/processing
time? In this light, which classes present a relevant improvement in the accuracy with the
increase of predictors? Which of them presents a high performance in class separability with
low quantity of variables?

Furthermore, to choose the most suitable spectral index, many factors may need to be con-
sidered. When dealing with time series, the use of vegetation indices, such as the NDVI, is very
common, once it helps to reduce the number of variables in the time series by joining information
from the red and near infrared bands in one single predictor. The NDVI is indeed a widely used
index for general classifications, as the LULC maps; however, in the scenario of vegetation
analysis when a landslide occurs, would that be the best index to be used? According to the
literature, NDVI, SAVI, and NDBI have been extensively used for LULC mapping, thus selected
for this work.12,29,30

Moreover, remote sensing time-series metrics have been gaining more relevance in the sci-
entific community as the availability of historical data from free Earth observation imagery
grows as Landsat, Sentinel, and China-Brazil Earth-Resources Satellite 4A (CBERS-4A) data.
Time-series metrics have shown great potential for classification especially for agricultural pur-
poses, as exposed by bendini_2019 with crop identification in the Brazilian Cerrado. This has to
do with the considerable variability of this type of class during the time. As the landslides have a
fundamental change factor over the period, time-series metrics might be helpful to detect them.
Even though many studies have used time series in landslide research, most of them focus on
monitoring the landslide evolution41 and especially of slow mass movements (creep) using SAR
data.42 However, research in optical time series and time-series metrics for landslide detection is
still recent, so more investigation is required over whether these metrics could be helpful to
identify landslide scars. Moreover, the polar metrics are still not widely used in the remote sens-
ing community, which can be seen as a gap with considerable potential to be developed.

In this context, the main aim of this research is to develop a methodology to generate the
landslide inventory map as a product derived from the LULC map for the Rolante River catch-
ment area. This means that the landslide scars consist of a class of land cover that is assigned
during the classification process. In a bi-temporal example, the landslide class corresponds, spe-
cifically, to vegetation land cover in time 1 and bare soil in time 2. The LULC classification and
the landslide inventory map were generated through semi-automatic methods, based on remote
sensing time-series imagery, geomorphometric attributes, and data mining techniques. For that,
the specific objectives were to (1) analyze the performance of long, dense and irregular time
series for LULC classification of landslide prone areas; (2) evaluate which classes present a
relevant improvement in accuracy with the increase of predictors and which of them present
high accuracy results even with low quantity of predictors; (3) investigate the predictors and
indexes with the greatest importance to be used in these types of areas; (4) explore the poten-
tial of time-series metrics for classification and landslide detection; (5) compare different
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classification approaches that range from the most simple and reduced dataset to more complex
and dense ones; and (6) analyze the best generated landslide inventory and LULC map, accord-
ing to this research methods, for the Rolante River catchment area.

2 Materials and Methods

The methodology developed for this research is shown in Fig. 1. The study was structured in five
main steps: (i) data selection and pre-processing; (ii) feature extraction; (iii) sampling method;
(iv) classification; and (v) validation and analysis. These steps are explained in the following
sections.

2.1 Study Area

The study area covers the whole extension of the Rolante River hydrographic basin, a sub-basin
of the Sinos River catchment, located in the state of Rio Grande do Sul, Brazil (Fig. 2). Its
drainage area comprehends 828 km2, with elevation values varying between 20 and 1040 m.
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The main course of this basin is the Rolante River, which received this name due to the great
impact of the water during the flood period.43 The main cities in this region are: Riozinho,
Rolante, and São Francisco de Paula. The major activities are agriculture and livestock, with
the presence of native forest, silviculture, and anthropogenic rural occupation.44

Concerning pedological aspects, the basin contains four major types of soil: dystrophic red-
yellow argisol, eutrophic red nitosol, eutrophic litholic neosol, and dystrophic humic cambisol.
About the geomorphological characteristics, the area can be divided in five different units:
alluvial-colluvial plains, JacuíRiver depression, Serra Geral baselines, Serra Geral unit, and
Campos Gerais plateau. Moreover, regarding the geological aspects, it presents four units:
holocene alluvial deposits, Botucatu unit, Serra Geral unit, and Serra Geral—Caxias facies.
The climate is very humid subtropical, characterized by abundant annual precipitation varying
between 1700 and 2000 mm and temperatures of 14°C to 17°C.45

Previous works have detected around 300 landslide scars that occurred after an extreme pre-
cipitation event on January 5, 2017.3,4 The rain registered 90 to 272 mm and lasted for about
4 h.46 Rolante city was affected after a natural dam disruption on the Mascarada river, a tributary
of the Rolante river. This dam was generated by the accumulation of debris driven from the
hillside.

The criteria to select this area for the research consists of two main factors. First, the sig-
nificant presence of already mapped landslide scars. Second, the magnitude of the event, which
allows the identification of the scars via orbital imagery of 10-m spatial resolution, freely avail-
able by the European Space Agency (ESA).

2.2 Data and Pre-processing

The data required to identify landslides scars depend on the characteristics of each study case.
For this research, the majority of the landslides present in the Rolante River basin had, in general,
20- to 60-m width, which could be seen from 10-m resolution imagery. Considering that,
Sentinel-2 (A and B) imagery was chosen, especially because it provides free orthorectified
reflectance products with 10 m of spatial resolution and a five-day temporal resolution.
Level 2A [Bottom Of Atmosphere (BOA)] product was not available for the date of the event

Fig. 2 Study area, the Rolante River Catchment.
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(January 2017), so Level 1C was used. Moreover, a 30-m spatial resolution DEM from the
Shuttle Radar Topography Mission (SRTM) was used.

To get the surface reflectance product from Sentinel-2 Level 1C imagery, the atmospheric
correction was performed using the Sen2Cor algorithm, which is used by ESA to provide the
BOA Sentinel images. This system was implemented in R by Ranghetti et al.,47 and the “sen2r”
package was used to perform this correction. In this process, cloud and cloud shadow cover were
masked. Images with cloud coverage above 80% were removed, so instead of the regular five
days of temporal resolution provided by Sentinel-2A and Sentinel-2B satellites, a general tem-
poral resolution of 13 days was achieved. Further, an outlier removal filter was applied to smooth
each time series separately (NDVI, NDBI, and SAVI). This filter removes spikes and consists in
identifying values that present more than 10% of difference from the same pixel in the previous
and the following dates, if positive, it is replaced by the mean value of these two. The time
interval available for the study area ranges from November 11, 2015, to June 3, 2020; which,
in total, resulted in 122 satellite observations dates. The general temporal resolution of this time
series is around 13 days. This can be explained by two main factors: (a) some images were
discarded because of cloud coverage; (b) Sentinel-2B was launched in 2017, almost two years
after Sentinel-2A. Both satellites together make a five-day resolution product; however, each of
them has a revisiting time of 10 days.

2.3 Feature Extraction

The feature extraction process, shown in Fig. 3, is based on landslide detection literature, as
presented by Gerente et al.48,49 The NDVI, developed by Rouse et al.,50 was used because it
presents a drastic reduction in its values when the landslide occurs. In addition to that, once
it is a composition of bands, it allows the use of the red and near-infrared (NIR) bands in one
single feature. This reduction of predictors is specifically beneficial when dealing with dense
time series. It is used to detect varying densities of vegetation coverage, which can be applied for
mass movement events.51 The literature shows a lot of successful research using the NDVI for
land cover mapping.52,53 The normalized difference built-up index (NDBI), proposed by Zha
et al.,54 was used in the classification of urban areas. It is composed by the red and short wave
infrared (SWIR) bands. Once built-up areas present low NDVI values, these usually show high
spectral similarity with bare soil and landslide scars. Furthermore, the SAVI index, developed by
Huete,55 was also used. It incorporates an adjustment factor (L), based on the amount of veg-
etation, from 0 (for high vegetation) to 1 (for low vegetation), to adjust the soil background

Fig. 3 Feature extraction.
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effect. In the absence of extrinsic knowledge, an intermediate adjustment factor of 0.5 has been
suggested and generally applied.56 Avariety of papers mention the SAVI index as a useful tool to
detect landslides, as the one by Mohd Salleh et al.,57 which analyzed vegetation anomalies in the
NDVI and SAVI index as bio-indicators for landslide activity mapping. The formulas of the
aforementioned indices are represented as follows:

EQ-TARGET;temp:intralink-;e001;116;675NDVI ¼ ρnir − ρred
ρnir þ ρred

; (1)

EQ-TARGET;temp:intralink-;e002;116;622NDBI ¼ ρswir − ρred
ρswir þ ρred

; (2)

EQ-TARGET;temp:intralink-;e003;116;590SAVI ¼ ð1þ LÞ ρnir − ρred
ρnir þ ρred þ L

; (3)

where ρnir is the reflectance value for the NIR band (B8); ρred: reflectance value for the red band
(B4); ρswir is the reflectance value for the SWIR band (B11); and L is constant inversely corre-
lated with the leaf area index.

From each dataset (NDVI, NDBI, and SAVI), time-series metrics were extracted using the
stmetrics (https://github.com/brazil-data-cube/stmetrics) package available in Python. The pack-
age currently includes three modules to perform feature extraction: basic, polar, and fractal. The
polar metrics are derived from a time wheel legend proposed by Edsall et al.58 As exposed by
Soares et al.,59 to compute the polar features, each time series has its values projected to angles in
the interval ½0;2π�. A time series is a function fðx; y; TÞ where ðx; yÞ is the spatial position of a
point, T is a time interval t1; : : : tN , and N is the number of observations. The time series can be
visualized by a set of values vi ∈ V in time ti. Therefore, its polar representation is defined by a
function gðVÞfA;Og (A corresponds to the abscissa axis in the Cartesian coordinates and O to
the ordinate axis) where

EQ-TARGET;temp:intralink-;e004;116;414ai ¼ vi cos

�
2πi
N

�
∈ A; i ¼ 1; : : : N; (4)

and

EQ-TARGET;temp:intralink-;e005;116;358oi ¼ vi sin

�
2πi
N

�
∈ O; i ¼ 1; : : : N: (5)

In both equations, 2πi
N is an arbitrary angle that depends on the acquisition date and vi is the

corresponding time series value. Considering that anþ1 ¼ a1 and onþ1 ¼ o1, a closed shape
is obtained.

The system for automated geoscientific analyses (SAGA) tool, available in the QGIS soft-
ware, allows the extraction of the geomorphometric attributes from the DEM. The use of these
attributes is based on previous studies, which have been associated with the landslide
occurrence.30,60,61 The extracted attributes are slope, aspect, plan curvature, profile curvature,
general curvature, and the topographic wetness index (TWI). Once the Sentinel-2 data have
10 m of spatial resolution, the geomorphometric attributes were resampled from 30 to 10 m
using the nearest neighbor parameter in QGIS.

The elevation is represented in meters and corresponds to the pixel value at the DEM, it is an
altimetric data. The slope is defined as the zenital declivity angle, having its values varying from
0 deg to 90 deg, although it is commonly expressed in percentage.62 The profile curvature (deg/
m) is related to the profile shape of the hillside, referring to the convex/concave characteristic of
the hill. The plan curvature (deg/m) corresponds to the hill shape when observed in its horizontal
projection and is defined as a second-order derivative from the contour lines. The aspect is
defined as the azimuthal angle corresponding to the highest declivity of the terrain, in the
descendent direction.62 To use it for classification purposes, it is recommended that the aspect
should be converted to directional components. It is measured in degrees, from 0 deg to 360 deg,
and varies according to the orientation (N-S and E-W). The TWI was developed by within63 the
runoff model TOPMODEL. The TWI is defined as
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EQ-TARGET;temp:intralink-;e006;116;735TWI ¼ lnða∕ tan βÞ; (6)

where a is the upslope area per unit contour length; and tan β is the local slope of the ground
surface.

Locations with a large upslope area receive a high index value and are expected to have
relatively higher water availability than locations with a small upslope area that are assumed
to have relatively lower water availability and therefore receive a small index value.64 The
TWI is designed to quantify the effect of local topography on hydrological processes and for
modeling the spatial distribution of soil moisture and surface saturation.65

2.4 Sampling

A stratified sampling was applied, in which each class was sampled proportionally to their
area based on previous classification works of the region.3,44,66 The proportion was not exact,
but served as a base to guide the number of samples. The samples are pixel-based and were
separated in the proportion 70/30 for training and validation. The sampling was manually real-
ized based on high resolution imagery from Google Earth. To minimize errors regarding spatial
auto-correlation, the collection of samples took into consideration a standardized geographic
block, so no area is under or over sampled. A regular rectangular grid was used to collect the
samples, in which every polygon (25 km2) should contain a minimum amount of samples for
each class, guaranteeing a satisfactory distribution of the samples on the whole catchment area.
In some cases, as the landslide class, which are more concentrated in a specific region, some
polygons of the grid did not contain their samples.

Regarding the sample size,67 suggests a minimum of 50 samples for each class, increasing to
75 to 100 for large areas (more than a million acres) or if the classification has a large number
categories (i.e., more than 12 classes). Even though no specific number of samples was estab-
lished for the construction of the sample set, every class had at least more than 50 points. Some
classes as landslides and water, had notably less presence in the area compared to forest and
silviculture, which had considerably fewer sample points. As a matter of fact, a first attempt was
made to divide the landslide class into two sub-classes “upper” and “deposit,” to differentiate the
area where the scar starts, in the higher part of the hill, and the area of material’s deposit.
However, in the 10-m spatial resolution data, this could not be separated, so only one class was
created.

Previous to the choice of the classes that would compose the classification, a detailed study of
the area was done. A solid knowledge of the elements that are contained in that landscape was
built and all possible disturbances that would present similar fingerprints on spectral, temporal,
and metrical dimensions of the landslide class were identified. After this analysis, the main clas-
sification labels were chosen, being: landslide, forest, silviculture, agriculture, pasture, bare soil,
water, and urban area. Once the number of sample points for each class is substantially different,
which could create a negative consequence for under sampled classes, the Monte Carlo simu-
lations method was used in the validation process guaranteeing a stable result and will be
explained further in this chapter.

2.5 Classification

The RF classification algorithm was used for this procedure. Among a variety of classification
algorithms, the RF is frequently used in remote sensing applications. Furthermore, this classifier
can be successfully used to select and rank the variables with the greatest ability to discriminate
between the target classes.68 Considering that one of the aims of this study is to search for the best
combinations of indexes and predictors, this classifier was chosen. This process was conducted
using the scikit-learn package in Python programming language. The classification was realized
under four distinct approaches, in which each of them considered a different set of input predic-
tors. As a result, four classification products were compared (Fig. 4). The input approaches are:

1. Mono-temporal: single date image (after the landslides occurrence) with NDVI, NDBI,
and SAVI + geomorphometric attributes. Total of 10 predictors.
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2. Bi-temporal: two dates images (before and after the landslides occurrence) with NDVI,
NDBI, and SAVI + geomorphometric attributes. Total of 13 predictors.

3. Metrical: time-series metrics for NDVI, NDBI, and SAVI + geomorphometric attributes.
Total of 73 predictors.

4. All: 122 dates time series with NDVI, NDBI, and SAVI + time-series metrics for NDVI,
NDBI and SAVI + geomorphometric attributes. Total of 436 predictors.

The time-series datasets were composed of indexes extracted from images within the period
of November 2015 to Mai 2020. From each date, the NDVI, NDBI, and SAVI index were
extracted, which resulted in three time-series datasets. From each time series, separately, the
times series metrics were extracted. To form the dataset called “All,” e.g., the three time series
datasets (NDVI, NDBI, and SAVI), the three time series metrics datasets extracted from the latter
and the geomorphometric attributes were piled together into one single stacked input. This
means that when the classification is performed, all data are considered, and each layer is inter-
preted as a variable.

Once most of the landslide scars occurred during an extreme precipitation event in January 5,
2017, the aim was to find the closest images from that date to build the mono and bi-temporal
datasets. However, this period presents high levels of cloud coverage, interfering with the images
quality. For that reason, the chosen closest images to the date of the event are from June 9, 2016
(before), and March 11, 2018 (after). This reveals the difficulty of choosing a few images to
classify landslide-prone areas. Figure 5 shows the two dates chosen for the bi-temporal approach.

One of the RF outputs is the predictors’ importance ranking (IR), which is an ordered list
related to the relevance of each variable to the classification. In a range of 0 to 1, all predictors are
assigned to a value according to their importance, and the total sum of the predictors results in 1.

The proposed methodology focus on finding the most accurate and simple approach to tackle
the classification problem. The idea of starting from a single-image dataset, progressively increas-
ing until the time series, is applied to guarantee the statement “the simpler, the better.” No unnec-
essary procedure should be performed before testing less complicated steps before. In this study,
once one of the objectives is to understand the contribution of the time series for the LULC
classification and landslide detection, the evaluation of these four approaches is fundamental.

2.6 Validation and Analysis

The reference material for the validation of the products was based on Google Earth’s high
spatial resolution imagery, as suggested by Olofsson et al.,69 and an inventory map provided
by Quevedo et al.3 and updated for this research. This inventory was realized by visual

Fig. 4 Classification approaches. The types of inputs are separated by colors, and represented
respectively: geomorphometric attributes (yellow), time series metrics (blue), NDVI time series
(green), NDBI time series (gray), and SAVI time series (red). Below, the dataset of each approach
is represented and the number inside the box reveals the quantity of predictors. Note that for mono
and bi-temporal approaches, only one or two layers of NDVI, NDBI, and SAVI are illustrated.
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interpretation of high spatial resolution imagery. The reference was used for the construction of
a sampling set for the classification.

To compare different accuracy results, it is important to establish a credibility interval. In
case, this interval is not considered, a comparison based on one single value can lead to mistaken
conclusions. This happens because different training and validation set of samples can produce
different results. Figure 6 shows how this procedure was conducted via Monte Carlo simulations.

The classifications evaluation and performance analysis was held under the statistical mea-
sures derived from the confusion matrix. The confusion matrix reveals every validation sample
point, comparing their true label and the predicted one. From this matrix, the most relevant con-
fusion between classes can be detected and interpreted. The overall accuracy (OA) is extracted
from the matrix according to the formula expressed below, which ranges from 0 to 1 (100% of
accuracy). The Cohen’s kappa index is70 another method used to evaluate the model. The kappa
index is a measure of true agreement, which indicates the proportion of agreement beyond that
expected by chance.71 In other words, the achieved beyond-chance agreement as a proportion of
the possible beyond-chance agreement.

3 Results

3.1 Predictors’ Importance Ranking

The IR is extracted directly from the RF workflow. For each dataset (mono-temporal, bi-
temporal, metrics, and All), the classification was performed, and the predictors’ ranking comes
as an output of the RF classifier using scikit-learn package. As mentioned before, each layer of
the dataset is interpreted as a variable, so it could be a specific image from the whole NDBI time
series, e.g., NDBI (June 09, 2016).

Table 1 gives the top 10 predictors, by each classification approach, and their corresponding
importance values. More focus should be given to the top five predictors, once the mono-
temporal approach considers a total of 10 predictors only. To clarify, all selected metrics that

Fig. 5 Bi-temporal approach. Chosen images from before and after the landslides occurrence.
It is worth noting that the closest cloud-free image before the event is from June 09, 2016 and
the closest after is from March 11, 2018. There is 1 year and 9 months difference from one image
to another.
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Fig. 6 Monte Carlo simulations.

Table 1 Predictors’ IR.

Mono-temporal (10 at.) Bi-temporal (13 at.) Metrical (73 at.) All (436 at.)

IR Predictor IR Predictor IR Predictor IR Predictor

1 deg 0.247 NDBI
(March 11, 2018)

0.162 NDBI
(June 09, 2016)

0.056 Area s2 0.0201 NDBI
(June 09, 2016)

2 deg 0.195 NDVI
(March 11, 2018)

0.148 NDBI
(March 11, 2018)

0.036 Slope 0.0177 Slope

3 deg 0.144 SAVI
(March 11, 2018)

0.146 NDVI
(March 11, 2018)

0.035 Min 0.0163 NDVI
(June 09, 2016)

4 deg 0.130 Slope 0.107 SAVI 2018 0.030 First slope 0.0154 NDVI
(December 26,

2018)

5 deg 0.087 DEM 0.106 NDVI 2016 0.029 Area s4* 0.0137 Min

6 deg 0.046 TWI 0.079 Slope 0.028 Polar
balance

0.0135 Area s1

7 deg 0.040 Aspect 0.071 SAVI 2016 0.027 Area s4 0.0121 Area s2

8 deg 0.039 Prof. curvature 0.053 DEM 0.027 Sum 0.0120 NDBI
(November 22,

2015)

9 deg 0.038 Plan curvature 0.027 TWI 0.026 Mean 0.0107 NDBI
(September 17,

2016)

10 deg 0.031 Gen. curvature 0.024 Prof.
curvature

0.026 Abs. Sum 0.0101 NDBI
(March 21, 2019)
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appear at metrical and All top 10 are related to the NDBI. Only area s4, from metrical, was
derived from the NDVI time series. For that reason, to reduce the amount of information in
the table, the difference between NDBI and NDVI metrics is represented by a *. Metrics related
to the SAVI index were not selected among the top 10 for neither approaches.

All selected metrics that appear at metrical and All approaches are related to the NDBI. Only
area s4*, from metrical, was derived from the NDVI time series. The most important predictors
for all four approaches are either an NDBI image itself or a metric extracted from its time series.
In order, from mono-temporal to All approaches, the first predictors selected are the NDBI image
from 2018, the NDBI image from 2016, the area s2 metric from the NDBI, and the NDBI image
from 2016. As explained above, the NDBI metrics represented the majority of metrics predictors
in the top 10 for metrical and All. The NDVI also presented high IR values in all approaches,
being among the top 5. The NDVI image from 2018 was selected by the two first approaches, the
area s4 from the NDVI for metrical, and the NDVI images from 2016 and 2018 for All. For the
mono and bi-temporal approach, the date from 2018 selected to compose the dataset is March 11,
2018, once it was the first date after the event that presented a cloud free image for the whole
catchment area. However, analyzing All’s top 10 selection, one can see that the March 11, 2018
date was not chosen. Instead, the first image selected after the event occurrence was the NDVI
from December 26, 2018, which is nine months after. This may reveal that not necessarily the
closest image to the event’s date is the most appropriate to be chosen as an predictor, even both
being cloud free images.

Regarding the geomorphometric predictors, the slope stood out, being the first of them,
and sometimes unique, to be chosen in every approach. It was selected among the top five for
all of them, in addition to the bi-temporal approach, which got the sixth place. With respect to
the metrics, it is evident that the polar metrics showed significant importance. For metrical
approach, the first predictor chosen was the area s2, and in addition, NDVIs Area s4 is also
among the top five. Moreover, polar balance and NDBIs area s4 were selected. About All’s
approach, from the three metrics selected among the top 10, two of them are polar, NDBIs area
s1 and area s2.

3.2 Time-Series Metrics

There are many possibilities for analyzing the performance of a classification map. In this
research, the discussion will be conducted by the analysis of the confusion matrix and its stat-
istical products, such as the OA, kappa index, and commission and omission errors. Moreover,
a deeper visual analysis of the maps is described, showing in detail some differences among the
approaches regarding each class. A similar discussion is developed, showing the contribution of
the metrics for the classes prediction. In addition, the metrics values for each class are analyzed
via boxplots, linear, and polar graphics.

From each time series (NDVI, NDBI, and SAVI), 22 metrics were extracted. All metrics had
their values normalized, being their range between 0 and 1. For analyzing the potential of the
metrics for identifying each class, some NDBI metrics were chosen to be exposed. The criterion
to select only NDBI metrics was the fact that this index presented the most relevant results at
the predictor’s IR (Table 1). Moreover, this visual analysis is just realized for the classes that
presented the most revealing characteristics when interpreting the metrics images, being land-
slides, agriculture, and silviculture classes. It is important to emphasize that the final formats of
the time series metrics are raster files where in each pixel the value will correspond to the output
computed from a mathematical equation taking into account all the observations of the time
series for this pixel.

The metrics in which Landslide scars stood out are represented in Fig. 7. The red points
indicate the location of some of the landslides. The first three metrics, katz, polar balance, and
first slope, showed a quite similar result, presenting values close to 0 (blue) for this class.

Regarding the metrics’ types, first slope, mean, and absolute mean derivative are basic; Katz
is fractal; and polar balance, area s1, and area s2 are polar. Area s1 and area s2 were selected
because of their contrast for that class, in which landslides do not appear in the first and are
revealed in the latter. Mean shows a similar result to area s2, where landslides present a higher
value (yellow), compared to the rest of the image, mostly with low values (blue).
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The metrics that presented the most relevant results for agriculture are exposed in Fig. 8. The
std metric revealed very high values for most of the agricultural areas (orange/red). This is related
to the great variability of the crops dynamics along the agricultural cycles. For absolute sum,
agriculture also shows higher values compared to the rest of the image. An opposite result is the
Min metric, in which this class presented the lowest values, probably related to the harvesting

Fig. 8 NDBI metrics in details for agriculture class. Purple points represent agriculture areas of
reference.

Fig. 7 NDBI metrics in details for landslide scars. Red points represent landslide areas of
reference.
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periods. Finally, areas s1 to areas s4, confirm the result presented by the Std metric, in which the
variability seems to be a key characteristic of agriculture.

The metrics for silviculture class are shown below (Fig. 9). Polar balance (polar), first slope
(basic), and hurst (fractal) were the most revealing ones. The silviculture is represented by the
light green dots. In all cases, this class presented the highest values compared to its’ surround-
ings. A contrast can be identified compared to the forest, which presents a lower response but
still in the orange/red range of values. This emphasizes the contribution of polar, basic and fractal
metrics for discriminating silviculture from forest.

Basic and polar metrics are extracted from linear and polar graphs, which represent the time
series. These graphs provide a relevant illustration, under two different perspectives, regarding
the classes’ spectral behavior along the time. As an example, classes landslide (Fig. 10), forest
(Fig. 11), silviculture (Fig. 12), and agriculture (Fig. 13) are exposed below. The linear graphs
are composed by the X axis, representing the time (each date of the time series from 2015 to
2020), and the Y axis, represents the NDVI values. The polar graph is divided into four rec-
tangles, each of them representing a quarter period of the time series. Values from the first quarter
period of the time series are plotted in the top-right green rectangle, in an anticlockwise direction,
starting from the horizontal line that divides top-right (green) and bottom-right (blue) rectangles.
In other words, the green rectangle contains values from the first season of the time series; the
orange rectangle, from the second season; the brown rectangle, from the third season; and the
blue rectangle, from the last season. In the polar graphs, values are plotted from the center point
(intersection point among the four rectangles) to the borders. This means that the closer to the
center, the lower the NDVI value; and the further from the center, the higher the NDVI value.
Analyzing the landslide graphs (Fig. 10), one can notice that there are high values of NDVI at the

Fig. 9 NDBI metrics in details for silviculture class. Green points represent silviculture areas of
reference.

Fig. 10 Landslides linear and polar graphs: (a) linear and (b) polar.
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beginning of the time series, followed by an abrupt reduction. After that, two small cycles of
growth and decrease are observed.

Forest graphs (Fig. 11) indicate a stable profile of high NDVI values. Some outliers can be
observed by abrupt changes to low values, followed by high values again. In the polar graph,
these outliers are represented by the teeth (triangles shapes), observed in the second and fourth
rectangles.

The silviculture profile (Fig. 12) is represented in the graphs by high and two moments of
very low NDVI values. This reveals the growing and harvesting periods. In the polar graph, the
growing seasons are shown in the first and third rectangles and the harvest in the second and
fourth. Agriculture class (Fig. 13) is also represented by growing and harvesting periods.
However, for this class, the crops present shorter development cycles. In the linear graph, besides
no similar value is repeatedly present, as in the stable forest profile, there is a regular pattern

Fig. 11 Forest linear and polar graphs: (a) linear and (b) polar.

Fig. 12 Silviculture linear and polar graphs: (a) linear and (b) polar.

Fig. 13 Agriculture linear and polar graphs: (a) linear and (b) polar.
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frequency. This pattern is composed of short periods of high, followed by short periods of low
NDVI values. In the polar graph, one can notice that, in general, there is more than one cycle
present in each season, revealing the expressive variability of this class’ behavior.

The metrics’ contribution to classification was also interpreted via boxplot graphs. It is worth
noting that the boxplots were not realized based on the classification results but on the extraction
of information from all sample points for each class by each time-series metric output. These
graphs provide a variety of information, as the lower and upper quartiles (represented by the
limits of the bounding box), the median (line inside the box), and outliers (points). To understand
if a specific metric can contribute to the identification of a class, it is recommended to find the
boxplot with the least variability (small boxes), with the least amount of classes sharing the same
range of values (boxes should be placed in different vertical positions). Boxplots can supply with
information for setting threshold values to differ one class from another. Regarding landslides
(Fig. 14), the detrended fluctuation analysis (DFA) metric extracted from the NDBI shows the
most differentiating potential of this class from the others, in which its’ upper quartile reaches up
to 0.1, whereas for the other classes, it is above 0.6.

Forest and silviculture (Fig. 15) presented very similar results in most of the metrics. Both of
them showed very high values for NDVIs polar balance, with the lowest quartile above 0.65,

Fig. 14 Landslides boxplot analysis: (a) NDBI DFA and (b) NDBI hurst. Note that for the first
metric, the landslide class box is concentrated on the bottom part with the lowest values.

Fig. 15 Forest and silviculture boxplot analysis: (a) NDVI polar balance; (b) SAVI gyration; and
(c) NDVI DFA. Note that forest and silviculture classes present the highest values for the Polar
Balance extracted from the NDVI time series.
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whereas the other classes reached upper quartile values around 0.60. After separating the two of
them from the rest, their differentiation can be done through the SAVIs gyration, in which for-
est’s median is around 0.68 and silviculture’s, 0.58. Another method for differing forest from
silviculture is using the NDVIs DFA metric, in which the medians are around 0.32 and 0.05,
respectively. The similarity between forest and silviculture might be due to their high and dense
vegetation characteristics. Both polar balance and gyration are polar metrics, and DFA, fractal.

Agriculture class presented the most outstanding results for the boxplots analysis (Fig. 16).
The metrics that better revealed this differentiation were SAVIs absolute mean derivative, SAVIs
area s1, and NDBIs Std. In these metrics, the agriculture class shows medians values of at least
0.1 higher than the other classes. Moreover, in all cases its’ lower quartile is higher than the
other’s upper quartile. Finally, in SAVIs absolute mean derivative metric its’ lower quartile is
above most of the other classes maximum range value. In addition area s1, which is polar, all
other metrics are the type basic.

3.3 Land Use and Land Cover Maps

The LULC classification products derived from each approach is shown in Fig. 17. In this visual
analysis, the salt-and-pepper effect appears more intensively on the mono-temporal map and gets
reduced as the number of predictors increases. This can be seen more effectively on the south-
west part of the basin, where a significant part of agriculture is placed. At the mono-temporal
approach, the agricultural areas seem to spread to the whole area, whereas All approach shows
more limited and well designed polygons of agriculture.

The confusion matrix is an effective tool to analyze the misclassifications between classes.
The confusion matrix for each approach is shown in Fig. 18. Considering class by class, the
landslide presented a significant proportion of confusion with forest, silviculture, bare soil, and
water. The confusion with Water is just present in the mono-temporal approach, whereas in the
others it no longer appears. Another class that requires attention is the agriculture, which showed
high values of confusion, especially in the mono-temporal and bi-temporal approaches. For the
mono-temporal, it presented more pixels classified as bare soil than the agriculture itself, fol-
lowed by a notable confusion with pasture, urban, and silviculture. The confusion maintains in

Fig. 16 Agriculture boxplot analysis: (a) SAVI Abs. mean derivative; (b) SAVI area s1; and
(c) NDVI std. It is worth noting that agriculture class presents the highest values showing a well
defined difference from other classes represented in the boxes.
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the bi-temporal approach, even though in a reduced level, where agriculture is misclassified with
bare soil, followed by urban and pasture. On the other hand, this situation changes drastically
when compared to the scenario for metrical and All, in which the confusion between the classes
is low, presenting more errors for pasture and bare soil, respectively. Table 2 shows kappa indi-
ces, OA values, and their associated confidence interval.

First of all, the kappa values show an expressive improvement comparing the approaches.
Starting from the mono-temporal, with 0.70, to the bi-temporal, with 0.79, around 0.09 is
increased in the value, which represents more than 10% of improvement. From bi-temporal to
metrical, a relevant increase is also noticed, however less intense, going from around 0.79 to
0.86. The highest value is presented by the All approach, with around 0.87. Comparing all kappa
values, it seems that it increases in an exponential behavior, showing large improvement steps
in the first two approaches and stabilizing after metrical. The same interpretation is visible in the
OA values, where 7.64% is increased from mono to bi-temporal, 5.31% from bi-temporal to
metrical, and only 1.06% from metrical to All.

Legend

Fig. 17 Classification maps.
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Another important factor to analyze a classification accuracy is the evaluation of the com-
mission and omission errors. In that sense, Tables 3 and 4 show the statistical products depicted
for each separate class and approach.

Concerning the omission errors, the mono-temporal approach presented the best result for
only one of the classes, forest, with 1.79%. The bi-temporal approach showed the lowest error
rate only for landslide class, with 3.03%, followed by metrical, with 3.08%. Metrical also
presented the best results for agriculture (12.20%), pasture (6.52%), water (13.04%), and urban
(16.67%). All’s approach performed best with the classes silviculture (2.13%), bare soil
(13.33%), and water (13.04%), with the same value as metrical for this class. Thus, metrical
had the best results concerning omission errors, with the lowest error rates in five of the eight
classes. Furthermore, even though mono and bi-temporal presented very satisfactory results for

Fig. 18 Confusion matrices. (a) Mono-temporal; (b) bi-temporal; (c) metrical; and (d) all. The
diagonal shows the correctly classified pixels, the stronger the green tone color, the higher the
number of correctly classified pixels.

Table 2 Kappa index and OA.

Kappa (κ) OA (%) Credibility interval for OA

Mono-temporal 0.7043 74.95 74.78% to 75.11%

Bi-temporal 0.7938 82.59 82.50% to 82.79%

Metrical 0.8574 87.90 87.84% to 88.09%

All 0.8693 88.96 88.81% to 89.05%
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one of the classes, they also showed the highest omission error percentage for other classes; for
instance, 75% and 48.39% for agriculture, and 54.55% and 42.11% for water, respectively.

Regarding the commission errors, the mono-temporal approach presented the best result only
for water, with 0%, similar to metrical and All. The bi-temporal approach showed the lowest
error rate only for silviculture, with 4.65%. Metrical presented the best results for landslide
(5.97%), bare soil (12.20%), and water (0%). All’s approach performed best with the classes
forest (5.97%), agriculture (14.29%), pasture (12.77%), water (0%), and urban (5.56%). Thus,
All had the best results concerning commission errors, with the lowest error percentages in five
of the eight classes. Moreover, as in omission error, despite mono and bi-temporal presenting
very satisfactory results for one of the classes, they also showed the highest omission error per-
centage for other classes; for instance, 47.06% and 36% for agriculture, 36.94% and 26.96% for
bare soil, and 37.50% and 15.09% for pasture, respectively.

In addition, a relevant information regarding the landslide prediction is that, even though the
bi-temporal presented the best results for omission error, the difference from the metrical was
very narrow, about 0.05%. However, in regard to commission error, metrical presented the best
result (5.97%) with about 8.7% of difference from bi-temporal (14.67%), which showed the
highest values among all approaches.

An example of this commission error comparison concerning the landslide class is shown in
Fig. 19. The landslide inventory reference is represented by the red polygons on top of the
Sentinel image. The four maps below represent each classification product derived from the
approaches. Comparing the bi-temporal approach to the others, it is visible that it could indeed
detect all or most of the landslide scars. However, it is also noticeable that it confused most of the

Table 3 Omission errors.

Mono-temporal (%) Bi-temporal (%) Metrical (%) All (%)

Landslide 7.69 3.03 3.08 5.97

Forest 1.79 9.23 15.52 8.47

Silviculture 27.27 14.58 9.01 2.13

Agriculture 75.00 48.39 12.20 20.00

Bare Soil 22.22 16.00 20.88 13.33

Pasture 31.37 23.73 6.52 21.15

Water 54.55 42.11 13.04 13.04

Urban 17.07 20.00 16.67 17.07

Table 4 Commission errors.

Mono-temporal (%) Bi-temporal (%) Metrical (%) All (%)

Landslide 9.09 14.67 5.97 10.00

Forest 19.12 13.24 16.95 5.26

Silviculture 12.09 4.65 9.01 9.80

Agriculture 47.06 36.00 18.18 14.29

Bare Soil 36.94 26.96 12.20 18.02

Pasture 37.50 15.09 18.87 12.77

Water 0.00 15.38 0.00 0.00

Urban 34.62 22.22 14.29 5.56
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forest area from the hillside with landslides. In this specific area, visually analyzing, All
approach performed better, presenting defined polygons (low salt-and-pepper effect) well and
very satisfactory detection of the landslide scars, compared to the inventory reference.

The difference map is another method used to analyze the classification performance regard-
ing the landslide scars. In Fig. 20, the inventory reference is represented by the dark blue poly-
gons on top of the Sentinel image. From that vector data, a raster reference was created, in which
every pixel inside the polygons is represented in red as landslide class, and everything else is
labeled as non-landslide and represented in gray. The first four maps below show the classifi-
cation result for each approach. To clarify, in this case, the classification map from Fig. 17 was
used, and the landslide was separated from all the other classes, which were gathered in a unique
class called non-landslide. The last four maps below represent the output of a simple difference
between the reference and the prediction, produced with band arithmetic. The blue color stands
for correctly predicted areas, whereas brown and orange represent omission and commission
classification errors, respectively.

Observing the difference maps, it is clear that the amount of commission errors is signifi-
cantly superior to omission errors. This information is also confirmed by the commission
and omission error table, where the first presents considerably higher values than the latter.
Furthermore, comparing the four approaches, All presented the best result, with significantly
more areas of correctly prediction.

The confusion matrices (Fig. 18) reveal that landslides showed confusion with silviculture for
the four approaches, especially for mono and bi-temporal. This analysis can be developed in
Fig. 21. The two first Sentinel images represent an area only composed of forest, containing
silviculture in the central part, and no landslides scars. Silviculture class is clearly apparent
in the 2018s image, where it has been harvested. In addition, its texture in 2016s image is also
notably different from the surrounding forest. The classification results are displayed on the four
maps below.

Mono-temporal approach presented the least satisfactory output, with most of the silviculture
area classified as pasture, bare soil, and landslides scars. Also, the bi-temporal approach wrongly
classified a considerable amount of silviculture pixels as landslide. Metrical and All presented

Legend

Fig. 19 Landslides in details. The reference landslide scars are represented by the polygons with
a black line on the four maps on the bottom.
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the best results, with the most part correctly predicted as silviculture. These results reveal, again,
that one of the most challenging obstacles to landslide detection is to reduce the commission
errors. Once the mono-temporal approach does not have the previous information of silviculture
before the harvest, it is comprehensible that the prediction classifies the area as bare soil and

Fig. 21 Landslide versus silviculture. It is worth noting that in the mono-temporal approach the
whole silviculture area was classified as pasture or bare soil, whereas from the bi-temporal to all
approach the error is substantially reduced.

Fig. 20 Landslide difference map.
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pasture, for example. Bi-temporal approach presented a more accurate result (visually), however
the only reason for this improvement is the fact that this specific silviculture area has been har-
vested exactly on the same period of time where the two dates were used for bi-temporal input.
However, if the harvesting had been done before the first date, maybe it would have presented
a result close to mono-temporal.

Another visual analysis comparison among the approaches is shown in Fig. 22. The three
columns refer to “a,” “b,” and “c” areas spatially represented by the red rectangles. Both “a” and
“b” focus on the analysis of the agriculture class, and “c” is urban. Each row shows the result

(a) (b) (c)

(a)
(c)

(b)

Fig. 22 Classification maps in details. (a) and (b) Examples of agricultural areas. (c) Example
for urban areas. The pink and blue points are references for each class. The RGB image is a
composition of the following Sentinel-2 bands: R (B4), G (B3), and B (B2).
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for a specific approach. The pink points represent Agriculture areas of reference, whereas the
blue points, Urban. In “a” area, it is observable that from mono-temporal to All, the agriculture
polygons progressively gain a more solid and well designed shape. The salt-and-pepper effect
is more expressive at mono and bi-temporal results, which practically classified the whole area
as agriculture. In addition, both of these approaches also misclassified agriculture pixels with
urban, which does not exist in this area. In “b” area, the agriculture areas are only well detected
by metrical and All approaches, being confused with forest, pasture, and bare soil by the other
methods. An hypothesis for that might be the fact that for agricultural purposes, the phenological
cycle, provided by the time series, is very relevant. If the agricultural crop is still low or very
high, and if that is the only information available for mono or bi-temporal approaches, it is
comprehensible that confusion might happen with these classes.

Finally, in “c” area, the Urban class can be identified as the pixels concentrated in the quar-
ter blocks divided by linear streets at the Sentinel image. Once again, the metrical and All
approaches presented more well defined polygons, with less spared pixels (salt-and-pepper).
The urban cluster at these approaches presents consolidated black polygons, with some bare
soil, which could be explained by unpaved streets. However, on mono and bi-temporal, many
agricultural areas are represented in the middle of the urban center, which does not matches the
reference analyzed in Google Earth.

4 Discussion

Considering the time-series metrics, polar metrics showed high importance positions in the rank
(Table 1). For metrical approach, the first predictor chosen was the NDBIs area s2 and NDVIs
Area s4 is among the top five. Moreover, NDBIs polar balance and NDVIs area s4 were selected
on the top 10. Considering All’s approach, from the three metrics selected among the top 10, two
of them are polar, NDBIs area s1 and s2. The slope was among the top 10 predictors for every
approach. This can be explained by the fact that landslide scars tend to occur in areas where slope
values are high, which can be decisive for separating this class from bare soil. In addition, the
NDBI was also very present in the first positions of the ranking. Once this index is focused on
built-up areas, its contribution can be understood by the fact that three types of classes in this
study might present very similar spectral responses, being bare soil, landslide, and urban area.
Brazilian roofs are usually made of ceramic, which is mostly clay, explaining the reason for the
confusion among these classes. In this sense, the NDBI presented useful values to improve the
classification.

Visual analysis of the time-series metrics revealed that, especially for landslides, agriculture,
and silviculture, some metrics could support their detection, as, e.g., Katz, Std, and First Slope,
respectively. Moreover, variability seems to be a key characteristic of agriculture, as shown in
areas s1 to s4 and Std (Fig. 8). As each area represents a period in the time series, the comparison
among the four of them could reveal a grown crop in the first period (high values for area s1),
harvest season in the second (low values for area s2), followed by another cycle of growing crop
(values increase in area s3), and harvest (values decrease in area s4). Once the time series con-
sidered in this study is very large, it is possible that more than one agricultural season is present
in each period represented by the areas (i.e., seeding and harvesting in the same area period).
Among the selected metrics, std, absolute sum, and min are basic; areas s1 to s4 are polar.

The profiles in Fig. 10 shows an area of high vegetation, probably forest, that suffered the
removal of the vegetation due to the landslide event. The attempts of reconstructing the veg-
etation in the area are indicated by this two growing cycles, however, the high susceptibility
condition for landslides, as high slope values, might hinder the vegetation settlement. The
decreasing curves, might point to the repetition of the landslide in this area, maintaining the
landslide scar. This reveals the difficulty of vegetation recovery in landslide scars, and the pos-
sibility of multiple occurrence of the event in the same spot. Very different from landslide, the
forest polar graph illustrates a wide and continuous circle, emphasizing the stability of this class
behavior along the time (Fig. 11).

In addition, the boxplots interpretation provided more insights on how the time series metrics
could contribute to the classification. As an example, some metrics that stood out were the
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absolute mean derivative for agriculture, area s2 for urban, and DFA for landslides. In the latter
(Fig. 14), even though it presents a considerable quantity of outliers, the result for landslide is
notably different from the others. Once silviculture also shows low values for this metric, one
strategy for landslides detection could be the use of the DFA for separating landslides and sil-
viculture from the rest, and then use the NDVIs hurst metric to distinguish one from another.
In the latter, landslide values, in general, range around 0.40 to 0.58, when silviculture ranges
from 0.65 to 0.88. Maybe, the low values for landslides and silviculture might occur because of
their abrupt change response in the time series when the vegetation is removed, purposely in the
case of the latter. One should notice that for landslide detection, the metrics that revealed the best
results where both of the type fractal.

Comparing the approaches’ performances through the OA analysis, All approach showed
the highest value (88.96%), followed by metrical (87.90%), bi-temporal (82.59%), and mono-
temporal (74.95%). Focusing on landslide detection, from which the inventory is made, the
bi-temporal approach presented the lowest omission error rate (3.03%), followed by metrical
(3.08%), All (5.97%), and mono-temporal (7.69%). And concerning the commission error
metrical showed the lowest values (5.97%), followed by mono-temporal (9.09%), All (10%), and
bi-temporal (14.67%). Out of these results, it is possible to conclude that the main challenge in
this methodology for landslide detection is the reduction of the commission error. It is remark-
able that the bi-temporal approach, presented the lowest level for omission error, however the
highest for commission. Furthermore, from the interpretation of all of the accuracy results, with
the understanding that the goal was to provide both LULC and landslide inventory products, the
metrical approach presented the most beneficial result, once it showed the second best result
for OA and omission error; and the best result for commission error. It should be noted that
other metrics can be used to perform the accuracy assessment, for instance, standard error should
be included to weight confusion matrix cells by the classified surface for each class, as recom-
mended by Stehman and Foody.72

To compare the proposed method with other landslide detection approaches, a recent study
also based on Sentinel-2 multi-temporal imagery and the same accuracy assessment metrics was
analyzed. Yang et al.73 used a dataset from 2015 to 2018 applied to k-means and achieved user’s
accuracy of 90.8% (commission error of 9.2%) and producer’s accuracy of 83.6% (omission
error of 16.4%) for landslide detection. In our research the best results were 94.1% for user’s
accuracy (commission error of 5.9%) and 97% for producer’s accuracy (omission error of 3%).
Different from our results,73 presented more omission error rates than commission. The lack of
studies using time series, not only bi-temporal datasets, to detect landslide scars reveals the sci-
entific gap in this subject. However, deep-learning methods using bi-temporal approaches have
achieved outstanding results, as shown by Lei et al.74 with OA of 91.9% against our best result
of 88.9%.

Regardless of all the contribution and results obtained by this methodology, field work, and
visual interpretation from specialists are indeed very important and should not be completely
replaced by the semi-automatic approaches. These techniques can provide accurate information
that might not be achievable only by semi-automatic methods. However, the main suggestion
could be to combine these techniques. For future studies, it is recommended to apply this meth-
odology with different predictors and replicate it to other study areas, with different character-
istics, such as regions with more urban areas. It is highly recommended to use a time series with
regular time spacing so that interpolation and smoothing methods can be applied to the time
series to avoid irregularities due to clouds, for example. Furthermore, landslide scars can present
very similar response as other disturbances, as fire scars, for example. To deal with this type of
issue, it is recommended to do a very detailed previous study of the area, as well as designing the
classification model to account for identification and characterization of disturbances producing
behavior, and trying to figure out which variables represent the best discriminators.

Even though the RF algorithm realizes a selection of variables based on their IR, it is noted
that the SAVI index was not selected among the top 10 for neither approaches. This might be due
to the high-cross correlation between SAVI and NDVI. So, for future studies, it is recommended
to perform a cross-correlation analysis to select only the most significant predictors. Moreover,
for a more complete analysis of the classification results, calculating uncertainty maps are highly
recommended with, among others, Shannon entropy, RF maximum probability estimates, and
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confusion index. In addition, the proposed methodology should be tested with other types of
orbital data besides Sentinel-2, e.g., CBERS-4 and 4A, Sentinel-1 (SAR), and Landsat-8.

5 Conclusions

The main aim of this research was to develop a methodology that generates the LULC and land-
slide inventory maps through a semi-automatic process, using a time-series assessment. Even
though free access to medium spatial resolution orbital imagery is constantly updated and avail-
able for use, landslides inventories are still largely realized by visual interpretation of single or
bi-temporal datasets of high spatial resolution images. Not only is this process time-consuming
and manually realized via polygon vectorization from a visual interpretation method but usually
requires updated images from (very-) high spatial resolution, which, in general, needs to be
purchased by the final user, not available for free, which could present high costs. The idea
that the “best” inventory map can only be achieved by human visual interpretation has been
questioned with the emergence of new technologies and the advance into the artificial intelli-
gence era, reducing the distance among conventional and state-of-art methods. Nowadays, the
world shows that data availability is no longer a limitation because many types of data are mas-
sively provided from countless sources every day. The main challenge is how to manage and
transform data into information. In this sense, the 21st century has been evolving toward the
machine learning, big data, and cloud processing techniques pursuing the final goal, which
is to build knowledge.

Taking all above into account, this work contributes to the use of state-of-art methods and
data to generate landslide susceptibility assessment supply’s materials. The methodology pro-
posed uses geomorphometric attributes and dense and irregular time series of different spectral
indices from remote sensing imagery and three modules of time-series metrics (basic, polar, and
fractal)e applied to RF classification algorithm, all developed in a free and open source way.
Analyzing the predictors’ IR, among the four input approaches compared (mono-temporal,
bi-temporal, metrical, and All), each of them ranked an NDBI image or metric extracted from
this index as the most important predictor of the classification. The NDVI or predictors related to
that index also presented high relevance. The geomorphometric attributes, especially the slope,
was present in all of the approaches among the top 6 in the importance list.

This research answered some questions on how time series and time series metrics could
contribute to LULC mapping and landslide detection. Moreover, the IR may support the decision
of what predictors should be used for classification on that scientific field. The effort of this work
was to incorporate the abundant availability of free orbital optical data of high spatial resolution
in a semi-automatic procedure to present an alternative to the conventional mono/bi-temporal
visual interpretation method. The idea was to explore the potential of this type of data and clas-
sification algorithm looking forward to assist in the advance of automatized methods that make
use of free and open source material, in favor of accessible, faster, cheaper, and accurate products
for landslide susceptibility assessment.
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