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Abstract

Significance: With the increasing popularity of functional near-infrared spectroscopy (fNIRS),
the need to determine localization of the source and nature of the signals has grown.

Aim: We compare strategies for removal of non-neural signals for a finger-thumb tapping task,
which shows responses in contralateral motor cortex and a visual checkerboard viewing task that
produces activity within the occipital lobe.

Approach: We compare temporal regression strategies using short-channel separation to a spatial
principal component (PC) filter that removes global signals present in all channels. For short-chan-
nel temporal regression, we compare non-neural signal removal using first and combined first and
second PCs from a broad distribution of short channels to limited distribution on the forehead.

Results: Temporal regression of non-neural information from broadly distributed short channels
did not differ from forehead-only distribution. Spatial PC filtering provides results similar to
short-channel separation using the temporal domain. Utilizing both first and second PCs from
short channels removes additional non-neural information.

Conclusions: We conclude that short-channel information in the temporal domain and spatial
domain regression filtering methods remove similar non-neural components represented in scalp
hemodynamics from fNIRS signals and that either technique is sufficient to remove non-neural
components.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.NPh.8.1.015004]

Keywords: functional near-infrared spectroscopy; systemic artifact; spatial filter; short channel.

Paper 20058R received Jul. 20, 2020; accepted for publication Jan. 19, 2021; published online
Feb. 13, 2021.

*Address all correspondence to Joy Hirsch, joyhirsch@yahoo.com

Neurophotonics 015004-1 Jan–Mar 2021 • Vol. 8(1)

https://orcid.org/0000-0001-9773-2790
https://orcid.org/0000-0002-9265-900X
https://orcid.org/0000-0002-8125-0313
https://orcid.org/0000-0002-1418-6489
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.8.1.015004
mailto:joyhirsch@yahoo.com
mailto:joyhirsch@yahoo.com


1 Introduction

Functional near-infrared spectroscopy (fNIRS) has emerged as a widely applied neuroimaging
technique for cognitive and two-person social neuroscience since its early adoption as a brain
monitoring tool for infants.1–4 In recent years, multi-channel instruments have been developed
that allow for functional recordings of the entire superficial cortex.5–8 While fNIRS has limited
spatial resolution and sensitivity to nonsuperficial structures of the cortex compared to functional
magnetic resonance imaging (fMRI), it provides a neural imaging modality that allows measure-
ments from subjects that are performing complex, ecologically valid tasks including locomotion,
dancing, talking, and social interaction.7,9–14 Additionally, fNIRS can be used for functional im-
aging of individuals who may be contraindicated for scanning in the high magnetic field of
fMRI.15–20

Even with this growth in usage and functionality, there are caveats that need to be taken into
consideration. fNIRS is a brain imaging tool that quantifies relative changes in the spectral
absorption of hemoglobin chromophores related to hemodynamic/oxygenation activity. This
activity is a proxy for neural function, similar to the blood oxygen level dependent (BOLD)
signal in fMRI. The spatial resolution of conventional multi-channel fNIRS devices with
3 cm (long) source–detector distances is roughly 3 cm with a depth of penetration of only the
superficial cortex (reported to correlate best with BOLD at 14 mm from the scalp).21 This res-
olution is significantly reduced from that of fMRI. Additionally, fNIRS signals are recorded at
the surface of the head hence they interrogate a mix volume of tissue that includes both the scalp,
skull, cerebrospinal fluid, and the brain. This means that the relative changes in spectral absorp-
tion of the hemoglobin differences are not specific to only the cortex, but recorded signals also
contain components related to hemodynamics in the scalp.5,22–25 The hemodynamic fluctuations
in the scalp are particularly problematic as fNIRS is targeted at real-world motor and social tasks,
such as speech,26–28 that cannot be performed in fMRI. Real-world tasks also depend on the
cognitive and emotional state of the individual, which has been shown to influence oxyhemo-
globin (OxyHb) signals in the scalp. These changes in oxygenation in the scalp are particularly
susceptible to task-evoked sympathetic arterial vasoconstriction followed by a decrease in
venous volume, which contribute to non-neural hemodynamics23 recorded by long fNIRS chan-
nels. Removal or regression of the scalp signal, which has been argued to comprise the largest
non-neural signal component in long fNIRS channels,22,29 has posed a challenge to the fNIRS
community. Methods utilizing several temporal and spatial regression strategies have been pro-
posed to address this contaminating effect.

Systemic physiological changes, such as respiration rate, blood pressure, partial pressure of
CO2, and heart rate, can also influence the hemodynamic/oxygenation changes of both the scalp
and the brain.22,23,29 Early attempts to separate signal components associated with changes in
non-neural hemodynamics from neural/cortical signals rely largely on removing temporal com-
ponents embedded in the signal.29 Removal strategies include principal component (PC) and
wavelet regression to remove the first two PCs during a resting-state task.30–32 Others have
regressed temporal information from laser Doppler and other physiological recordings to deter-
mine specific components of the signal related to scalp blood flow.27,32–37 Additional methods
utilizing temporal regression have been developed to separate the systemic responses from
cortical activity during the task. Another recently developed method to separate non-neural infor-
mation in the temporal domain is short-channel separation.38–48 The goal of short-channel sep-
aration is to obtain specific scalp-only hemodynamic recordings and to subsequently remove this
non-neural information from long-channel recordings. Numerous studies have utilized short-
channel regression to separate the hemodynamic responses from these surface non-neural com-
ponents from the deeper cortical sources and have reported significant improvements in the spa-
tial localization of OxyHb signals, but less so for deoxyhemoglobin (DeOxyHb).27,42,44 Sato
et al.44 specifically showed that removal of the first PC of four short-channel recordings can
be utilized to significantly improve spatial specificity of tasks that involve digit manipulation.
This study did not attempt to specify the optimal scalp locations of short channels, but rather
showed that utilization of the linear regression of the first PC of short-channel recordings within
the region was sufficient to remove systemic components from the OxyHb signal. A follow-up
study showed that the first two PCs of four short-channel recordings could theoretically be
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utilized to regress motion artifact in addition to systemic components.42 While the PC regression
method proposed by Sato et al. was able to increase the spatial specificity of motor tasks in
patients and healthy participants, there is still no consensus as to the gold standard method
to remove scalp and non-neural hemodynamics through the utilization of short-channel
recordings.

Others have argued that it is necessary to record short-channel information as well as addi-
tional sources of physiology from multiple regions of the scalp to determine local influences of
scalp hemodynamics and additionally remove them.24,49,50 Another recent method for removing
systemic information has been proposed that utilizes multi-distance tomographic recordings to
separate superficial from cortical hemodynamics.41 The effectiveness of short-channel regression
has been further investigated and compared to recently developed methods that are also intended
to separate systemic from cortical responses in fNIRS recordings.51,52 Studies utilizing multi-
modal recordings of systemic responses have been used to create improved methods of physio-
logical noise regression from measures independent of the optical fNIRS signals by expanding
on early studies that used single systemic recordings to regress non-neural components.33 von
Lühmann et al.52 developed a method that utilized multiple systemic recordings, including blood
pressure, blood volume (photoplethysmography), respiration, and movement (via accelerome-
ter), to regress systemic components from fNIRS signals using temporal information from the
signals. They concluded that their approach was computationally efficient and improved the
robustness of hemodynamic response estimation and could also be used to improve brain–
machine interfaces that utilize fNIRS.52

In contrast to temporal domain regression methods, a separate approach utilizes spatial
domain information across multiple channels to determine a spatial similarity matrix that can
be utilized to regress homologous spatial information that is assumed to be non-neural in origin
from cortical signals.32 An early attempt to determine a spatial correlation matrix to regress blood
pressure and respiration signals using an eigenvector regression approach was developed by
Zhang et al.32 This approach collected a separate short baseline or resting-state set of fNIRS
data independent from the task collection. A spatial correlation matrix was determined and
assumed to be representative of the shared spatial pattern of systemic hemodynamics in the
fNIRS recordings. The first two eigenvectors of the recordings were determined and regressed
from the long channels based on the spatial matrix. This approach was shown to have potential in
increasing spatial sensitivity to motor tasks, but also revealed some additional questions. While
the study by Zhang et al. had potential to remove global signal and increase spatial sensitivity, it
also appears to introduce some potential for a negative artifact in the contralateral superficial
cortex. The 2016 study by Sato et al.44 further confirmed this contralateral artifact. Sato et al.
tested the approach developed by Zhang et al.32 (referred to as RestEV) and compared it to short-
channel regression and gold standard fMRI approaches. The same contralateral negative artifact
was present but not seen in short-channel regression or fMRI. We have developed an additional
approach that uses spatial Gaussian filtering on long-channel recordings.28,53 This method has
been validated for improving the spatial sensitivity of fNIRS recordings in motor, visual, and
speaking tasks and has also been utilized for two-person interactions including drumming, eye
contact, and decision making.7,10,11,54–56 Specific benefits of this spatial filtering method are that
it is performed on the entire task-based signals and not on short baseline or separate resting-state
data. In addition, the spatial Gaussian filtering is performed using positional information from
the three-dimensional (3D) coordinates of digitized channels. This technique allows us to deter-
mine the specific systemic responses to individual tasks including speech, social, and motor
interactions, which are commonly studied using fNIRS. This is important as the number of
research studies utilizing fNIRS in speaking and motor behavior tasks is increasing dramatically
each year.57

While active speech and motor tasks are common paradigms targeted at skin and systemic
component removal methods, other passive tasks involving vision and listening to speech may
also have increased skin response in long fNIRS channels.58 How the state of the individual
differentially affects hemoglobin signals in the skin during active and passive tasks is also
unknown. While many active tasks including motor behaviors and verbal fluency can generate
large skin hemodynamics in some individuals, it has been reported that little systemic influence
is present in recordings from adults and infants participating in tasks that involve passive viewing
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stimuli of faces.38,58 In these experiments, the removal of skin hemodynamics did not change the
statistical inferences drawn from the recorded long-channel data. This suggests that sources of
systemic, non-neural information including blood pressure and blood flow associated with active
speech and digit manipulation tasks27,28,32,44,50–53 may not have the same effect on skin hemo-
dynamics as passive viewing of visual or auditory stimuli.

Our goal in this study is to compare fNIRS signals recorded during two fiducial tasks, one
passive and one active, that are known to elicit robust and spatially specific responses. We will
compare signals before and after short-channel regression in the temporal domain versus the
spatial PC filter developed by Zhang et al.53 We will specifically compare how the first and
second PC of combined short channels can be utilized for non-neural component regression
as well as the similarity between the regressed signals. We will also compare regression methods
using a broad spatial distribution of short channels arranged throughout the entire scalp to
include localized hemodynamic responses to a restricted distribution of short channels placed
only on the forehead of subjects. We seek to determine whether task-based spatial PC filtering
will extract non-neural components that are not significantly different from those extracted from
short-channel regression regardless of the placement of the short-channel optodes.

2 Methods

2.1 Participants

Seven healthy adults (57.1% female; median age 31 years (range 24 to 71); 100% right-
handed59) participated in the study consisting of two fNIRS tasks: finger-thumb tapping and
passive viewing of a reversing checkerboard. Short-channel data were collected in both tasks.
All participants provided written informed consent in accordance with guidelines approved by
the Yale University Human Investigation Committee (HIC #1501015178).

2.2 Paradigm

Each subject participated in two separate data collection sessions. Each session was identical
except for the positioning of the short-channel optodes. During the first data collection session,
each participant took part in two tasks. The first was a passive visual task in which the subject
was shown a reversing checkerboard stimulus presented using a custom python script in
PsychoPy 2.7.60 The checkerboard stimulus alternated between black and white configurations
at 7 Hz and was presented on a 27 in., 16 × 9monitor placed approximately 70 cm away from the
participant (subtending 12.3 deg of visual angle). The stimulus was presented in a block design
in which the phase-alternating checkerboard was viewed for 15 s followed by a stationary blank
screen with a fixation cross at the center for 15 s. Each participant watched 4 alternating checker-
board and blank blocks for a total of 2 min, followed by a second repetition of the entire
procedure.

The second task was right-handed finger-thumb tapping. Participants were shown in random
order the numbers 1 to 4 on the screen. If the number was 1, subjects were asked to firmly tap
their pointer finger to their thumb. If the participants saw number 2, they were asked to tap their
middle finger to thumb, 3 was ring finger to thumb, and 4 was pinky finger to thumb. The task
was presented in a block design with numbers appearing one per second for 15 s total. The active
portion of the task alternated with a 15-s rest period in which subjects were asked to focus on a
fixation cross in the center of the screen. The alternating blocks of finger-thumb tapping and rest
were repeated 6 times for a total of 3 min. The task was then repeated for a total session of 6 min.

A diagrammatic representation of both tasks as well as sample raw data traces from channels
within the expected region of interest (ROI) (occipital lobe for visual task and left motor cortex
for finger tapping) is shown in Fig. 1.

2.3 Equipment

A NIRx NIRScout system was used to collect raw optical density variations in the 760- and 850-
nm signals at a frequency of 2.08 Hz. Data were obtained using a custom cap in which 31 emitter
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optodes were arranged with 30 detector optodes as well as one short-channel coupler providing 8
individual short-channel recordings. Standard 3-cm optode distances were used for long chan-
nels. The placement of optodes within the 10-20 system is shown in Figs. 2(a) and 2(b). The
location of the long channels is shown in the rendering in Fig. 2(c). Short channels had 8 mm of
separation between emitter and detector optodes. The NIRx NIRScout uses a time pulsing sys-
tem that allows for a specialized optode coupler to be attached to a single detector optode. The
short-channel coupler consisted of eight individual fiber bundles. The positions of each short
optode detector are shown inside the black circles in Figs. 2(a) and 2(b).

As stated above, two separate short-channel procedures were performed on each subject on
separate days. The first included placement of short channels broadly distributed across the
head to cover the entire superficial cortex [Fig. 2(a)]. The second arrangement placed all the
short channels on the forehead only [Fig. 2(b)]. These two arrangements of short channels were
designed to address the secondary goal of the study: to determine whether the spatial distribution
and number of short channels provided an optimal correction for the confounding effects of
localized surface vascular signals. This is an important question as it is faster and more con-
venient to place short channels on the forehead rather than on areas of the scalp covered
by hair, thereby eliminating the longer setup times associated with making good optode
contact.

Prior to each recording session, each optode was placed independently using methods
described previously.7,14 Briefly, a lighted fiber optic probe (Daiso, Japan) was used to move
all hair from each optode holder. The spring loaded optode and cap were placed in the holder
and upon placing all optodes a calibration procedure was performed to assure each channel was
recording expected quantities of light. To assure consistency, placement of the most anterior
optode holder on the cap (left blank in this study) was placed 1 cm above nasion.
Anatomical locations of optodes in relation to standard head landmarks were determined for
each participant using a Patriot 3D Digitizer (Polhemus, Colchester, Vermont).61–65 Montreal
Neurological Institute (MNI) coordinates66 for each channel were obtained using NIRS-SPM
software,67 and the corresponding anatomical locations of each channel are shown in Fig. 2.
These locations are detailed in Table S1 in the Supplemental Material, which lists the group
median MNI coordinates and anatomical regions with probability estimates for each of the
channels.

Fig. 1 Task paradigm and example raw data. The upper diagram represents the passive visual
stimulus. Subjects watched a reversing checkerboard pattern for a total of 2 min. The task shown
was repeated twice. The example raw data trace below shows both OxyHb (red) and DeOxyHb
(blue) signals in a channel in the expected ROI prior to any signal processing. The finger-thumb
tapping motor task is shown below. The task was a total of 3 min and was repeated twice. The
example OxyHb (red) and DeOxyHb (blue) signals from a channel in the expected contralateral
motor cortex are shown below.
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2.4 Signal Processing

2.4.1 Preprocessing

Raw optical density variations recorded from the NIRx NIRScout were converted into changes
in relative chromophore concentrations using the Beer–Lambert law.68–70 Baseline drift
was removed using wavelet detrending provided in NIRS-SPM.67 Little to no motion artifact
was present in the data and thus, no motion rejection filtering was performed on the data.
Additionally, no bandpass filter was used prior to subsequent processing. Example raw data
traces (prior to systemic filtering or block averaging of task) are shown in Fig. 1 for reference.

Data were further processed using one of two general linear model (GLM) methods to regress
the superficial component separately from the task-induced signal. The first method utilized
short-channel information to determine the systemic regressor, and the second method utilized
a spatial PC filter.28,53 All GLM regression analyses were performed on the entire trace of both
Oxy- and DeOxyHb signals.

2.4.2 Short-channel data processing

The first two PCs of the combined signals of the eight short channels were used for GLM regres-
sion from the Oxy- and DeOxyHb signals for each subject. In some instances, because of hair

Fig. 2 Placement of optodes and locations for short and long channels. Location of emitter (red)
and detector (blue) optodes with respect to 10-20 is shown in (a) for the broad distribution of short
channels (locations outlined with black circles) and in (b) for the frontal lobe only distribution (loca-
tions outlined with black circles). Short optodes were a special hardware fiber provided by NIRx
that coupled 8-mm separated fibers to standard emitter optodes. The placement of the long (3 cm)
optode pairs was the same for both experiments. (c) The location of the median location for long
channels from the seven subjects is rendered on a standard brain template. Individual channel
locations are shown as yellow spheres on the cortex.
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and other scalp contact issues, all eight short channels were not usable. A minimum of four short
channels were required to obtain two PCs for subsequent analyses regardless of broad or frontal
placement of short optodes.

The raw signals, the superficial component, and the filtered data were determined for each
subject. For the PC analysis on short channels, a matrix of 8 channels by N sample points was
determined. The PC analyses only use the first one or two major PCs for short-channel regres-
sion. In the case of using two PCs, X represents a three-column matrix, where the first two
columns are the waveform of the two PCs derived from the short channels. The last column
is a constant 1 for the intercept term. Y represents the raw data of a standard channel. Linear
regression was performed using the regress function in MATLAB®: [Beta, ∼, Residual] =
regressðY; XÞ, where Beta is the coefficient of short-channel PC in the raw data and the
Residual is the cleaned or filtered data or the fNIRS data with short-channel PCs being
regressed.

2.4.3 Task-based spatial regression

The task-based spatial PC regression strategy has been published previously.28,53 Here, we pro-
vide the essence of the spatial filter method for removing superficial skin influences from long
fNIRS channels as the following.

Each channel is associated with a sphere coordinate ðθ;ψ; RÞ converted from MNI coordi-
nates obtained from 3D digitizing and centered on the anterior commissure. For simplicity, the
variation in R is ignored. The global component is the result of a Gaussian spatial smoothing
on a two-dimensional sphere. The radius of Gaussian smoothing kernel set to 0.8 rad or
46 deg.28,53 The filtered data are the difference between the raw data and the global or superficial
component.

For each channel i, the global or superficial component

EQ-TARGET;temp:intralink-;sec2.4.3;116;423Global componenti ¼
Xnumber of channel

j¼1

wijDataj:

The larger the distance between channel i and channel j, smaller the wij value according to
the two-dimensional Gaussian function.

wij ¼ e
−distance2

ij

2r2 r ¼ 0.8; the sum of wij is normalized to 1.
Once the superficial component is determined, it is subtracted from the raw data to yield the

cortical data.

2.4.4 Hemodynamic modeling

Hemodynamic responses for filtered or cleaned OxyHb and DeOxyHb signals were compared
between task and rest conditions using a GLM procedure in NIRS-SPM.67 Event epochs within
the time series were convolved with a standard hemodynamic response function and were fit to
the data, providing individual “beta values” for both chromophores for each channel across all
conditions.

2.5 Signal Comparison in Regions of Interest

To compare the effect of the spatial and temporal GLM filtering techniques, we first determined
the channel with the most significant fit to the convolved hemodynamic response to the task
(Sec. 2.4.4) within the expected ROI. This was performed for spatial and all short-channel
regression methods. For the finger-thumb tapping task, this ROI was the contralateral (left)
motor cortex and for the visual task, this was the bilateral occipital lobe. Channel locations were
determined based on 3D coordinates obtained with the Polhemus Patriot Digitizer in the AAL
atlas.71 To assure we were not overly conservative in the ROI we used, a broad definition, which
included any channel having 20% or more probability of being located in the specified ROI for
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the task, was considered for comparison. The amplitude of Oxy- and DeOxyHb signals for each
subject were determined using GLM for each responding channel. For any specific subject,
a t-value threshold of 5 or greater for a channel was accepted (p < 0.00001) as significant activ-
ity compared to rest. No maximum significant channel per subject differed across spatial or
temporal techniques or between OxyHb and DeOxyHb results.

2.5.1 Correlation between adjusted data from spatial and temporal methods

We compared filtering techniques through a similarity index in which the spatial PC filter was
compared to the temporal filter using short-channel regression of the first and combined first and
second PCs of the combined short channels from widely distributed and from frontal lobe only
short channels. The similarity between the spatial and temporal regression methods was deter-
mined in MATLAB R2019b using the correlation function (corrcoef). For both visual and motor
tasks on each subject, we compared the entire adjusted (i.e., temporal or spatial filtered) signal
for both Oxy- and DeOxyHb. The similarity index represented how similar the two (temporal or
spatial) filtering methods were to each other on a scale of 0 to 1. In the case of short-channel
adjusted signals, we determined the similarity for both first PC as well as combined first and
second PC regression strategies to the adjusted signals determined from the spatial filter. This
same comparison with the spatial regression method was performed for both broad and frontal
only short-channel optode arrays.

3 Results

3.1 Comparison of Spatial and Temporal Methods using Wide
Distribution of Short-Channel Optodes

3.1.1 Visual task

The hemodynamic results from the passive visual stimulus are shown for a single representative
subject in Fig. 3. This subject displayed hemodynamic signals that were similar to all the other
subjects in the experiment for the visual task. Figure 3(a) is a plot of the raw Oxy- and DeOxyHb
signals shown in the same configuration as the 10-20 layout seen in Fig. 2(a). Red traces re-
present OxyHb signals and blue traces represent DeOxyHb signals. The top of the figure is the
anterior and the bottom is the posterior of the head. The large hemodynamic response to the
visual stimulus is clearly visible in the posterior traces located over the occipital lobe. A super-
ficial (i.e., non-neural) and more diffusely localized response is seen most prominently in the
middle channels located between frontal and occipital lobes. Figure 3(b) shows the superficial
signal extracted using the spatial PC filter. The global nature of the signal is pronounced, and as
expected, no spatially specific response can be seen in the extracted signal. Figure 3(c) shows the
resulting adjusted Oxy- and DeOxyHb traces after separating the spatially filtered responses
shown in Fig. 3(b). The effect of the spatial filter does not change the spatial specificity of the
response but does reduce the amplitude of the OxyHb signal.

Figure 3(d) shows the event triggered averages from the eight individual short channels. The
location of the individual short channels is shown in Fig. 2(a). A PC decomposition was per-
formed on the eight individual channels. Subsequent removal of non-neural components utilized
either the first PC or the combination of the first two PCs. Figures 3(e) and 3(f) show the effect of
removing the first PC and the combined first and second PCs, respectively. The additional effect
of removing the second PC was minimal but did not disrupt or reduce the localized response in
the occipital lobe. Figure 3(g) shows channels that were determined to be significant for both
Oxy- and DeOxyHb in the raw data prior to any filtering. Removing the spatial PC information
and the temporal PC information from the short channels produced nearly identical results and
are shown in Fig. 3(h). The same channels that were shown to be active using a t-value threshold
of 5 prior to applying these two filtering techniques remained significant with the same
threshold.
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Fig. 3 Selected visual responses from representative participant comparing event-triggered aver-
age data between short-channel temporal filtering to spatial PC filter. (a) Raw Oxy- and DeOxyHb
(red and blue, respectively) signals event-triggered and averaged across the four blocks of the
flashing checkerboard stimulus. The layout of all plots shows the channels in the two-dimensional
10-20 arrangement from Fig. 2. The top of the figure represents the front of the head and the
bottom of the figure represents the back of the head or the occipital lobe. The expected Oxy- and
DeOxyHb hemodynamic separation is seen localized in the occipital lobe. Additional noise is
present in other channels throughout the cortex. (b) The spatial PC filter extracted component.
The spatial PC filter determines a global or nonspatially specific component present in the
fNIRS signals and removes it based on spatial domain information only. (c) The resultant of remov-
ing the non-neural extract shown in (b) from the raw data in (a). The globally uniform nature of the
signal is reduced and expected hemodynamic responses are localized to the occipital lobe.
(d) Event-triggered average responses from the eight individual short channels. (e) Resultant
of regressing the first PC of the combined short channels shown in (d) from the raw data in
(a). (f) Resultant of regressing the first and second PCs of the combined short channels shown
in (d) from (a). Channels showing significant response for (g) raw and (h) filtered data. No
differences in the number or spatial location of significant channels were found using either spatial
or temporal filtering. The results in (h), therefore, represent the results of both filtering techniques
as they are equivalent. To determine significance of response single, subject data were modeled
using a hemodynamic response function provided in SPM8. In the case that OxyHb and DeOxyHb
signals, both reached a threshold of a t -value of 5 or greater channels are marked as red. For
visual stimuli, significant channel results were identical for filtered and raw data. The data from
subject 3 shown in Fig. 3 represent exemplar but consistent results from all subjects that partici-
pated in the study for the passive visual task.
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3.1.2 Finger-thumb tapping task

The results of the non-neural component removal comparisons are detailed for the active finger-
thumb tapping task in Fig. 4. The same layout and presentation are followed as in Fig. 3.
Localized sensory-motor responses are expected for right-handed finger thumb tapping in the
left sensory and motor cortices. Localized hemodynamic responses from this subject are not
clear from raw data presented in Fig. 4(a). DeOxyHb responses do localize to the contralateral
motor area, but OxyHb responses are uniform and present in a similar pattern throughout the
superficial cortex. Figure 4(b) shows the Oxy- and DeOxyHb signals extracted from superficial
channels using the spatial PC method. Figure 4(c) shows the effect of removing these spatially
defined components from the raw data. Event-triggered averaged recordings from the eight short
channels for both Oxy- and DeOxyHb signals are shown in Fig. 4(d). Unlike the visual responses
shown in Fig. 3(d), the recordings in Fig. 4(d) all appear similar and denote a global or non-
localized response detected by the superficial channels. Figures 4(e) and 4(f) show similar results
using both PCs in the temporal domain, but are less similar compared to the visual results from
this subject shown in Figs. 3(e) and 3(f). Only the short-channel PC1 + PC2 extracted result
shows localized Oxy- and DeOxyHb separation in the sensory cortex. Figure 4(g) shows all
channels having significant activity with respect to the raw data regardless of location. Both
temporal and spatial filtering methods produce specificity of localized signals that are significant
in the left motor cortex as shown in Fig. 4(h). The results from this exemplar subject were chosen
to highlight the extent of the contaminating effects of systemic responses in the raw (i.e., unad-
justed) data, especially for OxyHb signals.

3.2 Direct Comparison of Superficial Component Extraction Methods for
Oxy- and DeOxyHb Signals

Figure 5 compares the results of the two extraction methods for the visual task, using Oxy- and
DeOxyHb signals: the spatial filter is plotted together with the temporal filter after short channel
first and second PCs have been removed. Figures 5(a) and 5(b) compare spatial results with red
traces for OxyHb compared to orange for the short-channel PC1 results and purple for the com-
bined PC1 + PC2 results in the temporal domain. DeOxyHb results are compared in Figs. 5(c)
and 5(d). Figures 5(c) and 5(d) compare spatial PC regressed results, with blue traces for
DeOxyHb results compared to yellow for the short-channel PC1 results and pink for combined
PC1 + PC2 results. The spatial PC filter result is duplicated in both figures for ease of com-
parison with both short-channel results. Adjusted data with only the first short-channel PC are
shown on the left and results with both first and second PCs are shown on the right. The gray
shaded area represents the location of the channels found to be significant in Fig. 3. Some
variability is seen between the methods for OxyHb signals, but DeOxyHb signals show little
difference when comparing adjusted results, regardless of the non-neural extraction method
utilized.

Figure 6 compares the results of the two extraction methods by directly plotting them for the
finger-thumb tapping task. Figure 6 shows Oxy- and DeOxyHb results for the spatial PC filter
plotted together with the resultant temporal domain short channel first and second PC removed
via short-channel signals. Figures 6(a) and 6(b) compare spatial PC results with red traces for
OxyHb results compared to orange for the short-channel PC1 results and purple for combined
PC1 + PC2 results. DeOxyHb results are compared in Figs. 6(c) and 6(d). Figures 6(c) and 6(d)
compare spatial PC results with blue traces for DeOxyHb results, yellow for the short-channel
PC1 results, and pink for combined PC1 + PC2 results. The result using the spatial PC is pre-
sented in both figures for each channel for comparison. Adjusted data with only the first short-
channel temporal domain PC are shown on the left and results with both first and second PCs are
shown on the right. The gray shaded area represents the location of the channels found to be
significant in Fig. 4. Similar to results from the visual stimulus task, the DeOxyHb signals show
little difference comparing adjusted results, regardless of the extraction method utilized.
However, the difference in OxyHb comparing the red traces to the orange and purple show how
adding the second PC of the short channels improves the spatial specificity of the response as
well as producing a similar result to that of the spatial PC filtering method.
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Fig. 4 Selected sensory-motor responses from representative participant comparing event-trig-
gered average data between wide distribution of short channels to spatial PC filter. (a) Raw Oxy-
and DeOxyHb (red and blue, respectively) signals event-triggered and averaged across the six
blocks of the finger-thumb tapping task. The top of the figure represents the front of the head and
the bottom of the figure represents the back of the head or the occipital lobe. The expected Oxy-
and DeOxyHb hemodynamic separation is not clearly seen in any specific location. (b) The spatial
PC filter extracted component. The spatial PC filter determines a global or nonspatially specific
component present in the fNIRS signals and removes it based on spatial domain information only.
The spatial extract from this representative subject shows a high level of uniformity across the
entire cortex for OxyHb signals. (c) The result of removing the extracted non-neural response
shown in (b) from (a). The globally uniform nature of the signal is reduced and expected hemo-
dynamic responses are localized to the left sensory and motor cortex. (d) Event-triggered average
responses from the eight individual short channels. (e) Result of regressing the first PC of the
combined short channels shown in (d) from (a). (f) Result of regressing the first and second
PCs of the combined short channels shown in (d) from (a). Channels showing significant response
for (g) raw and (h) adjusted data. No differences in the number or spatial location of active chan-
nels were found using either spatial or temporal filtering. The results in (h), therefore, represent the
results of both filtering techniques as they are equivalent. To determine significance of response
single, subject data were modeled using a hemodynamic response function provided in SPM8. In
the case that Oxy- and DeOxyHb signals both reach a t -value threshold of 5 or greater, channels
are marked as significant (red). Raw data in (g) show responses in all channels with no spatial
sensitivity. (h) Both spatial and temporal filtering techniques provide identical results with respect
to the number and location of active channels that reach the t -value threshold of 5 for the finger-
thumb tapping task for this subject. The data from subject 2 shown in Fig. 4 represent an individual
that showed a consistent non-neural response during the active motor task, while other subjects
showed similar results, the false positive rate in this subject gained the most benefit from both
filtering techniques.
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3.3 Comparison of First and Second Principal components of Short
Channels with Spatial Regression for Whole Head versus Forehead

The channels showing the largest t-value from the GLM analysis within the motor and visual
ROI were compared for similarity in signal after performing either spatial or temporal regression.
There were no differences in the channel showing the largest t-value between techniques for the
seven subjects investigated. A similarity index for each measure comparing how similar the
temporal and spatial regressions were are shown in Tables 1 and 2; this metric ranged from
0 to 1 in which a value of 1 represented identical signals and 0 represented no similarity between
signals. Oxy- and DeOxyHb results for the widely distributed set of short channels for all par-
ticipants are compared in Table 1 to the spatially filtered data. The similarity between the spatial
PC filter and the first PC of the combined short-channel signals for OxyHb and combined first

Fig. 5 Direct comparison of Oxy- and DeOxyHb responses between spatial and temporal regres-
sion methods for visual stimulus from representative participant. (a) Plot of OxyHb responses com-
paring the resultant adjusted responses from spatial PC regression to short-channel regression
using only first PC of combined short channels. The solid red traces represent the spatial PC
regression where the orange traces represent the short first PC short-channel regression in the
temporal domain. The largest amplitude responses are seen in the back of the head within the
occipital lobe. The gray shaded area represents location of significant channels shown in Fig. 2.
(b) Plot of OxyHb responses comparing the resultant adjusted responses from spatial PC regres-
sion (red traces) to short-channel regression using the combined first and second PCs (purple
traces) of combined short channels. Similar adjusted results are shown using both methods and
the results also have similar spatial and temporal responses to the comparison seen in (a) with the
largest amplitude responses seen in the back of the head within the occipital lobe. (c), (d) Plots of
DeOxyHb responses comparing the resultant adjusted responses from spatial PC regression
(blue traces) to short-channel regression using only first (yellow traces) or combined first and sec-
ond PCs (pink traces) of combined short channels. Similar adjusted results are shown using both
spatial and temporal regression methods as well as for both PCs of the short channels. The largest
amplitude responses are seen in the back of the head within the occipital lobe and correspond
OxyHb in location to responses for OxyHb shown in (a) and (b).
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and second PCs in the temporal domain are shown for both visual and motor tasks. A paired t-
test was performed between temporal and spatial regression methods for the channel of best-fit
within the ROI for the group results and no significant difference was found (p > 0.05). Subject
2 (raw data shown in Figs. 4 and 6) shows a dramatic increase in similarity between temporal and
spatial regression techniques when adding PC2 as well as PC1 from combined short-channel
recordings for comparing to the spatial regression. The data shown in Figs. 3 and 5 are from
subject 3 in Table 1.

Table 2 shows the same responses comparing the task-based spatial filter and the temporal
filter using short-channel regression from the second experiment in which the short channels
were all placed on the forehead. Paired t-tests comparing subjects and techniques for the group
found no significant differences between regression techniques for the channel of best-fit within
the ROI. While no significant difference was found between spatial and temporal regression
methods for the channel of best-fit within the ROI, short-channel regression using channels

Fig. 6 Direct comparison of Oxy- and DeOxyHb responses between spatial and temporal regres-
sion methods for finger-thumb tapping from representative participant. (a) Plot of OxyHb
responses comparing the resultant filtered responses from spatial PC regression to short-channel
regression using only first PC of combined short channels. The solid red traces represent the
spatial PC regression where the orange traces represent the short first PC short-channel regres-
sion in the temporal domain. The largest amplitude responses are seen in the left sensory and
motor cortex using the spatial PC method, but these channels do not show a positive response
with the temporal regression of the first PC from the short channels. The gray shaded area rep-
resents location of significant channels shown in Fig. 4(h). (b) Plot of OxyHb responses comparing
the resultant filtered responses from spatial PC regression (solid red traces) to short-channel
regression using the combined first and second PCs (purple traces) of combined short channels.
The filtered results from both methods are more similar between the two methods comparing
(a) and (b). (c), (d) Plots of DeOxyHb responses comparing the resultant filtered responses from
spatial PC regression (solid blue traces) to short-channel regression using only first (yellow traces)
or combined first and second PCs (pink traces) of combined short channels. Similar adjusted
results are shown using both spatial and temporal regression methods as well as for both
PCs of the short channels. Localized responses are present in the gray shaded area.
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Table 2 Similarity in results comparing spatial to temporal filtering methods when short channels
placed only on the frontal lobe. For all subjects, we compared the similarity of the short-channel
regression (PC1 versus PC1 + PC2) to the spatial PC regression method when short channels
were placed only on the frontal lobe. The index ranges from 0 to 1 in which a value of 1 represented
identical signals and 0 represented no similarity between signals. Oxy- and DeOxyHb compar-
isons are shown for both visual stimuli and motor tasks.

Forehead only

Passive-viewing task Finger-thumb taping task

Subject

PC1 PC1
PC1 and

PC2
PC1 and

PC2

Subject

PC1 PC1
PC1 and
PC2

PC1 and
PC2

Oxy DeOxy Oxy DeOxy Oxy DeOxy Oxy DeOxy

1 0.911 0.938 0.955 0.844 1 0.954 0.956 0.997 0.992

2 0.892 0.926 0.984 0.987 2 0.973 0.971 0.981 0.986

3 0.919 0.974 0.965 0.941 3 0.984 0.988 0.996 0.996

4 0.967 0.956 0.982 0.984 4 0.877 0.959 0.987 0.988

5 0.973 0.967 0.996 0.994 5 0.791 0.813 0.943 0.939

6 0.946 0.947 0.962 0.962 6 0.981 0.982 0.983 0.982

7 0.868 0.890 0.989 0.989 7 0.988 0.988 0.987 0.988

Table 1 Similarity in results comparing spatial to temporal filtering methods when short channels
are widely distributed. For all subjects, we compared the similarity of the short-channel regressions
(PC1 versus PC1 + PC2) to the spatial PC method when short channels were placed broadly on
the scalp. The similarity index ranges from 0 to 1 in which a value of 1 represented identical signals
and 0 represented no similarity between signals. We compared the channel showing the largest t -
value to the GLM analysis within the motor and visual ROI for similarity in signal after performing
either spatial or temporal regression. OxyHb (top) and DeOxyHb comparisons are made for both
visual stimuli (left) and motor tasks (right). Short-channel PC 1 regression is compared to spatial
PC regression for DeOxyHb and for OxyHb. Subject 2 shows a dramatic increase in similarity
between temporal and spatial regression when including PC2 as well as PC1 for short-channel
separation.

Whole head

Passive-viewing task Finger-thumb tapping task

Subject

PC1 PC1
PC1 and

PC2
PC1 and

PC2

Subject

PC1 PC1
PC1 and
PC2

PC1 and
PC2

Oxy DeOxy Oxy DeOxy Oxy DeOxy Oxy DeOxy

1 0.963 0.996 0.974 0.996 1 0.940 0.950 0.949 0.947

2 0.966 0.984 0.976 0.982 2 0.690 0.960 0.869 0.961

3 0.907 0.959 0.948 0.963 3 0.960 0.980 0.976 0.984

4 0.950 0.929 0.953 0.963 4 0.970 0.970 0.979 0.973

5 0.987 0.951 0.988 0.951 5 0.960 0.990 0.951 0.984

6 0.905 0.972 0.944 0.972 6 0.970 0.980 0.984 0.984

7 0.791 0.979 0.792 0.977 7 0.970 0.990 0.971 0.991
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on the forehead only did reveal a trend in which adding the second PC from the combined short
channels tended to increase the similarity to the spatial regression.

4 Discussion

This study compared twomethods to separate non-neural components from fNIRS signals employ-
ing temporal domain versus spatial domain PC filtering. We compared these filtering methods on
data from two fiducial tasks, right-handed finger-thumb tapping and passive viewing of a reversing
checkerboard stimulus. These two fiducial tasks have been used previously in multiple neuroimag-
ing modalities to show specificity of location with respect to function in the brain.21,53,72–74 The
results indicate that a task-based spatial PC filter28,53 compares favorably and performs without
significant difference in expected functional and spatial results to short-channel regression, another
commonly investigated and cited39,41,43–46,51,52 temporal domain systemic component removal
method. In this study, we compared the results of the spatial filter to regression of the first and
second principal temporal components of combined short channels frommultiple arrangements on
the superficial cortex. In the first experiment, we compared task-based spatial regression to tem-
poral regression of short-channel signals that were evenly placed throughout the whole head, and in
the second experiment, we limited short-channel placement to only the frontal lobe and focused
their placement on the forehead to assure the highest quality signals from the scalp and other
superficial structures. At the group level, we found no significant differences in regressed non-
neural components and filtered neural signals in the expected ROI per task. Visual tasks were
found to show specific results in the occipital lobe while right-handed finger-thumb tapping pro-
duced specific hemodynamic results for both Oxy- and DeOxyHb signals in the contralateral sen-
sory and motor cortices for all subjects as expected (Figs. 3 and 4). Importantly, we found that,
for OxyHb signals, there were specific benefits to adding the second PC of the combined short-
channel signals for some subjects and no negative effects were seen by regressing the combined
signal. DeOxyHb signals showed less contamination from non-neural components and greater
similarity between raw and filtered (both spatial and temporal domain) signals than OxyHb signals.

It has previously been shown that short-channel regression can be effectively applied by linear
regression of the first PC from a minimum of four short channels placed within the expected ROI.44

A recent publication utilized this method as well as adding in a second PC to regress motion
artifact.42 Their results were less robust for movement artifact regression than systemic components
alone, but some benefits were noted. Importantly, in the present study, no negative consequences
were shown by additional regression of the second PC of the short channels regardless of the
placement of the optodes. We show in the present study that for some subjects with specific types
of broad systemic artifact, the first PCmay not be sufficient to remove these artifacts. Figures 4 and
6 show the results of one subject where regression of the first PC of short channels is not sufficient
to remove systemic components. Only after removal of the combined first and second PCs is the
fiducial response evident in the results from this subject. The spatial PC filter performs better than
the first PC alone, but upon removal of the combined components, the similarity between the two
methods increases as shown in Figs. 4(g) and 4(h) as well as Fig. 6.

It is important to note that Oxy and DeOxyHb signals elicited by the two fiducial tasks
revealed responses that were spatially localized as expected. Viewing a reversing checkerboard
stimulus produced localized hemodynamic responses in the visual cortex of the occipital lobe,
and finger-thumb tapping produced localized responses in the contralateral motor cortex.
However, the more active task (compared to passively watching a visual stimulus) often pro-
duces additional systemic responses as seen by subject 2 in Figs. 4 and 6. These more pro-
nounced systemic responses are also larger for OxyHb signals compared to DeOxyHb
signals, as has been shown previously.22,26,42,44,51 Superficial responses in the passive task are
smaller and more variable than they are in the active task. In the active task, this regular task-
driven superficial response in the scalp produces a global signal that can be interpreted as a false
positive if not filtered or regressed properly. The more random and comparatively small
responses in the scalp from the passive task do not model and do not contribute to false positives
at the same rate as the active task. Short-channel recordings are obtained during the task
responses and the regression of PCs is specific to each task, even when the responses are as
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variable as those seen in Figs. 3 and 4. The spatial filter we have developed also takes advantage
of differential scalp responses to multiple tasks and regresses the spatial component based on
task-elicited responses rather than a separate resting state or baseline measure.

The main finding of interest, however, was that there can be large systemic (i.e., contami-
nating) components in the OxyHb signal (see Fig. 4) and that these non-neural components can
be removed successfully using either spatial or temporal filtering, thereby rendering adjusted
functional OxyHb signals that are similar in spatial specificity to DeOxyHb signals.
Interestingly, even in the subject (Figs. 3 and 6) who had large OxyHb systemic components,
the DeOxyHb signals show little systemic effect and neither short-channel temporal regression
nor spatial filtering has a large effect on the raw DeOxyHb signals. This is in agreement with
previous findings that also show reduced artifact in the DeOxyHb signals compared to OxyHb
signals42,44 and may reflect the similarity in origin of DeOxyHb signals to that of BOLD signals
acquired using fMRI.75 Isolation and removal of specific contributions and sources that gen-
erate additional components in the OxyHb signals remain a challenge, but both temporal and
spatial domain methods described here can be utilized to remove similar non-neural signals.
Another challenge is the variability between subjects with respect to scalp hemodynamics.
Variability in hemodynamics can happen day to day and even based on season.76 Because
of this, it is difficult to predict or repeat specific scalp responses within or across subjects.
In this study, not all subjects displayed a large scalp response in active or passive tasks.
However, we show here that for subjects that did display large scalp derived hemodynamic
responses, both temporal and spatial regression strategies are sufficient to filter these responses
from neural signals in long channels.

The results of this study also indicate very close similarities in the components removed by
short channel and spatial regression strategies (Figs. 5 and 6). While short-channel regression is
in the temporal domain and the spatial method uses spatial domain, it is possible that both are
indeed regressing similar information from task-evoked sympathetic arterial responses in the
scalp and superficial tissue. One goal of our spatial filter was to perform the regression in the
spatial domain instead of the temporal domain in the case that systemic components were com-
pletely nonorthogonal to the task. In this case, restricting the regression to spatially diverse
regions argue that the response is global and non-neural. Temporal regression of nonorthogonal
responses may reduce real responses, but in this study, we did not find evidence of this. The
similar results produced by the different techniques do support that they are regressing similar
information from long-channel data regardless of spatial or temporal domain. The shared spatial
information may largely represent superficial hemodynamics in the same way that path length of
8-mm short channels is designed to target responses from the scalp. We argue that this is likely
the case and that both regression methods are targeting non-neural and broad responses that do
not localize. The multiple component short channel and spatial regressions we show here are
both able to remove non-neural superficial responses and produce fiducial responses that are in
accordance with known regions for finger tapping and visual stimuli; however, we cannot claim
that we are regressing all systemic components from long channels. A recent study has shown
that scalp hemodynamics have additional heterogeneous components in addition to the global
homogeneous behavior.50 The study showed similar results as we have found in the present
report supporting multiple scalp regressors, but it was also suggested that short-channel regres-
sion can be more effective when additional measures of physiology, such as Mayer waves, are
included in the regression.

A secondary finding of interest in this study is whether the placement of short channels can
improve temporal signal regression results. We asked whether placement on the frontal lobe
versus broadly arranged on the whole head as in previous studies24 would result in superior
extraction of non-neural components in the OxyHb signal. This setup is considerably easier than
whole head placement of short channels and can decrease set-up time significantly. The results of
this part of the experiment support the previous findings of Sato et al.44 and suggest that com-
bined short-channel information may be sufficient to remove superficial hemodynamics when
localized only on the frontal regions not covered by hair. We agree with Sato et al. that a mini-
mum of four channels should be utilized to obtain at least one PC but, in addition, we argue that
at least four channels are necessary to determine the second PC and the combined first and
second PC regression does not harm the data and likely assures additional components are
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regressed from all subjects as has been suggested.50 The NIRx NIRScout system had a total of
eight short channels that were placed inside of the elastic cap. It was more difficult to assure
every short channel made good scalp contact in the whole head experiment, especially with
subjects that had thick dark hair. If channels did not make good scalp contact, they tended
to show high-frequency noise, which did not contribute to the PCs utilized in the regression.
In the forehead placement of channels, it was faster and easier to assure that short channels
were making scalp contact even though regression was not as efficient as whole head placement.

5 Conclusions

In summary, we have shown that these spatial and temporal signal processing methods produce
similar results in the context of the two fiducial tasks utilized in this study and do not produce sig-
nificant differences in the resultant filtered signals. The assumption that signals recorded from short
channels contain only limited information from the anatomical space superficial to the cortical gray
matter is supported by the results presented here. The spatial PC filter does not utilize temporal
information, rather only spatial similarities in the signals across multiple contiguous channels for
regression. The similarities in the results with spatial and temporal filtering support the conclusion
that both techniques are removing similar components from the 3-cm channels. Both of these meth-
ods can be utilized to compensate for false negatives as well as false positives (Fig. 4) in fNIRS
experiments. While neither technique can be considered to perfectly remove all non-neural com-
ponents from the hemodynamic signal, we have shown here that both techniques remove similar
components and that spatially specific fiducial results are also foundwith both techniques. This is an
important finding because not all functional fNIRS devices have short-channel hardware as an
option, but the spatial PC filter can effectively be utilized on optode arrays as small as 3 × 3.53

A future direction of this research aims to further examine emotional and cognitive influences
on scalp signals as well as responses to simple passive versus active fiducial tasks in a larger group
to determine how these regression techniques affect data quality at the group level.

Based on these findings, we conclude that fNIRS signals, and especially OxyHb signals, are
optimally processed by some method of superficial hemodynamic removal technique regardless
of whether it utilizes temporal or spatial domain information. We show that both spatial PC
filtering as well as short-channel regression in the temporal domain can be effectively utilized
to remove superficial non-neural hemodynamics from fNIRS signals.
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