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Abstract

Significance: The reliability of functional near-infrared spectroscopy (fNIRS) measurements is
reduced by systemic physiology. Short-channel regression algorithms aim at removing systemic
“noise” by subtracting the signal measured at a short source–detector separation (mainly scalp
hemodynamics) from the one of a long separation (brain and scalp hemodynamics). In literature,
incongruent approaches on the selection of the optimal regressor signal are reported based on
different assumptions on scalp hemodynamics properties.

Aim: We investigated the spatial and temporal distribution of scalp hemodynamics over the
sensorimotor cortex and evaluated its influence on the effectiveness of short-channel regressions.

Approach:We performed hand-grasping and resting-state experiments with five subjects, meas-
uring with 16 optodes over sensorimotor areas, including eight 8-mm channels. We performed
detailed correlation analyses of scalp hemodynamics and evaluated 180 hand-grasping and 270
simulated (overlaid on resting-state measurements) trials. Five short-channel regressor combi-
nations were implemented with general linear models. Three were chosen according to literature,
and two were proposed based on additional physiological assumptions [considering multiple
short channels and their Mayer wave (MW) oscillations].

Results: We found heterogeneous hemodynamics in the scalp, coming on top of a global close-
to-homogeneous behavior (correlation 0.69 to 0.92). The results further demonstrate that short-
channel regression always improves brain activity estimates but that better results are obtained
when heterogeneity is assumed. In particular, we highlight that short-channel regression is more
effective when combining multiple scalp regressors and when MWs are additionally included.

Conclusion: We shed light on the selection of optimal regressor signals for improving the
removal of systemic physiological artifacts in fNIRS. We conclude that short-channel regression
is most effective when assuming heterogeneous hemodynamics, in particular when combining
spatial- and frequency-specific information. A better understanding of scalp hemodynamics and
more effective short-channel regression will promote more accurate assessments of functional
brain activity in clinical and research settings.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) enables the noninvasive measurement of human
brain activity by monitoring concentration changes of oxygenated hemoglobin (O2Hb)
and deoxygenated hemoglobin (HHb) in the blood.1–4 fNIRS has evolved from a tool for
basic research to a widely used technique to investigate brain activity in nonconstrained
environments.5,6 Despite its versatile use, there remain several challenges, in particular, the sen-
sitivity of continuous-wave fNIRS to hemodynamic changes of non-neuronal origin.2,7–10 These
are often referred to as physiological “noise” or “interference” and include systemic activities,
such as cardiac pulsation (1 to 2 Hz), respiration (0.2 to 0.4 Hz), low-frequency oscillations
(∼0.1 Hz) and very low-frequency oscillations (0.01 to 0.05 Hz),11 and an increase in blood
flow through sympathetic nervous activity.12 These artifacts generate signal changes that may
mimic or mask true task-evoked hemodynamic responses (HRs) and may lead to false positives
or false negatives.8,10,13 This challenge has been acknowledged and its significance recognized in
the recent years by the fNIRS community.8 Although the susceptibility to non-neuronal signals is
specific to the measurement principle of fNIRS, all technologies that infer brain activity via
hemodynamic changes, i.e., fNIRS, functional magnetic resonance imaging, and positron emis-
sion tomography, are affected.

As a main contributor to low-frequency oscillations, Mayer waves (MW) are rhythmic hemo-
dynamic oscillations in arterial blood pressure,14 and are presumably the main reason why it is
not possible to recover a functional HR in some subjects.15 Cardiac and respiratory signals can be
removed with low-pass filters, when adequately selected for the specific measurement protocols
and task/stimulus durations.16,17 The removal of the other systemic signals is more difficult and
requires the application of more elaborate signal processing since their frequency contents over-
lap with the functional HR.18–20 Short-channel regression methods have been proposed as a
means to separate cerebral from systemic activity.21,22 Through the separate measurement of
the scalp hemodynamics by means of a short-separation (SS) channel (typically <15 mm and
ideally 8.4-mm length23,24), a signal that predominantly contains systemic and minimal brain
activity is obtained. To extract the contribution of the brain from a long-separation (LS)
fNIRS measurement (typically 30 mm), the SS is subtracted from the LS signal. Short-channel
regression has been shown to significantly improve the quality of the recovered functional brain
activity.18,21,22,25

However, conflicting approaches on how to apply these scalp regressors can be found in the
literature, especially, on the assumed spatial distribution of the scalp hemodynamics, and there is
currently no consensus on which approach is better. Systemic artifacts are typically not con-
strained locally, but they affect the whole brain and extracerebral tissues, and are thus considered
“global.” As a consequence, it is often assumed that global noise is distributed homogeneously
over the entire scalp layer and thus that a single global signal can be used for the short-channel
regression.26–30 In contrast, it was repeatedly shown that scalp hemodynamics follow spatially
heterogeneous patterns,9,17,31–38 i.e., different short-channel signals are measured at different
locations on the scalp. An additional complexity is observed when considering that the physio-
logical artifacts also show frequency-dependent spatial variations,36 with a noteworthy effect
observed for the MW-frequency band (i.e., average time lags up to 2 s between ipsilateral head
regions36). It is not entirely understood yet how the scalp hemodynamics behave spatially and
how strongly their frequency-specific behavior affects the effectiveness of short-channel regres-
sion, raising the question of how to optimally apply short-channel regressors.

In this work, we investigate the scalp hemodynamics above sensorimotor areas with respect
to the two differing assumptions of their spatial distribution (heterogeneous versus homo-
geneous) and their effectiveness for short-channel regression. Through the combination of local
and global regressors, we strive to regress systemic signals of cerebral and extracerebral tissue
origin more completely. We further hypothesize that the separate consideration of temporal
heterogeneities in form of MWoscillations enables a more optimal regression of systemic signals
by reducing the physiological noise. To do so, we propose an algorithm based on a general linear
model (GLM) that makes use of nonlinear least squares. This work is important as it paves the
way for the implementation of more accurate short-channel regression that could increase the
overall quality of fNIRS measurements, allowing more wide-spread application of this
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technology. This can particularly help to promote clinical applications by making measurements
more reliable at the individual level.

2 Methods

To investigate scalp hemodynamics over sensorimotor areas and its influence on the estimation
of the functional HR, we conducted an fNIRS experiment to obtain resting-state and motor-
execution measurements. The study was conducted in accordance with the Declaration of
Helsinki Ethical Principles and Good Clinical Practices, and all subjects provided informed
consent.

2.1 Subjects and Data Acquisition

Five male, right-handed volunteers (aged 27� 4.7 years, range: 24 to 35 years) participated in
the experiment. Subjects were seated in front of a computer screen in a dark room, with their
hands lying comfortably on their lap [Fig. 1(a)]. The experiment was split into one 15-min rest-
ing-state run and two 15-min runs of motor-execution tasks. The resting-state run was motivated
by the need for subject-specific rest data to which an artificial HR could later be added for further
validation of the regressors. One motor-execution run consisted of 20 block-designed trials each
involving 16 s of self-paced opening and closing of the right hand at ∼1 Hz (onscreen instruc-
tions: green indicator and command “move hand”), followed by an intertrial time that was ran-
domized to 14, 16, or 18 s (“rest”). The subjects were instructed to perform a smooth grasping
movement. Two seconds before trial start, the subjects were informed about the upcoming task
(“get ready”) to ensure they were paying attention. During data acquisition, subjects were
instructed to sit still and to move only their right hand when the instruction “move hand” was
displayed. Subject 5 performed only one motor-execution run due to discomfort.

The measurements were performed with the NIRSport system (NIRxMedizintechnik GmbH,
Berlin, Germany). The system measured with eight sources and eight detectors at two wave-
lengths (760 and 850 nm), with a sampling frequency of 7.8125 Hz. For the conduction of this
study, an fNIRS cap enabling the measurement with SS and LS channels was deployed. The cap
was provided by the manufacturer and enabled the concomitant measurement with 20 LS chan-
nels with a source–detector separation of 30 mm and 8 SS channels of 8-mm distance that were
located around each light source [SS1 to SS8 in Fig. 1(b)]. The optodes were placed over the left
and right parietal lobes covering the sensorimotor cortex. Two sources (SS3 and SS7) were
placed over the left and right primary motor cortices on C3 and C4 according to the international
10–20 system of electrode placement [Fig. 1(b)]. The other optodes were located over the left
and right premotor cortices (SS4 and SS8), supplementary motor area (SS1 and SS5), and primary
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Fig. 1 Experimental setup. (a) Subjects were seated in front of a screen with the NIRSport system
mounted. (b) Optode arrangement on the head. Gray areas indicate the locations of the SS chan-
nels (SS1 to SS8), dashed green lines the LS channels that were measured, and the two orange
lines the selected channels with highest t -values. The selected channel for subject 1, 2, 3, and 5
was anterior to the C3 location (thick orange line), and superior for subject 4 (thin orange line).
(c) Sensitivity map of the measurement arrangement.
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somatosensory cortices (SS2 and SS6). Center-to-center distances
33 between LS and SS channels

were 15, 34, 54, 62, and 75 mm per hemisphere.

2.2 Data Processing

Data were processed using custom-built MATLAB scripts (Version 2018b, MathWorks,
Massachussets, US). Channels with low signal quality were excluded from data analysis.
They were identified based on the evaluation of the cardiac signal by the method of Perdue
et al.39 More specifically, a Gaussian curve was fitted into the frequency spectrum of O2Hb

between 0.6 and 1.8 Hz, and a peak signal of ≥12 dB was marked as good signal quality.
This approach enables the detection of channels that have a strong optical signal but lack of
physiological signal content, which may occur in SS channels. For subjects 2 and 3, the channels
SS6 and SS8 were removed due to low signal quality, respectively. SS8 was excluded for subject
4 due to repeated data dropout of the corresponding sensor.

Motion artifacts were minimized with a movement artifact reduction algorithm involving
detection by moving standard deviation and removal by spline fitting.40 After applying the modi-
fied Beer–Lambert law,41 with differential pathlength factors of 6.1 at 760 nm and 5.6 at
850 nm,42,43 the concentration changes of O2Hb and HHb were filtered bidirectionally
(MATLAB: filtfilt; finite impulse response, order 100016) at two passbands with regard to the
signal of interest:15,36 HR band (0.01 to 0.3 Hz) and MW band (0.07 to 0.14 Hz). It is important
to note that a narrow definition of the HR band was chosen in this work and little power (<‱) of
the HR may exceed this range, as well as that the frequency spectrum will change for study
protocols with different block durations. In this work, only O2Hb was investigated, because
it is influenced to a higher degree by confounding factors than HHb.15,18,32,44

The LS channel with the strongest cerebral activation during the hand-grasping experiment
according to GLM t-statistics (see Sec. 2.5) was selected for the subsequent analysis. For all
subjects, the selected channel originated from the source placed over C3 (SS2). The correspond-
ing detector optode was located anterior for subjects 1, 2, 3, and 5 [thick orange line in Fig. 1(b)],
and superior for subject 4 (thin orange line). For all subjects, the channel flagged for the strongest
activation was located over the expected primary motor cortex area of the brain.

2.3 Short-Channel Regression Using GLM

The GLM method is a commonly known technique that allows the regression of short channels
and that is relatively easy to implement.12,38,45–47 It is known that the regression of different
regressor signals may alter the shape of the recovered signal.36 Therefore, we applied five regres-
sor sets incorporating different assumptions on the spatial distribution of systemic interference.
Three approaches were implemented according to literature and relied on the standard GLM
method [i.e., (i) one local regressor, (ii) one global regressor, and (iii) one local and one global
regressor], whereas two approaches were based on physiological assumptions and made use of
an adapted GLMmethod using non-negative least squares [i.e., (iv) one local, one global and one
MW-bandpass filtered global regressor, and (v) all available SS channels and their MW-bandpass
filtered signal].

2.3.1 Classical GLM

In GLM, the measurements (Y), the explanatory variables (X), and the error term (ε) are linked to
each other according to

EQ-TARGET;temp:intralink-;e001;116;157Y ¼ Xβþ ε; (1)

where β is the model parameters/weights. The design matrix X consists of a constant-offset
array (XC), a modeled HR (XHR), and a nuisance regressor from the superficial scalp layer
(XSCALP)

EQ-TARGET;temp:intralink-;e002;116;90X ¼ ½XC;XHR;XSCALP�: (2)
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To solve Eq. (1) and obtain an estimated parameter β̂, ordinary least squares using the
Moore–Penrose pseudoinverse is applied

EQ-TARGET;temp:intralink-;e003;116;709β̂ ¼ ðX⊤XÞ−1X⊤Y: (3)

An estimated, cerebral activity ŷC is obtained after subtraction of XSCALPβ̂SCALP from an LS
measurement yLS.

Three approaches based on literature used the standard GLM method: (i) selecting a local
regressor (XSCALP ¼ XSS) from the most proximal SS channel SS3 (method:GLMSS),18 (ii) using
a global regressor (XSCALP ≔ XPCA) derived from the first principal component after principal
component analysis (PCA) of all SS channels (method: GLMPCA),29 and (iii) the combination of
the local and the global PCA regressor (XSCALP ¼ ½XSS;XPCA�) to assume separate superficial
and global brain noise (method: GLMSSþPCA).17

2.3.2 Non-negative GLM

The two other GLM methods were based on the assumption of phase-shifted oscillations in the
MW band.12 This facilitates the reduction of residuals, as shown in Fig. 2.Two sinusoidal oscil-
lations at 0.1 Hz with time lags of 0.5 s [Pearson’s r ¼ 0.95, Fig. 2(a)] and 1 s [r ¼ 0.80,
Fig. 2(b)] are represented, respectively, to simulate two phase-shifted MW signals. After regres-
sion,21 the introduced time lags lead to new oscillations with residual magnitudes of 30% and
60% of the original signal. It is worthy to note that the residuals would have had zero magnitude
without the presence of phase shift. In fNIRS signals, similar delays for the MWoscillations are
observed36 [Figs. 2(c) and 2(d)].

Non-negative least squares48–50 was applied for the estimation of β̂ to reduce the risk of over-
fitting when including additional regressors. Non-negative least squares (MATLAB: lsqnonneg)
iteratively minimizes the least-squared error between observation and the expected values by
setting negative values to 0.51 It prevents the arbitrary combination of multiple regressors by
forcing only positive linear combinations of physiological regressor signals. This approach
is based on the physical foundation that concentration changes measured by fNIRS must be
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Fig. 2 Simulations and sample signals of MWs. Subtraction of two signals in the MW band using
least-squares minimization. The black line shows the reference signal, the blue line shows the
regressor signal, and the red line shows the residual after subtraction of the other two signals.
(a) and (b) Simulated signals at 0.1 Hz with time lags of 0.5 and 1 s between reference and regres-
sor signal, respectively. The regressed signal (red line) has residual magnitudes of 30% and 60%
of the original signals. (c) and (d) Example of a MW-bandpass filtered O2Hb measurement, show-
ing one LS channel over the primary motor cortex (SS3, black line) in comparison to a SS channel
located over the primary motor cortex (SS4, blue line) or supplementary motor area. The regressed
signal (red line) shows the influence of location-dependent phase shift.
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a summation of physiological signals originating from cortical and noncortical regions.21

Conceptually, this reflects the fact that a regressor (e.g., scalp signal) is not able to “generate”
photons but only to absorb them. Applying non-negative least squares is not a necessity when
considering multiple (phase shifted) regressors and similar results may be obtained with classical
GLM, but the constraints preclude unrealistic outcomes of GLM regression.52 Equation (1) is
then redefined as

EQ-TARGET;temp:intralink-;e004;116;400Y ¼ Xβþ ε subject to β ≥ 0: (4)

To prevent a biased estimate by restricting XC and XHR to be multiplied with positive values
only, X was extended with their negative duplication

EQ-TARGET;temp:intralink-;e005;116;344X ¼ ½�XC;�XHR;þXSCALP�: (5)

The fourth (iv) GLM approach (method: nnGLMSSþPCA, exemplarily shown in Fig. 3) is an
extension of GLMSSþPCA with a third scalp signal being the phase-shifted PCA-MW signal
XMW;PS
PCA (XSCALP ¼ ½XSS;XPCA;X

MW;PS
PCA �). This approach considers delays in the MW band

between the global component and the LS signal. The XMW;PS
PCA was obtained as follows: first,

XPCA and yLS were bandpass filtered in the MW band to obtain XMW
PCA and yMW

LS . Second, XMW
PCA

was phase shifted in the range of �3 s. Third, ordinary least squares was iteratively applied for
the three bandpass-filtered signals, yMW

LS , XMW
PCA, and phase-shifted XMW

PCA to find the optimally

delayed signal XMW;PS
PCA that minimizes the residual errors.

The fifth (v) approach (method: nnGLMmultiSS) was an attempt to minimize systemic inter-
ference by including all spatial and temporal information available from the scalp measurements.
It was not based on an underlying physiological model but was an approach to extract maximal
information available from the superficial layer. The scalp regressor matrix was constructed from
all SS channels XmultiSS and their phase-shifted MW signal XMW;PS

multiSS, obtained the same way as

described in the previous paragraph for (iv) (XSCALP ¼ ½XmultiSS;X
MW;PS
multiSS�).

2.4 Simulation of Hemodynamic Response Time Series

A major challenge when analyzing fNIRS measurements is that no ground truth for neuronal
activity is available. Therefore, we performed simulations where a blocked design of two
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an example). The design matrix X consists of a constant offset XC , a model of the HR function
(XHR, the time and dispersion derivatives are not shown), and the scalp regressors XSCALP. The
estimated cerebral activity ŷC is obtained by performing least-squares minimization and sub-
tracting XSCALP from yLS. The shaded areas represent the hand-grasping trials, whereas the white
areas represent rest phases.
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conditions (task and rest) convolved with the HR function was superimposed on the measure-
ments from the resting-state run.22 The double gamma kernel had an amplitude of 0.3 μM for
O2Hb,

18 an onset delay of 0.1 s, and a time-to-peak of 6.7 s.53 For each of the 5 subjects, 18 trials
of 16 s were simulated and superimposed on the LS channel located over C3, and intertrial times
were randomized between 14 and 18 s identical to the motor-execution run. The simulations
were repeated three times with randomized intertrial durations. In total, 270 trials were
simulated.

We deliberately used real resting-state measurements instead of purely simulated systemic
signals, because we expected that simulated noise could only insufficiently reflect heterogeneous
behavior in the scalp and brain layers. A possible limitation of this approach is that resting-state
measurements may contain spontaneous neural activity with amplitudes comparable to func-
tional brain activity,7,54,55 hampering the efficacy of the regression. Therefore, it is important
to investigate the performance of the different GLM approaches through simulations and actual
motor-execution runs.

2.5 Data Analysis

The normalized MW amplitude AN
MW was calculated as the ratio of the amplitudes of the MW

oscillations divided by the amplitude of the cardiac signal. These signal amplitudes were
obtained with the square root of the signal power (MATLAB: bandpower) for the frequency
ranges of 0.07 to 0.14 Hz and 0.6 to 2 Hz, respectively. For every subject, the median value
of all LS measurements with high signal quality (a Gaussian peak fit with strength above
10 dB39) served as representative value.

Pearson’s correlation coefficient (r) was calculated for all combinations of the 8 SS channels
and the selected LS channel. For the subjects with two runs (subjects 1 to 4), the mean of both
runs was calculated after applying Fisher z-transformation to compensate for skewness effects,
followed by backward transformation.18 Interchannel time lags were obtained from cross-
correlation analysis with maximal time lags of �5 s.

For evaluation of the regression results, GLM was applied on all regressed signals. The GLM
approach as shown in Eqs. (1) and (3) was used, with the design matrix X consisting only of XC

and XHR (i.e., XSCALP ≔ 0). In this work, we tested the null hypothesis that during a trial the
recovered LS signal did not change.56 From the solution of the GLM model, we calculated for

every run (i) the t-value as t ¼ ðc⊤β̂Þ∕½varðεÞc⊤ðX⊤XÞ−1c�,57 with c being the contrast vector,
and ε the estimated residuals, (ii) the Pearson’s correlation coefficient (r) between recovered and
fitted time courses, and (iii) the root-mean-square error (RMSE) of the residuals. Statistical
differences between regression methods were determined using two-tailed, paired t-tests.
Fisher z transformation was applied on correlation data prior to the t-test.

To fathom the potential of the regression approaches for protocols that are based on single-
trial evaluation, such as may be the case for brain–computer interfaces (BCI), we additionally
calculated a trial-based contrast-to-noise ratio (CNR) metric. The results of the CNR evaluation
are presented in the Appendix.

3 Results

The results section is split into three parts. First, the spatiotemporal distribution of scalp hemo-
dynamics over sensorimotor areas is presented with respect to the incongruent assumptions of
heterogeneity and homogeneity (Sec. 3.1). Second, the performance of the five GLM regression
approaches is reported for simulated HRs, which were overlaid on actual resting-state measure-
ments (Sec. 3.2). Third, the performance of the same regression methods is presented for a hand-
grasping experiment (Sec. 3.3).

3.1 Behavior of Scalp Hemodynamics over Sensorimotor Areas

The normalized MWamplitudes (AN
MW) for O2Hb for the resting-state and motor-execution mea-

surements are shown in Table 1, showing that the MW amplitudes varied substantially between
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subjects. Large MWamplitudes were present for subjects 3 and 5, indicating that it may be more
difficult to recover an HR within the strong physiological noise, as compared to the other sub-
jects with weaker MW oscillations.

Correlation and phase-shift analysis of the eight SS channels in comparison with a reference
LS channel placed over primary motor cortex are shown in Fig. 4(a). For the HR and the MW
bands during resting state, globally high Pearson’s r (>0.8) was observed with a weak interhemi-
spheric symmetry, where the SS optodes placed over C3 (i.e., SS1 and SS3) and C4 (i.e., SS5 and
SS7) were most similar to the LS channel. The symmetric pattern was more pronounced for the
motor-execution measurements, with the same short channels (i.e., SS1, SS3, SS5, and SS7),
being the closest and the symmetrically opposite SS channels to the reference LS channel, exhib-
iting the highest correlations, and the frontal (i.e., SS5 and SS8) and occipital (i.e., SS2 and SS6)
channels having lower correlations.

Short channels with lower correlations tended to have larger time lags with respect to the
reference LS channel. SS3 had an average time lag of 0.2� 0.37 s (resting state) and 0.58�
0.44 s (motor execution) in the HR band, and 0.25� 0.27 s (resting state) and 0.51� 0.36 s

(motor execution) in the MW band. A delay between the LS and the SS channels was observed
for all frequency bands and conditions at a group level. Figure 4(a) graphically shows the last
columns of the unshifted correlation matrices for the motor-execution runs shown in Fig. 5
(upper panels).

Correlation values for three different spatial conditions (contralateral, ipsilateral, and global)
were investigated for the same frequency bands (i.e., MW and HR bands) and experiments (i.e.,
resting state and motor execution) as before, and are shown in Fig. 4(b). For the contralateral
(i.e., left hemisphere for the right-hand grasping task) and ipsilateral (i.e., right hemisphere for
the right-hand grasping task) cases, only the SS channels with the highest correlations to the
reference LS channel were used. For the global condition, the correlation between the reference
LS channel and the PCA model was calculated. The correlation values were high (r > 0.9) dur-
ing resting state and both frequency bands for all three conditions, with slightly higher values for
the contralateral than the ipsilateral or global conditions. The motor-execution experiment exhib-
ited decreased correlation values for all conditions and frequency bands, with a much stronger
effect for the HR band than the MW band. Among all conditions, the correlations remained
relatively high, with a minimum correlation of 0.72 for subject 2 (motor execution and ipsilateral
side). Typically, the closest SS channels were most similar to the reference LS channel, and the
MW band was less influenced by the motor-execution tasks than the HR band. The global PCA
model showed consistently lower correlations than the contralateral condition, but still achieved
values in the same order of magnitude (i.e., r ≥ 0.74).

Figure 5 shows that the channels most similar to the reference LS channel are SS1, SS3, SS5,
and SS7, which are located closest and symmetrically opposite to the LS channel. Correlations
between SS channels follow a symmetrical pattern with opposite SS channels showing the
highest correlation, i.e., the SS channel pairs SS1 versus SS5, SS2 versus SS6, SS3 versus SS7,
and SS4 versus SS8. While time lags among the SS channels show positive and negative values,
the LS channel consistently lagged behind the SS channels in the range of −0.19 to −0.79 s for
the MW band. The correlation coefficients for the MW band were larger than for the HR band,
especially when the signals are phase shifted (lower tables in Fig. 5).

Table 1 Normalized amplitude of MWs for O2Hb. Median normalized amplitude in the MW band
(AN

MW) for all LS channels with good signal quality for O2Hb. The MW amplitude was normalized
using the amplitude of the cardiac signal. In parenthesis, the interquartile ranges are shown.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Resting state 0.58
(0.52 to 0.61)

0.52
(0.39 to 0.57)

1.18
(0.89 to 1.44)

0.81
(0.71 to 1.03)

1.61
(1.46 to 2.47)

Motor execution 0.54
(0.51 to 0.59)

0.47
(0.39 to 0.64)

1.28
(0.97 to 1.40)

0.79
(0.62 to 1.02)

1.06
(0.92 to 1.48)
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3.2 Simulation of Hemodynamic Response Time Series

In this section, we report on the effectiveness of five GLM regression approaches to remove
physiological artifacts from simulated measurements. For each subject, a total of 54 HRs were
simulated, which were overlaid on resting-state measurements of a reference LS channel over the
left primary motor cortex. All regression approaches were applied on the same time courses, but
used different sets of SS signals (all obtained from resting-state SS channels). For each subject, a
t-value using a separate GLM model was calculated, as well as correlation (r) and RMSE
between the recovered and the ideal HR. Normalized t-values were obtained from the ratio
of every regression method and the reference method GLMSS. A larger value indicates either
an HR with a stronger amplitude and/or a less noisy signal in reference to GLMSS.

All GLM regression approaches enabled the more effective estimation of brain estimates in
comparison to the original LS signal (i.e., no regression applied), expressed as significant
differences for all metrics in Fig. 6. No significant difference between GLMPCA and GLMSS

was observed. There was no difference in normalized t-values despite some intersubject
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Fig. 4 Group-level correlation analysis of SS channels. Group-averaged correlation values and
time lags for the resting-state and right-hand grasping experiments. All correlations of the SS
channels were calculated with respect to the LS channel placed over the left primary motor cortex
(M1, orange lines). (a) The correlations and time lags are projected onto a standard head. The
colored squares indicate the location of the SS channels. (b) Correlations for different experimen-
tal states (resting state versus motor execution), frequency bands (HR versus MW band) and
spatial conditions (ipsilateral, contralateral, and global). For every state, the channel with the high-
est correlation was selected. The gray dots and red lines indicate individual subjects (subjects 1 to
5 in horizontal order) and the group median values, respectively.
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variability: subjects 2 and 3 benefited especially from the global regressor and subjects 4 and 5
from the local regressor. The improvement in normalized t-values forGLMSSþPCA was small, but
overall its performance was equal (subjects 1, 4, and 5) or better (subjects 2 and 3) than the
benchmark GLMSS method. GLMSSþPCA benefited from local and global regressors by combin-
ing the regressor signals of the two simpler methods GLMSS than GLMPCA.
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Fig. 7 Block average time traces for the motor-execution experiment. Block-averaged O2Hb and
HHb responses from all hand-grasping trials are shown for a time segment of 34 s for each of
the five subjects. Gray bars indicate the 16-s hand-grasping task, white bars indicate rest.
(a) Averages (O2Hb) for the original LS channel (located over primary motor cortex), the five inves-
tigated GLM approaches, and the closest SS channel (SS3) are shown. (b) Close-up plots of rel-
ative concentration changes of O2Hb and HHb (red and blue lines with median value and median
absolute deviation) for the LS channel, the SS channel (SS3) and the regressed signal using
nnGLMmultiSS.
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The additional inclusion of MW oscillations in nnGLMSSþPCA and nnGLMmultiSS further
improved the estimates of brain activity. In particular, both methods lead to significant improve-
ments in normalized t-values with a median change of +14% and +31%, respectively, in com-
parison to GLMSS. Although there was no significant difference of absolute values in Fig. 6(b),
a trend toward the higher effectiveness of the same approaches is visible.

3.3 Motor-Execution Task

The block averages of relative concentration changes for the five subjects in Fig. 7 illustrate the
influence of the short-channel regression on the brain estimates. The signals were averaged over
all hand-grasping trials obtained during the two runs (when applicable). All subjects showed an
HR in the reference LS channel (placed over the left primary motor cortex) during the right-hand
grasping task, and a shape more similar to the ideal HR was obtained after short-channel regres-
sion. The SS channels (SS3 was used by way of illustration) exhibited a relatively flat curve for
subjects 2 to 4 and showed a larger activation for subjects 1 and 5 as an indicator of strong
systemic activity.

All GLMmethods achieved better estimates of brain activity than the unregressed original LS
signal in Fig. 8. However, for the motor-execution experiment, the improvements in t-value and
correlation were less pronounced than for the simulations (Sec. 3.2), and mainly the RMSE
metric showed a statistically significant improvement. For subject 4, applying short-channel
regression led to no or small changes in t-value while the RMSE strongly decreased. This pre-
sumably is a consequence of the strong systemic activation and an accompanying decrease of
signal amplitude after regression. No superiority of GLMPCA over GLMSS was observed, with a
slight, nonsignificant trend toward GLMPCA. Although the median normalized t-values for
GLMPCA and GLMSS were nearly identical on a group level, there were distinct intersubject
differences, e.g., with subject 2 profiting strongly from the global regressor (þ79% for
GLMPCA). GLMSSþGLM performed similarly to GLMPCA. No significant difference in t-values
was observed but significantly lower RMSE.

The additional inclusion of MW oscillations in nnGLMSSþPCA led to better brain activity
estimates in comparison to the GLMSS benchmark, expressed as a 15% median improvement
in normalized t-value and a significant decrease in RMSE. nnGLMmultiSS returned the best esti-
mated brain activity, with an overall improvement in normalized t-value of 29% and significant
changes in correlation and RMSE compared to GLMSS. Both methods were more effective on
single-subject level, showing an improvement in all metrics observable for every subject.
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Fig. 8 Effectiveness of brain activity estimates for the hand-grasping experiment. Box plots show
(a) normalized and (b) absolute values. Normalized t -values were obtained as the ratio of t -values
between each GLM regression and the GLMSS approach (being the most common of the used
methods). t -values were obtained after run-wise analysis of the entire time course by means of a
GLM. The gray dots and red lines indicate individual subjects (subjects 1 to 5 in horizontal order)
and the group median values, respectively. Results are shown for the simulated time courses,
where artificial HRs were superimposed on resting-state measurements. A total of 180 trials were
evaluated.
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4 Discussion

A better understanding of systemic hemodynamics is crucial for the correct interpretation
of fNIRS measurements and, thus, the future usability of fNIRS for research and clinical appli-
cations. While short-channel regression has been identified as an important step in making
fNIRS technology more applicable, the important question of which systemic signals to regress
remains insufficiently addressed. In this work, we investigated in detail the fNIRS signals from 8
SS channels (8-mm source–detector separation) over sensorimotor brain areas by comparing
them with a reference LS signal (separation: 30 mm, located over the left primary motor cortex)
during resting-state and a hand-grasping experiment. We evaluated five GLM regression
approaches that made use of different regressor signals, which were selected from literature and
physiological assumptions. We proposed two regression approaches based on non-negative
least squares to include additional spatial and temporal information of the scalp (i.e., multiple
scalp regressors and their phase-shifted MW signals) compared to state-of-the-art approaches.
We show the improved effectiveness to remove physiological noise, thereby shedding light
on the optimal selection of scalp regressors to obtain better estimates of functional brain
activation.

4.1 Heterogeneous versus Homogeneous Scalp Hemodynamics

With respect to the incongruent assumptions on the spatial distribution of scalp hemodynamics
(heterogeneous9,17,28,31–38 versus homogeneous22,26,27,29,30) reported in literature for fNIRS
experiments, we found evidence for a location-specific behavior of the scalp hemodynamics.
This supports the hypothesis of heterogeneity. However, we also observed a global spatial dis-
tribution with close-to-homogeneous characteristics, mainly when analyzing the resting-state
measurements. In particular, we showed that the hemodynamics are more similar for close and
symmetrical (interhemispheric) scalp regions and that the propagation of the hemodynamics is
delayed between regions. MW oscillations were delayed between different SS channels and in
reference to the reference LS channel, and correlations improved after applying phase shifting.
From these findings, we conclude that scalp hemodynamics at different locations can be inter-
preted as a superposition of the same physiologically originating signals (e.g., MWs, task-
evoked systemic activation), however, with slight variations of the same signals at every location
due to time lags, nonstationarities and nonlinearities.

Our results are in agreement with recent publications investigating scalp hemodynamics. We
confirm the findings of Gagnon et al.33 that an LS channel over the contralateral motor region is
better correlated to close than more distant SS channels, however, the phenomenon was less
prominent in our case. Zhang et al.36 also found, for a resting-state measurement with short
channels distributed over the whole head, higher correlations for close and symmetrical short
channels among themselves. In particular, they showed a more homogeneous behavior for the
MW band than for the whole-frequency band, similar to what we observed for the MW and HR
bands. They further observed time lags of 0.35 and 0.83 s for close and symmetrical short chan-
nels in the MW band, which is in the same range as our findings (0.19 to 0.79 s). Furthermore,
for the local and the symmetrical configurations in the MW band, they measured relatively large
correlation values (r ≥ ∼0.78), being in the same range as our correlations (r ≥ 0.75).

Based on the evidence from this work and in line with literature, it is hard to deny the
observed heterogeneity in scalp hemodynamics over sensorimotor brain regions. However, this
clearly comes on top of an underlying homogeneous behavior, as suggested by Sato et al.,29 and
depending on the intended application, this simplified assumption of homogeneity might be a
reasonable compromise. Since there is no strict threshold for when homogeneity ends and
heterogeneity begins, similar observations may lead to different conclusions on the spatial dis-
tribution of scalp hemodynamics. We believe that the incongruent assumptions of homogeneity
and heterogeneity can be explained by different experimental conditions, research hypotheses,
and evaluation approaches. Multiple factors may further influence the observed spatial patterns
and should be investigated in more detail, e.g., the used fNIRS instrumentation, the optode loca-
tions (frontal, temporal, or occipital regions), the experimental protocol (resting state versus
functional task), or the selection of evaluation metrics.
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In the first part of this work, we conclusively demonstrated that scalp hemodynamics follow a
heterogeneous distribution. While this was proposed before for baseline/resting-state measure-
ments for the entire head on a larger scale36 or the contralateral sensorimotor regions only,33 we
extended the notion of heterogeneity to left and right sensorimotor areas, and different exper-
imental protocols (resting state and motor execution) and frequency bands (HR and MW bands).
We showed that heterogeneity is also observable in the MW oscillations and that phase shifting
increased correlations but also that the heterogeneous pattern was manifested less prominently in
the MW than the HR band. These findings underline the importance of taking into account
heterogeneous scalp hemodynamics during short-channel regression in order to remove physio-
logical noise as thoroughly as possible.

4.2 Physiological Explanations for Scalp Heterogeneities

The observed interhemispheric symmetry between SS channels is consistent with the
literature.36,58 We assume this observation to be a consequence of location-specific character-
istics of the underlying vessels. In particular, the scalp is predominantly supplied from the left
and right external carotid arteries (except parts of the frontal regions, which are supplied from the
internal carotid arteries), which branch into multiple larger and smaller arteries to supply differ-
ent scalp areas. The scalp regions above the sensorimotor cortices are supplied from a tree-like
structure consisting of the superficial temporal arteries and its smaller branches. It is possible that
symmetrical interhemispheric arteries and arterioles have more similar path lengths and sym-
pathetic mediation12 than closer vessels on the same hemisphere, explaining the location-specific
perfusion and the reported symmetry. A similar structure is observed for the venous vessels as
well. Furthermore, Yücel et al.15 showed that the amplitudes of SS signals (in the MW band) can
differ across the head and explained this by the anatomy of the underlying vessels and the relative
positioning of the optodes: If a larger artery is located below an optode, stronger MWoscillations
are expected. We preclude other factors that may lead to the reported symmetry: (1) It is unlikely
that significant cerebral activation was co-registered with a 7-mm SS channel (the expected
sensitivity to the brain is <1%24). (2) The influence of emissary veins, which connect scalp
and cerebral venous tissue for pressure equalization, is not entirely understood, but it was
hypothesized that their diameter is too small to generate strong hemodynamic changes.12

(3) Instrumentation noise is not expected to generate symmetrical patterns.
The exact mechanism and function of MWare still subject to discussion, but it is known that

they are spontaneous oscillations in arterial pressure linked to the baroreceptor loop.14,59,60 The
baroreceptor loop is a homeostatic mechanism responsible for the regulation of the blood pres-
sure. Thus, MW is a global phenomenon that is observed all over the body. It is important to note
that “global” does not necessarily imply homogeneity in the entire body or particularly the brain
and scalp. Therefore, our observation of heterogeneity in scalp MW oscillations is not in dis-
agreement with the existing knowledge about MW, most of all since the heterogeneity was only
weakly manifested and comes on top of a global close-to-homogeneous distribution. This obser-
vation may again be a consequence of slight variations in the anatomy and innervation of the
measured vessels. Other physiological contributors than MW exist that may generate signal
heterogeneities in the MW band, but whose contribution cannot be separated from MW in this
work. (1) Vasomotion designates spontaneous changes in the vasomotor tone and generates sim-
ilarly strong oscillations than MW.59,60 The exact interplay between MW and vasomotion
remains unclear,12,15 and it is a challenging task to separate the two phenomena. (2) Evoked
systemic activation may lead to spurious activation in the MW-frequency band.19

In our measurements, we observed that the reference LS signal was lagging behind the SS
signals, similarly to what was reported in Kirilina et al.12 This is an interesting observation since
the LS signal is a superposition of signals from superficial and deep-layer origin. A constant
(negative) time lag between the LS and SS channels implies that either the systemic activity is
more delayed in the cerebral compartment compared to the scalp, or spontaneous signals (spon-
taneous neural activity or spontaneous vasomotion) are co-registered.28,61,62 Kirilina et al.12

hypothesized that the time lag between cerebral and extracerebral tissue is a consequence of
different vascular path lengths and possible delayed sympathetic mediation between the deep
and superficial layers. We support this hypothesis and want to emphasize that the brain and scalp
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are supplied by different arteries (i.e., from the internal and external carotid, respectively),
which already branch relatively low at the level of the neck (i.e., carotid sinus). Since these
time lags between tissue layers reduce the effectiveness of the short-channel regression, it
will be important to further elucidate the interconnection between cerebral and extracerebral
systemic signals and investigate further ways to assess them as well as to include them as
regressors.

4.3 Effect of Heterogeneous Scalp Hemodynamics on Short-Channel
Regression

The effect of five different scalp regressors on the outcome of short-channel regression was
investigated. All five GLM approaches significantly improved the signal quality of the recovered
time series by reducing the physiological noise. This was expressed as increase in t-values and
Pearson’s correlation (r) and a decrease in RMSE, when comparing the recovered with a mod-
eled HR. The ability to improve signal quality of fNIRS measurements based on short-channel
regression is undisputed in the community2 and was confirmed with this work.

No advantage or disadvantage for the use of a global regressor (GLMPCA) over the conven-
tional local regressor (GLMSS) was observed for our experimental conditions. Similarly, Tian
et al.28 were not able to show the superiority of a local over a global regressor. However, these
results are different from Erdoğan et al.17 and Goodwin et al.,37 where the global regressors
performed worse. These presumably contradicting findings again may be explained by different
experimental conditions, and we believe that particularly the way that the global regressor is
calculated has a strong influence on the results. The small difference between GLMPCA and
GLMSS is consistent with our observations that the scalp hemodynamics shows a global dis-
tribution close to homogeneity over sensorimotor areas.

We confirmed that the combined use of a local and global regressor (GLMSSþPCA) led
to improved effectiveness of removing systemic artifacts in comparison to GLMSS and
GLMPCA.17 The improved performance can be explained by the physiological assumption that
the LS fNIRS signal is a combination of extracerebral and cerebral components, and while the
local regressor better covers the superficial component, the global regressor may introduce addi-
tional information more similar to the cerebral signal. Therefore, it is suggested whenever pos-
sible to consider the multilayered behavior of fNIRS signals and include both local and global
regressors.

Building on the finding of delayed MW oscillations between different scalp regions and
between cerebral and superficial compartments, two of the five regression approaches attempted
to specifically consider temporal heterogeneity of the fNIRS signals. By including the phase-
shifted MW signal from the scalp as a separate regressor, we proposed a way to independently
consider one of the strongest contributors to the degradation of fNIRS measurements and to
take into account their delayed oscillations.19,28 Non-negative least squares enabled the inclusion
of additional information by finding a sparse solution to the linear equation model by setting the
weights of “unuseful” regressors to zero, thereby, inherently applying a channel selection
procedure. Both introduced approaches (nnGLMSSþPCA and nnGLMmultiSS) achieved higher
t-values compared to the other three, state-of-the-art approaches. It was observed that the
effectiveness of the different regressors are subject-dependent, e.g., subject 3 improved strongly
when the MW were time shifted and subject 2 benefited from the PCA regressor in the motor-
execution experiments. Interestingly, the results even improved for the subjects who showed
strong activations already before short-channel regression (i.e., subjects 1 and 2). The benefit
of using phase-shifted regressor signals confirms the results of Tian et al.28 and von Lühmann
et al.,63 who found improved regression outcomes when a separate adaptive filter for MW or a
phase-shifting approach based on canonical correlation analysis (CCA) was applied.

Our findings highlight that short-channel regression can be further improved when making
more sophisticated assumptions based on human physiology. This may be important for brain
research when a more exact estimation of the location and magnitude of the HR is necessary, but
also for single-trial applications (e.g., BCI) requiring “clean” signals to minimize false positives
and false negatives.
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4.4 Limitations and Outlook

This study is limited due to the relatively low number of participants. Nevertheless, a compre-
hensive view of the generalizability of our results is obtained. The subjects had very different
signal contents: subjects 1 and 2 had strong HRs, subjects 3 and 5 had large MWamplitudes, and
subject 5 had very strong task-evoked systemic activation. Nevertheless, the two nnGLM
approaches improved the results for all subjects and conditions, implying that no negative effect
from their application should be expected.

The MW-bandpass filtered signal may not solely include MW oscillations, but also contri-
butions from task-evoked systemic activation and the HR (contained in the LS channel).
Therefore, there is a risk that removing specific frequencies may alter the magnitude or slope
of the HRs after regression.32 This risk is small for the investigated protocol with block durations
of 30 to 34 s but will increase when shorter block durations would be used due to more over-
lapping frequency contents between functional activation and MW.64 Furthermore, the computa-
tional power required for the nnGLM approaches is higher, mainly due to the bandpass filtering
and phase shifting of the regressor channels. We proposed the application of non-negative least
squares also for the regression of other biosignals (e.g., blood pressure10,65 and peripheral fNIRS
measurements38).

In the simulation part of this work, we did not assume any systemic task-evoked activation,
which minimizes the possibility to overcompensate systemic signals. It is known that during a
functional task, the autonomic nervous system activity is increased,66,67 which leads to a task-
evoked reaction in the SS channels.13,34 The strength of systemic activation is influenced by task-
evoked changes in the mean arterial blood pressure,8,68 and thus different protocols may lead to
different scalp artifact patterns. Also, different sets of global/local regressor signals and ways of
calculating them could be considered and could alter the brain activity estimates. For example, a
global regressor could be combined with local scalp signals, which are obtained from the resid-
uals after regression of the global signal from each SS signal.

In this study, we deliberately used a simple regression method and performed the regression
offline on the entire dataset. Future studies should compare our findings with other approaches
proposed in the literature, such as autoregressive models,47 Bayesian filtering,69 or the recently
proposed temporally embedded CCA (tCCA).63 The tCCA approach also considers latencies in
the regressor signals and may offer an alternative to the proposed selection of the optimal delay
based on least-squares minimization between LS and SS signals. For real-time applications, we
suggest to elaborate on the compatibility of the proposed approach (non-negative weight esti-
mation) with algorithms that inherently consider phase shifts by design,18,27,28 e.g., adaptive
filters.70 Alternatively, the phase shifts of the MW signals could be calculated for a baseline
measurement71 when applied with a sliding window approach.30 Real-time algorithms may
further improve regression performance because of the nonstationary and nonlinear nature of
SS signals.18,72

The hardware employed provided SS channels next to the sources but not next to the detec-
tors. Results may have looked different with additional SS channels located at the detectors.34,73

Therefore, it will be important for future applications to apply hardware that captures scalp
hemodynamics at both source and detector sites.74,75

5 Conclusion

With this work, we aimed to shed light on the behavior of scalp hemodynamics over the sen-
sorimotor cortex and the influence of scalp regressors on short-channel regression. The better
understanding of the systemic physiology enhances the estimates of functional cerebral activa-
tion, and is an important step in promoting routine application of fNIRS, especially at the indi-
vidual level as required in clinical applications. We conclude that

1. The scalp hemodynamics follows a heterogeneous and frequency-specific behavior. These
heterogeneities are superimposed on a global, close-to-homogeneous distribution.

2. The introduction of an adapted GLM approach using non-negative least squares
enabled the inclusion of multiple regressors with a reduced risk of overfitting compared
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to state-of-the-art methods. We tested five regressor combinations and found that better
performance was achieved when assuming heterogeneous scalp hemodynamics. In par-
ticular, we showed the benefit of considering delayed MWs in the regression to compen-
sate for their phase-shifted oscillations between different scalp regions and compartments
(cerebral versus superficial).

With this work, we highlighted the importance of applying short-channel regression and
present a way to unite the multilayered behavior of systemic signals in a regression algorithm.
We proposed an easy-to-implement short-channel regression method based on GLM and showed
the benefit of including multichannel and multifrequency information. We encourage all future
fNIRS studies to concomitantly capture SS channels to reduce the influence of systemic
physiology.

6 Appendix: Single-Trial Evaluation

ACNRmetric was calculated to investigate the effectiveness in improving single-trial estimation
of brain activity. A high CNR value gives an indication on the ability of single-trial classification,
for example in the frame of a BCI.
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Fig. 9 CNR for resting-state simulations. (a) Box plots show absolute values of CNR, correlation,
and RMSE. The gray dots and red lines indicate individual subjects (subjects 1 to 5 in horizontal
order) and the group median values, respectively. (b) CNR, RMSE, and correlation (r ) values were
obtained for each trial between an iteratively fitted artificial HR and the actual signal, and the
results for each GLM regression approach (y axis) are depicted with respect to the reference
GLMSS method (x axis). Results are obtained for a total of n ¼ 270 simulated HRs.
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The trial-based CNR metric was established in reference to Saager et al.,73 where for every
trial, a specific curve (e.g., a skewed Gaussian curve37,73) was fitted. We adapted the method by
fitting an artificial HR into the segmented trials instead of a Gaussian curve. Fitting an artificial
HR has the advantage that the ideal shape has a stronger influence on the results than more
simplistic functions or frequency-based CNR approaches.27,44,76 For every trial, we iteratively
minimized (MATLAB: fminsearchbnd) the RMSE between the artificial response and a selected
segment (i.e., from trial onset until the next intertrial end).77 The simulated HR was created by
convolution of the boxcar and the double gamma function.78 During the optimization procedure,
amplitude of response, delay of response, delay of undershoot, and a constant offset of the HR
function were varied, whereas all other variables of the double gamma kernel were kept constant.
To preserve realistic shapes, we restricted the boundaries for the delay of response and the delay
of undershoot to: 4 to 10 s and 10 to 20 s.77 For every trial, three trial-wise metrics were
obtained:79 (i) the CNR by calculating the ratio of the fitted artificial response’s amplitude
(Si) divided by the RMSEi (CNRi ¼ Si∕RMSEi), (ii) Pearson’s correlation coefficient (ri)
between artificial and recovered responses, and (iii) RMSEi of the segment’s residuals. A higher
single-trial CNR increases the chance to flag a trial as active,37 and, prospectively, implies a
reduction of needed repetitions to detect significant differences between tasks, or a more reliable
classification during BCI applications. A CNR value of ≥2.5 was empirically found to have a
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Fig. 10 CNR for the hand-grasping experiment. (a) Box plots show absolute values of CNR, cor-
relation, and RMSE. The gray dots and red lines indicate individual subjects (subjects 1 to 5 in
horizontal order) and the group median values, respectively. (b) CNR, RMSE, and correlation (r )
values were obtained for each trial between an iteratively fitted artificial HR and the actual signal,
and the results for each GLM regression approach (y axis) are depicted with respect to the refer-
ence GLMSS method (x axis). Results are obtained for a total of n ¼ 180 hand-grasping trials.
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probability higher than 95% that the recovered signal contains an activation, as calculated with a
one-sided t-test on randomized tasks during rest condition.

Results in Figs. 9(a) and 10(a) indicate a similar performance of the CNR metric as for the
run-wise t-values from the main body of this work. All short-channel regression methods
achieved higher CNR values compared to the original case. GLMSS and GLMPCA did not show
a significant difference. The methods nnGLMSSþPCA and nnGLMmultiSS using non-negative least
squares and including separately MW signals performed best.

In Figs. 9(b) and 10(b), scatter plots indicate the ability to improve single-trial estimation of
brain activity in comparison to the GLMSS method. The percentages indicate the number of trials
that achieved a higher (upper triangle) or smaller (lower triangle) value compared to GLMSS.
Here, the previous findings are confirmed, with all regression methods outperforming the origi-
nal signal, and the non-negative GLM methods achieving best results.
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