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Abstract. Hyperspectral images can be used to identify savannah tree species at the landscape
scale, which is a key step in measuring biomass and carbon, and tracking changes in species
distributions, including invasive species, in these ecosystems. Before automated species map-
ping can be performed, image processing and atmospheric correction is often performed, which
can potentially affect the performance of classification algorithms. We determine how three
processing and correction techniques (atmospheric correction, Gaussian filters, and shade/
green vegetation filters) affect the prediction accuracy of classification of tree species at
pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna
in Central Florida, United States. Species classification using fast line-of-sight atmospheric
analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in
the majority of cases. Green vegetation (normalized difference vegetation index) and shade
(near-infrared) filters did not increase classification accuracy when applied to large and continu-
ous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and
increases species classification accuracy. Using the optimal preprocessing steps, our classifica-
tion accuracy of six species classes is about 75%. © 2015 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.9.095990]
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1 Introduction

Mapping tree species by remote sensing techniques have been useful in understanding the role of
plant species at the landscape scale. Landscape-scale species distributions can be used to help
determine classification of land use/land cover, plant response to climate change, detection of
invasive species, patterns of plant competition, and spatial distributions of fire fuel loads among
other applications.1 Mapping individual species has been enabled by the advancements in remote
sensing technologies, such as hyperspectral imagery or light detection and ranging (LiDAR).

Along with the development of remote sensing devices with the spatial and spectral reso-
lution to map species, there has been a wave of development in statistical and algorithmic
approaches to mapping species. We provide a brief review here and highlight that the impact
of atmospheric correction has been relegated to a mere preprocessing step although it may have
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direct impacts on classification accuracy. Colgan et al.2 used a two-stage support vector machine
(SVM) at both the pixel level and crown level for tree species classification, in which LiDAR
measurements were used for crown segmentation. Féret and Asner3 studied the accuracy of vari-
ous parametric/nonparametric supervised classification techniques and observed that there is
a clear advantage in using regularized discriminant analysis, linear discriminant analysis, and
SVM. There have been other tree species classification efforts, such as that of Dalponte et al.,4

Féret and Asner,5 Ghosh et al.,6 Immitzer et al.,7 Naidoo et al.,8 and Ustin et al.,9 that share the
same approach with minor variations.

Féret and Asner3 compared the classification performance of different hyper- and multispec-
tral sensors, particularly Carnegie Airborne Observatory’s (CAO) hyperspectral alpha system,10

WorldView-2, and QuickBird. By convolving 72 hyperspectral bands to eight and four multi-
spectral channels available in the WorldView-2 and QuickBird satellite sensors, respectively,
they observed that WorldView-2 produced more accurate classification results than either
QuickBird or CAO. Clark et al.11 compared leaf, pixel, and crown level measurements to identify
important wavelength regions for species discrimination. Although optimal regions of the spec-
trum for species discrimination varied with scale, near-infrared (NIR) bands were consistently
important regions across all scales. Bands in the visible region and shortwave infrared were
more important than other bands at pixel and crown scales. Clark and Roberts12 performed
their analysis on higher level data products, such as vegetation indexes, signal derivatives,
and signal intensities among others for classification.

Baldeck and Asner13 tried to measure beta diversity (turnover of species assemblages
between sampling units14) of different regions using distance measures, such as Euclidean dis-
tance and K-means clustering in unsupervised models. Use of these clustering techniques pro-
vides a quick assessment of beta diversity, thereby avoiding costly and time-consuming field data
collection. However, about 50% of pixels could not be identified to species and were classified as
“other,” signaling the need for improvements in techniques, similar argument holds in Baldeck
et al.’s later work in Ref. 15. This suggests that there is a certain level in species classification
accuracy beyond which state-of-the-art classification techniques cannot discriminate different
species, as such are species that are either too rare or too spectrally similar to other species
that they cannot be individually distinguished with spectral data alone.

For all of these studies, preprocessing of hyperspectral imagery was required, which can
potentially impact the results. The impact of the atmosphere is variable in space and time and
usually requires correction for quantitative remote sensing applications. Several researchers
have investigated the effects of different atmospheric correction methods for Landsat,
QuickBird, and imaging spectrometers on generic land cover detection applications as we
elaborate below, but there is little work to address the impact of atmospheric correction
for plant species classification. Some approaches to atmospheric correction include scene-
derived adjustments, in which in-scene statistics are used, such as the darkest pixel method,16

or purely empirical methods, where ground-recorded spectral data are required, e.g., the empir-
ical line method.17 Some involve radiative transfer models, such as the 6S code18 and moderate
spectral resolution atmospheric transmittance (MODTRAN),19 while others, such as atmos-
pheric correction (ATCOR)20 and fast line-of-sight atmospheric analysis of spectral hyper-
cubes (FLAASH),21,22 add in situ spectral data to the model.23 If ground data are not
available, radiative transfer models provide a cost- and time-effective solution in atmospheric
correction; however, with the availability of field data, ATCOR and FLAASH provide the
added value in monitoring the performance and fine tuning the training of the models
using field data, hence the focus on ATCOR and FLAASH. Manakos et al.23 compared
the effect of ATCOR and FLAASH atmospheric correction on land cover types in the island
of Crete using Worldview-2 satellite data, where FLAASH outperformed ATCOR correction.
In particular, ATCOR produced consistently low corrected reflectance values for all targets and
all bands.23 Here, we compare ATCOR versus FLAASH but in the context of tree species
classification. The choice of atmospheric correction may be important in species classification
because if atmosphere effects that obscure the land surface signal are not properly removed,
then separability of different plant species may be diminished. This is particularly important if
there is spatial variation in atmospheric effects across the scene to which the species classi-
fication will be applied. Also, as sunlight penetration in plants (and their stacks of leaves) is
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much different to that of nonliving materials (asphalt, gravel, etc), a wider range of signal
spectrum is vulnerable to that of atmosphere, which has not been the focus of previous papers.

The data for this study were provided by the National Ecological Observatory Network
(NEON) for Ordway-Swisher Biological Station (OSBS) in north-central Florida, United
States. NEON includes ∼60 local sites in different ecological domains across the United
States.24 Starting in 2017, the NEON remote-sensing airborne observation platform (AOP),
carrying a meter∕sub meter resolution for hyperspectral and LiDAR instruments, will collect
images of each site annually for 30 years, thus generating a large amount of data that can
be used to map plant species and track their distributions through time. This paper uses prototype
image data from a pilot study conducted at Ordway Swisher in advance of the full implemen-
tation of NEON in 2017.

The contributions of this paper are as follows. We performed tree species classification using
SVM and studied the impact of different atmospheric correction techniques for classification
accuracy. We focused on the two commonly used atmospheric correction techniques
(ATCOR and FLAASH) that NEON applied to the hyperspectral data collected in 2010. We
also explore the use of Gaussian filters for denoising reflectance values. Finally, we examine
the use of filters to remove pixels with low vegetation [normalized difference vegetation
index (NDVI)] or high shade (NIR), which has been used in a number of species classification
studies.2,8 With this work, we hope to provide guidance for processing the large set of NEON
images that will become available starting in 2017 that can be used for species classification.

2 Data Collection

OSBS covers 37 km2 in Putnam County in north-central Florida and is managed jointly by the
University of Florida and The Nature Conservancy (Fig. 1). OSBS features diverse natural for-
ests and small pine plantations and has a 75-year history of low human impact. The major plant
communities in OSBS, as defined by the Florida Natural Areas Inventory, are26 sandhill, xeric
hammock, upland mixed forest, baygalls, basin swamp, basin marsh, marsh lake, clastic upland
lake, and sandhill upland lakes. The sandhill community is managed using prescribed burning on
a scheduled 3-year rotation. The ground sampling for this research focused on
a sandhill ecosystem dominated by longleaf pine (Pinus palustris) and turkey oak (Quercus
laevis).26,27

The instrumentation slated for deployment on the NEON AOP remote-sensing payloads in
2017 was not yet available. AOP airborne spectroscopic and LiDAR measurements were per-
formed using existing systems. It is important to note that the actual AOP sensors for NEON
starting in 2017 will have better performance, improved conformance of hyperspectral/LiDAR
integrations, and better spatial resolution than the sensors used in this study.

Fig. 1 Location of Ordway-Swisher biological station (OSBS).25
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Airborne visible/infrared imaging spectrometer (AVIRIS) operated by the Jet Propulsion
Laboratory (JPL) onboard on a Twin Otter DeHavilland DHC-6-300 aircraft was used to collect
data. Images were collected on two separate days over OSBS: the morning of September 4, 2010
and midday of September 10, 2010 (Fig. 2). Both of the flights were conducted at an approximate
altitude of 4000 m AGL at ∼90 knots with zenith angle of 180.0 and azimuth angle of 0.0 [speed
over ground (SOG) ∼65 to 91 knots; NASA JPL AVIRIS flight details on both days28,29]. The
atmospheric conditions were mostly clear with some haze on September 4 and some puffy clouds
on September 10. Depending on flight line, pixel sizes ranged from 3.3 to 3.6 m. Hyperspectral
data were atmospherically corrected using FLAASH and ATCOR algorithms. Altogether, 8 flight
lines and 224 bands were recorded with wavelengths from 365.93 to 2496.24 nm.

Atmospheric characterization relied on measurements of a CIMEL sun photometer in
coordination with the NASA AErosol RObotic NETwork (AERONET).30 Measurements
were collected on September 4, 2010 and the derived atmospheric information was used to
improve the atmospheric correction of the AVIRIS spectrometer data. Detailed measurements,
such as aerosol optical thickness, water vapor, etc., are available online.31 NEON personnel per-
formed the orthorectification and atmospheric correction of the reflectance/radiance values, and
after extensive studies and ground measurements opted for ATCOR and FLAASH (hence, we
focus on ATCOR and FLAASH).

2.1 Field Data

Field identification and mapping of tree species was performed on February 28, 2014. A laptop
preloaded with the georeferenced images was used in conjunction with a professional grade
GPS. Twenty-nine tree crown polygons covering 1269 pixels were mapped and identified to
species or genus in the field. Later, we extracted the pixels of each polygon from the
AVIRIS image strip from the morning of September 4, 2010. This flight path was used because
it contained the fewest clouds over the trees we identified and mapped in the field. Some species
had many pixels (e.g., 334 for turkey oak) where others had fewer (e.g., 81 for laurel oak). This
bias in population size affects classification accuracy.32 The unidentified oak or pine species
categories could be classified to a genera (Quercus or Pinus), but not confidently identified
to species, although these crowns are likely one or several of the pine or oak species listed
in Table 1.

3 Species Classification

For many pixels in the image, we cannot expect a pure signal of a single species due to the large
size of each pixel (3+ by 3+ square meters). Instead, many pixels were linear/nonlinear mixtures
of endmembers in each pixel (e.g., multiple canopy crowns, soil, understory vegetation, shadow,
etc.). The main species in this study, turkey oak and longleaf pine, have sparse canopies, which
increase the amount of soil and branch material visible in the pixels.

Fig. 2 JPL AVIRIS flights over OSBS:27 (a) Flights ground tracks, (b) hyperspectral true-
color mosaic, morning September 4, 2010, and (c) hyperspectral true-color mosaic, midday
September 10, 2010.
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3.1 Atmospheric Correction

Ground spectral measurements for use in the atmospheric correction were collected concurrently
with flight operations. Unlike many other atmospheric correction algorithms that interpolate
radiation transfer properties from a precalculated database of modeling results (such as
GENLN233 and DART radiative transfer model34), FLAASH incorporates the MODTRAN radi-
ation transfer code35 alongside atmosphere and aerosol types specified, e.g., HITRAN-96’s
water line parameters,36 extinction coefficients for continuous and quasicontinuous molecular
absorptions, such as the H2O

37 and N2 continua, CFC and HNO3 vibrational bands, and elec-
tronic transitions of O2 and O3.

38 A unique MODTRAN solution is computed for each image.
FLAASH (implementation by Exelis VIS Inc. Boulder, Colorado, United States) also includes
the following features: correction for pixel mixing due to scattering of surface-reflected radiance,
computation of a scene-average visibility (aerosol/haze amount), handling stressing atmospheric
conditions (e.g., clouds), cirrus and opaque cloud mapping, and spectral polishing for artifact
suppression. FLAASH starts from a standard equation for spectral radiance at a sensor pixel, L,
that applies to the solar wavelength range (thermal emission is neglected) and flat, Lambertian
materials or their equivalents, as follows:21

EQ-TARGET;temp:intralink-;e001;116;363Le ≈
�ðAþ BÞρe

1 − ρeS
þ La

�
; (1)

where ρe is an average surface reflectance for the pixel and a surrounding region, S is the spheri-
cal albedo of the atmosphere, La is the radiance back scattered by the atmosphere, and A and B
are coefficients that depend on atmospheric and geometric conditions but not on the surface.
Solving for surface reflectance ρe, we have

EQ-TARGET;temp:intralink-;e002;116;270ρe ≈
Le − La

Aþ Bþ SðLe − LaÞ
: (2)

ATCOR (ATCOR 4, implementation by ReSe Applications Schläpfer, University of Zürich,
Switzerland) has the following features: capability of combination with geometric information
on terrain, a lookup table of a wide range of precalculated radiative transfer runs for different
weather conditions and sun angles employing MODTRAN, incorporation of spatially varying
aerosol conditions, and statistical haze removal that masks haze and cloud regions and removes
haze of land areas. It also accounts for deshadowing of cloud/building cast shadow areas, cirrus
cloud removal, BRDF correction of irradiance effects, evaluation of atmospheric parameters
(aerosol type, visibility, water vapor) by comparing retrieved reflectance with library spectra,
and finally inclusion of a solar reference spectrum. ATCOR performs atmospheric correction
for surface reflectance, ρ, disregarding the adjacency component, as follows:39

EQ-TARGET;temp:intralink-;e003;116;107ρ ¼ πfd2ðc0 þ c1DNÞ − Lpathg
τEg

; (3)

Table 1 Field data specifications.

Common name Scientific name Number of polygons Number of pixels

Laurel oak Quercus hemisphaerica 5 81

Longleaf pine Pinus palustris 13 307

Oak (unknown) Quercus 5 121

Pine (unknown) Pinus 10 275

Sand live oak Quercus geminata 5 151

Turkey oak Quercus laevis 14 334
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where τ is the atmospheric (direct or beam) transmittance for a vertical path through the atmos-
phere, d is the Earth–Sun distance in astronomical units, c0, c1, and DN are the radiometric
calibration offset, gain, and digital number, respectively. ρ is the surface reflectance and Eg

is the global flux on the ground.

3.1.1 Ground validation capabilities

To ensure cross-site calibration, NEON has funded the development of the NEON Imaging
Spectrometer Design Verification Unit at NASA JPL.40 Onboard calibrator, in conjunction
with laboratory calibration and ground-based characterization methods provided means for
verification and comparison of multiple calibration techniques. Ground-truth measurements con-
sisting of surface reflectance and atmospheric properties have been used to predict the at-sensor
radiance, which provided an operational calibration of the imaging spectrometer.41 Molecular
and aerosol components of the atmosphere attenuate and scatter light with strong spectral
dependencies, therefore, multispectral solar radiometer, as part of the AERONET,42 has been
used to take solar irradiance and sky radiance measurements before, during, and after sensor
acquisition of the test site to derive spectral aerosol optical depth, Ångström parameter, column
water vapor, and many other atmospheric properties. Columnar ozone amount has been deter-
mined using ozone monitoring instrument.

Geometries of the sensor and sun at the time the sensor measured the test site have also been
included in the input. The midlatitude summer atmospheric model in MODTRAN has been used,
which defines atmospheric profiles for H2O, O3, N2O, CO2, and CH4 that are proper for the
altitude, pressure, and column ozone provided to the model. The CO2 mixing ratio was set
to 365 ppm, aerosol optical depth at 550 nm and Ångström parameter is provided to define
aerosol spectral extinction. The model has been set to assume a lambertian surface with spectral
reflectance of the test site, which has been measured close in time to sensor acquisition. To
account for boundary areas, an additional reflectance spectrum representing the area surrounding
the test site has been defined as an additional radiative transfer constraint. Reflectance and
atmospheric properties were also characterized for one Landsat 5 TM and four AVIRIS over-
passes. Brief information on some of the measurements are provided in Table 2, and more infor-
mation on NEON’s 2010 OSBS campaign are available in Refs. 40 and 43.

3.2 Signal Preprocessing

The hyperspectral images were loaded in MATLAB using an in-house upgraded version of envi-
read, initially developed by Dr. I. Howat at Ohio State University.44 A check for the consistency
of calibration and uniformity of pixel sizes indicated a range of 3.3 to 3.6 M pixel sizes due to
various flight and measurement conditions. As different flights have different altitudes and hence
pixel resolutions, this is an essential step to take into account. Here, we define a hyperspectral
image I with dimensionality ðx; y; w; zÞ, where x ∈ X ¼ ½167000; 833000� represents the range
of UTM easting values, y ∈ Y ¼ ½0; 9400000� represents UTM northing values, w ∈ W ¼
f1; : : : ; 224g is the index of the reflectance wavelengths, and z ∈ Z ¼ f1; : : : ; 60g is the
UTM zone of the image. Based on our observations, we take constant ξ ¼ 10000 as a cutoff
point to avoid erroneous sensor readings. There are various types of noise in JPL AVIRIS mea-
surements such as negative reflectance values; the range of hyperspectral reflectance values
(range ½−32762; 32724�): one should note that reflectance is the proportion of sun radiance sig-
nals, which should be a positive value, but in normalized form, reflectance is between zero and
one. The normalization process to remove sensor noisy data is as follows:

EQ-TARGET;temp:intralink-;e004;116;144Ixywz ¼

8>><
>>:

0 for Ixywz < 0

1 for Ixywz < ξffiffiffiffiffiffiffi
Ixywz
ξ

q
otherwise

: (4)
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For normalization, the negative reflectance values were set to zero and values greater than
10,000 were set to 10,000. Comparing the generated RGB wavelengths to that of the RGB image
taken at the same time of the flight, we noticed that the image appears much darker. To adjust the
image intensity to a “true color” setting, the square-root of signal returns was used. We excluded
wavelengths corresponding to strong water vapor absorption bands in the atmosphere: 1333.2 to
1482.7 nm, 1791.6 to 1967.6 nm, and 2406.9 to 2496.2 nm.

3.2.1 Impact of low-vegetated/shaded pixels

We tested two filters to obtain pixels that contain greater signal of green vegetation for the can-
opies. A filter of NIR excludes heavily shaded pixels,2 for this data, we set the threshold to 0.33.
To obtain pixels with a high signal of green vegetation, a filter of NDVI can be used.45 Here, we
set the threshold to 0.4 and band 665.6 nm was used for red and 734.1 nm for NIR. However, in
our images, we observed that preserving low NDVI/NIR pixels from ground data increased
prediction accuracy. Removing low NDVI pixels from tree canopies degraded classification
performance by about 10%. This is contrary to the general belief in the literature that removing
pixels with low green vegetation contribution (low NDVI) and high shading (low NIR) improves
classification performance. Threshold values for NIR and NDVI are highly data dependent
(based on sensor type, atmospheric correction, and signal calibration) and were chosen
empirically.

3.2.2 Gaussian filter

The sensor readings were very noisy (Fig. 3). To reduce noise, we take advantage of an abun-
dance of bands (224 AVIRIS bands) and exploit their local-aggregate information by applying a
Gaussian filter to reduce cross-band noise. Applying the filter reduced the amount of cross-band
noise. Signal transitions are smoother while useful features of the spectrum are preserved. The

Table 2 Summary of sensor overpass parameters used as input to radiative transfer code for
at-sensor radiance prediction.40 All measurements occurred in 2010, and time is in UTC.

Sensor overpass Landsat 5 TM AVIRIS # 4 AVIRIS # 5 AVIRIS # 5 AVIRIS # 9

Test site Asphalt Vegetated Vegetated 48% tarpaulin Asphalt

Site center 29.695,
−82.261

29.689,
−81.994

29.689,
−81.994

29.689,
−81.994

29.695,
−82.261

Overpass time September 2,
15:51

September 4,
14:01

September 4,
14:11

September 4,
14:11

September 4,
14:46

Ground ref time September 2,
15:42 to 15:57

September 4,
13:59 to 14:14

September 4,
14:19 to 14:32

September 3,
20:39 to 20:43

September 3,
20:23 to 20:36

Sensor azimuth 103.00 287.01 101.13 160.13 48.31

Sensor zenith 2.37 15.69 8.73 4.18 3.46

Solar azimuth 128.93 104.19 105.98 105.96 112.28

Solar zenith 31.62 53.28 51.04 51.07 44.22

Altitude (m) space 3994.3 4039.3 4045.2 4107.4

Ångström 1.599 1.868 1.848 1.848 1.885

Aerosol optical depth
(550 nm)

0.1193 0.2262 0.2407 0.2407 0.2527

Water vapor (cm) 3.03 4.00 4.04 4.04 4.04

Ozone (DU) 291 285 285 285 276
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impact of this preservation in species classification accuracy is demonstrated in our results sec-
tion. Taking a Gaussian window w of size N > 0, the coefficients of the Gaussian window are
computed as follows:

EQ-TARGET;temp:intralink-;e005;116;493wðnÞ ¼ e−
1
2ðα n

N∕2Þ2 ; (5)

where −ðN − 1Þ∕2 ≤ n ≤ ðN − 1Þ∕2 and α is inversely proportional to the standard deviation
(σ) of a Gaussian random variable (σ ¼ N∕2α). After Gaussian parameters are specified, con-
volution is performed to apply the smoothing factor. Convolving vectors u ∈ Rm and v ∈ Rn

gives vector w ∈ Rmþn−1, such that

EQ-TARGET;temp:intralink-;e006;116;411wðkÞ ¼
X
j

uðjÞvðk − jþ 1Þ: (6)

3.3 Support Vector Machines

SVM often outperforms other algorithms on species classification.2,15,46 We parameterize
SVM with k-fold cross validation where k ¼ 5. Classifier nonlinearity comes from taking
the following nonlinear functions as kernel for SVM:

• Polynomial function kernel
• Radial basis function (RBF) kernel.

Regarding multiclass classification,
� c
2

�
different classifiers are trained, where c is the num-

ber of classes (6 in this case). Hence, we train 15 disjoint binary classifiers at each iteration of
k-fold. All the classifiers are trained once. Majority voting among classifiers decides the class
assignment. Classifications were done for individual pixels not for crowns.

We empirically evaluated the impact of optimizing classifier parameters with regard to
FLAASH and ATCOR atmospheric corrections. We then investigated the impact of data pre-
processing filters on the performance of the species classification. A one-versus-one combina-
torial multiclass k-fold (k ¼ 5) cross-validation setup of SVM using nonlinear kernels
(polynomial and radial basis) is used as the model (15 different classifiers were trained),
where majority voting determines the species of a pixel. Pixels of a single canopy were
used for either training or test sets, and not both, as pixels of one canopy may contain similar
information.47 A cost of C ¼ ∞ is set for misclassification, meaning there is little to zero
tolerance for improperly classified samples.

Finally, the effect of atmospheric correction on prediction accuracy versus classification
model parameters is considered. C, σ, P, m and optimization method are the knobs of SVM
that are tuned in a mixture of grid and heuristic search. Here, C stands for the cost or penalty

Fig. 3 Use of Gaussian filter to reduce cross-band sensor noise: water absorption bands are
preserved here for displaying purposes.
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of misclassification against simplicity of the decision surface; σ defines how far the influence of
a single training example reaches, with low values meaning “far” and high values meaning
“close” in RBF function; P is the polynomial degree for polynomial function as kernel;
m is the maximum number of iterations the optimization function should iterate; and optimi-
zation method defines the selected optimization method. In this work, we set C ¼ þ∞, m ¼
10;000 and use quadratic programming as optimization method. In the following paragraphs,
we evaluate the impact of P and σ, respectively.

4 Results and Discussion

Through extensive analysis, we evaluate the impact of atmospheric correction (FLAASH and
ATCOR) on species classification accuracy. Accuracy of species classification was different
depending on the atmospheric correction algorithm used and FLAASH atmospheric correction
outperforms ATCOR by a margin of about 2% to 4%. First, we evaluate the impact of Gaussian
filter; applying a Gaussian filter reduces signal noise with or without presence of water absorp-
tion bands (Fig. 4). Our point is not overiterating that removing water absorption bands is
a useful step as this has been a de facto approach in the literature; rather, this proves that
one can still get improvements on prediction accuracy using proper Gaussian settings even in
the presence of highly unusable water absorption bands.

Removing low NDVI-NIR pixels from the data set caused a general degradation of perfor-
mance compared to using all pixels (Fig. 5). In the FLAASH data set, the accuracy is about 70%,
and ATCOR yields 66% accuracy. The species in this area have crowns with low leaf density and
complex surfaces, such that individual pixels within a crown may have low “greenness” due to
wood or soil reflectance through the canopy or canopy shadows from a complex surface. The
filters may be removing excessive number of pixels in this instance. The degradation using the
NDVI-NIR filter can also be due to the fact that pixel size is large (3 m) and canopies are large
(each canopy is from 6 to 107 pixels). This generous marking of canopies includes areas with
little greenness (shadows, branches, gravel, etc.; all with low NDVI and low NIR values). Due to
the mixing nature of reflectance values, even low NDVI/NIR pixels of a continuous canopy still
contain signals from the underlying species, which may not be as green. Figure 5 shows that
removing low NDVI/NIR pixels of a continuous canopy actually degrades the performance of
the classification model with an impact of about 4%. So, in similar scenarios, where field data
consist of large continuous land patches, this observation advises on preserving low NDVI/NIR
pixels. It is important to realize that this is only relevant in the context of field data, as the species
are already known, and is only useful in training the classifier. In global application of NDVI/
NIR filters to entire flight lines, we suggest using the method in the literature; i.e., deletion of low
values to remove roads, grass, etc. Here, the benefit of FLAASH over ATCOR can again be
observed on average by 2% to 3%.

Fig. 4 Impact of Gaussian window on prediction accuracy: (a) before removing water absorption
bands and (b) after removing water absorption bands.
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Changing the polynomial degree P impacted prediction accuracy using a polynomial
kernel in SVM [Fig. 6(a)]. FLAASH atmospherically corrected data yields 73.5% accuracy,
whereas ATCOR results in 69.8%. The simpler the polynomial, the better the performance;
a more complicated polynomial leads to a high bias classification model, which performs poorly
when evaluated on test data. For FLAASH atmospheric correction (P ≥ 3), the optimization
function does not converge. On the other hand, ATCOR data performs as predicted.
Accuracy drops as low as 10.8% and 11.3% with polynomial degrees of 7 and 8 (due to extreme
overfitting).

The radial basis kernel has better performance than a polynomial kernel. As shown in
Fig. 6(b), the best results are achieved using FLAASH data, with a peak at 75.3%, while
ATCOR comes close at 74.9%. RBF does not show good performance at σ values, which
are either excessively low or high, where σ is the inverse of the width of the RBF kernel (roughly
defining the area of influence of a support vector); in other terms, it defines the degree of in-
fluence of a single training example. The larger σ is, the closer other examples must be to be
affected. Because RBF takes data to a higher dimensionality, a small σ gives a pointed bump in
the higher dimensions, and a large σ gives a softer, broader bump. Thus, neither extreme shows
a good fit nor a middle point of σ ¼ 10;000 provides the best results. On the negative side,
FLAASH begins with an accuracy of 0% and ATCOR at 19.9%, but they quickly attain a stable
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Fig. 5 Classification results with the removal of low normalized difference vegetation index and
near-infrared pixels.

Fig. 6 Parameter tuning for classification algorithms: (a) tuning polynomial order for SVM with
polynomial kernel function and (b) tuning σ in SVM with radial basis function kernel function.
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region close to each other, while FLAASH demonstrates superior performance in most of the
cases. There is a good range of σ values ([10, 10000]), which give a plateau in prediction accu-
racy, implying the RBF kernel has a more robust performance than the polynomial kernel.

Table 3 shows the confusion matrix of the best performing classification model (75.2% accu-
racy), using the FLAASH correction module and SVM with RBF kernel and Gaussian window
length of four. The majority of misclassifications are between pine (other) class and longleaf
pine. A similar misclassification can be observed between oak (other) and other types of oak.
This was expected because the “other” class contains a mixture of different species of the genera
(oak or pine). On the other hand, there is minimal misclassification between the oak versus pine
categories. The oak category is rarely misclassified as pine, but pines are misclassified as turkey
oak and laurel oak at a low level. There is no misclassification among different oak species.
Laurel oak, turkey oak, and live oak are well separable from each other, suggesting that
broad-leaf species like oaks can, in general, be well separated.

In our experiments, we observed small but consistently better performance of FLAASH
atmospherically corrected data versus ATCOR for tree species classification. This is in conform-
ance with recent observations of Manakos et al.,23 who found that FLAASH atmospheric cor-
rection outperformed ATCOR in endmember classification of land cover types in Crete.

5 Conclusions

Identification of species using remote sensing technologies, such as hyperspectral and LiDAR
sensors, has critical utility in studying impacts of global warming, biomass estimation, and inva-
sive species identification among other issues. In this paper, we report species classification
using SVM applied to AVIRIS hyperspectral data available for OSBS in north-central
Florida. Performance of the classifier was improved by using a Gaussian filter for denoising
reflectance values. We also discuss how incorporating even low NDVI and low NIR pixels
can be helpful in improving classification accuracy in some landscapes ground data. Due to
the mixing nature of remote sensing hyperspectral data, using such pixels can reduce the
bias in maximum margin support vectors in SVM. The images atmospherically corrected
using the FLAASH algorithm outperformed the ATCOR algorithm by margins of about 2%
to 4%. Our classification model is robust for species classification among different oak species,
however, we show minor misclassification between pine and oak species.
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