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Abstract

Significance: Designing optode layouts is an essential step for functional near-infrared spec-
troscopy (fNIRS) experiments as the quality of the measured signal and the sensitivity to cortical
regions-of-interest depend on how optodes are arranged on the scalp. This becomes particularly
relevant for fNIRS-based brain–computer interfaces (BCIs), where developing robust systems
with few optodes is crucial for clinical applications.

Aim: Available resources often dictate the approach researchers use for optode-layout design.
We investigated whether guiding optode layout design using different amounts of subject-
specific magnetic resonance imaging (MRI) data affects the fNIRS signal quality and sensitivity
to brain activation when healthy participants perform mental-imagery tasks typically used in
fNIRS-BCI experiments.

Approach: We compared four approaches that incrementally incorporated subject-specific
MRI information while participants performed mental-calculation, mental-rotation, and inner-
speech tasks. The literature-based approach (LIT) used a literature review to guide the optode
layout design. The probabilistic approach (PROB) employed individual anatomical data and
probabilistic maps of functional MRI (fMRI)-activation from an independent dataset. The indi-
vidual fMRI (iFMRI) approach used individual anatomical and fMRI data, and the fourth
approach used individual anatomical, functional, and vascular information of the same subject
(fVASC).

Results: The four approaches resulted in different optode layouts and the more informed
approaches outperformed the minimally informed approach (LIT) in terms of signal quality and
sensitivity. Further, PROB, iFMRI, and fVASC approaches resulted in a similar outcome.

Conclusions:We conclude that additional individual MRI data lead to a better outcome, but that
not all the modalities tested here are required to achieve a robust setup. Finally, we give pre-
liminary advice to efficiently using resources for developing robust optode layouts for BCI and
neurofeedback applications.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive, portable optical imaging
method used to measure brain activity via hemodynamic responses involving increased oxygen
consumption and cerebral blood flow.1–3 These physiological changes lead to local changes in
the concentrations of oxy- (Δ½HbO�) and deoxyhemoglobin (Δ½HbR�), which can be detected
because near-infrared light is absorbed by hemoglobin located in blood vessels.3,4

When setting up an fNIRS experiment, optodes are placed on the scalp, which can be clas-
sified into sources (emitters) and detectors (receivers) depending on their function. Light emitted
from a source is propagated through extracerebral and cerebral tissues up to a few centimeters,
where some photons are scattered and absorbed before light reaches the detectors.5 The spatial
resolution of fNIRS is therefore in the range of 5 to 10 mm4 depending on the way source–
detector pairs (or “channels”) are arranged on the scalp.6 The distance between a source and
detector pair along with the anatomical tissues between them determines the depth of light pen-
etration and the sensitivity to underlying cortex.1 Therefore, the quality of the fNIRS signal can
differ dramatically between optode layouts.

This effect of optode layout is particularly relevant for applications requiring sparse optode
layouts, such as brain–computer interfaces (BCIs). BCIs provide an alternative means of motor-
independent communication for clinical populations suffering from severe motor disabilities7 by
enabling users to send commands via brain activity in the absence of motor output.7,8 FNIRS is a
promising choice for implementing BCIs due to its portability, safety, and relatively low cost.9,10

However, it remains a challenging undertaking to develop efficient, accurate, and robust systems
using the limited number of optodes required for fNIRS-BCI systems to remain portable and
comfortable for clinical applications. Indeed, a number of fNIRS-based BCI studies using sparse
(<14 channels) and localized optode layouts11–16 reported variability in the accuracy reached by
participants (16.67% to 100% accuracy for two-class problems, 46.5% to 66.8% for a three-class
problem, and 37.5% to 100% for a six-class problem). This variability may originate from indi-
vidual anatomical17,18 or functional differences15 that affect fNIRS signal quality/sensitivity and
therefore might be improved by designing optode layouts for individual users that account for
such differences.

Researchers often define a region-of-interest (ROI) in line with their research question and
design an optode layout in a grid-like fashion to target a specific brain area.1 The simplest and
most common optode-layout design is to assign source and detector locations on the head to
cover a given cortical ROI according to the standardized 10-20 electroencephalography (EEG)
system or its extended versions.19 These locations can be related to the underlying assumed
cortical structure20,21 or to the standard Montreal Neurological Institute (MNI) stereotactic
coordinates.22–25 This procedure has proven effective for many applications but may be subop-
timal for use in BCIs. In this study, we were interested in whether incorporating additional neuro-
imaging data such as anatomical or functional magnetic resonance imaging (MRI or fMRI) can
improve optode-layout design for use in BCIs.

The selection of the ROIs in the procedure described above is commonly based on anatomi-
cally defined coordinates only. However, ROIs derived from functional neuroimaging techniques
such as fMRI could increase the spatial specificity of ROI definition by accounting for individual
local differences in elicited brain activity for a given task. Once an ROI is defined, the fNIRS
community has developed several approaches to optimize optode-layout designs using light-
sensitivity profiles.1 Light-sensitivity profiles are probabilistic models of photon absorption
based on the tissues found between source and detector optodes.26 Software packages, toolboxes,
and pipelines compute these profiles using Monte Carlo simulations to optimize optode lay-
outs,1,5,26–29 thus promising an increase on signal quality and sensitivity for BCI applications.
However, light sensitivity profile models require anatomical head data, either from an MRI-
derived atlas or from subject-specific MRI data. MRI atlases are an appealing option for com-
puting profiles, as they do not require additional MRI measurements, which may be expensive,
time-consuming, or generally unavailable. That said, subject-specific MRI data better capture
specific anatomical and vascular features and therefore could improve the robustness of fNIRS
setups across individuals. Considering subject-specific vascular information may be particularly
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relevant, as vascular structures are highly scattering and absorbing media30 and can influence the
estimates of light sensitivity profiles.31

Naturally, available resources for collecting additional data dictate the approach researchers
use to design optode layouts. We therefore asked the following question: What is the potential
gain of incorporating (anatomical, functional, and vascular) MRI data when optimizing optode-
layout designs for fNIRS-based BCIs? With this question in mind, we selected four approaches
that incrementally incorporated the amount of individual information from the same participant
to design subject-specific optode layouts. The first layout was the literature-based approach
(hereinafter referred to as LIT), where optodes were selected based on a literature review. LIT
represents the scenario where no additional individual MRI information is available. The second
setup was the probabilistic approach (referred to as PROB), which employed individual ana-
tomical data together with a probabilistic functional map derived from an independent dataset
to inform optode placement. PROB illustrates a situation where individual fMRI data are not
available, but subject-specific anatomical information and functional data from other individuals
are accessible. The third setup was the individual fMRI approach, which used anatomical data
and functional activation maps of the same individual (referred to as iFMRI). Finally, the fourth
setup was the vascular approach, which used individual anatomical, functional, and vascular
information of the same subject (referred to as fVASC).

We assessed whether different approaches resulted in distinct optode layouts and assessed
whether the quality of the fNIRS signal and the detected task-related activation (fNIRS sensi-
tivity) differed across optode layouts. Participants were asked to perform three mental-imagery
tasks commonly used for hemodynamic BCIs, see Table S3 in the Supplementary Material:
mental-calculation, mental-rotation, and inner-speech. We designed approach-specific optode
layouts using Monte Carlo simulations and an algorithmic procedure that used two main
constraints: (1) the interoptode distance did not exceed the 25 to 40 mm range to provide a
reasonable signal-to-noise ratio (SNR)32 and (2) the optode layout for each approach consisted
of two channels that shared a common source. Restricting the layout to two channels was moti-
vated by its suitability in clinical settings due to its easy setup and participant comfort, and by the
abovementioned BCI studies that showed encouraging results using small setups. In addition,
this constraint allowed us to compare the four approaches within the same functional fNIRS run.
We hypothesized that each approach would lead to different optode-layout designs and that the
SNR of resulting fNIRS signal would improve with more individualized approaches. Our results
show that the four approaches indeed result in different optode layouts and that the more indi-
vidualized approaches (PROB, iFMRI, and fVASC) outperform the minimally informed
approach (LIT) in terms of fNIRS signal quality and sensitivity. Further, we find that PROB,
iFMRI, and fVASC approaches produce similar signal quality and sensitivity. Finally, we give
preliminary recommendations to help researchers efficiently use resources for developing robust
and convenient optode layouts for fNIRS-BCIs.

2 Materials and Methods

This experiment consisted of three separate sessions that took place in the following order: one f/
MRI session, a neuronavigation session, and an fNIRS session. The first two sessions aimed at
gathering necessary information for designing optode layouts, while the fNIRS session aimed at
acquiring data to assess and compare the designed optode layouts (see Fig. 1).

Twenty-one participants (11 females) were recruited for the f/MRI session. From these par-
ticipants, 17 (11 females) took part in the neuronavigation session and 16 (10 females) partici-
pated in the fNIRS session (see Table S1 in the Supplementary Material for a summary) as some
participants became unavailable over the sessions. Participants did not have a history of neu-
rological disease and had a normal or corrected-to-normal vision. The experiment conformed
to the Declaration of Helsinki and was approved by the ethics committee of the Faculty of
Psychology and Neuroscience,Maastricht University. Informed consent was obtained from each
participant before starting the experiment. Participants received financial compensation after
each session.
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2.1 f/MRI Session

2.1.1 Data acquisition

In this 1-h long session, anatomical, functional, and (brain and scalp) vascular data were acquired
at a Siemens Magnetom Prisma Fit 3 Tesla (T) scanner at the Maastricht Brain Imaging
Center, Maastricht, The Netherlands. Acquisition parameters are described in Sec. A.1 in the
Supplementary Material.

2.1.2 Experimental design

Participants performed one ∼13-min long functional run, where they were acoustically cued to
rest (Rest) or perform one of the three mental-imagery tasks, namely inner- (covert) speech
(Speech), mental-calculation (Calculate), or mental-rotation (Rotate). The order of the task trials
(eight trials per mental task) was randomized. They were instructed to covertly recite a text they
knew by heart (e.g., a poem) when they heard “Speech.” Participants were asked to calculate
multiplication tables of multiples of 7, 8, or 9 up to the decuple when they heard “Calculate.”
When they heard “Rotate,” participants had to imagine a diver jumping from a tower into the
water while (s)he spins around several times in the air. Participants were trained on the tasks for
∼10 min before entering the MRI scanner (see details in Sec. A1 in Supplementary Material).
We instructed participants to perform the mental-imagery tasks, which lasted 10 s, until they
heard the instruction “Rest.”During resting period, participants were asked not to do any specific
mental activity and not to do or think about anything in particular for 20 s (see Fig. 2 for a
visualization of the run). Participants kept their eyes closed throughout the functional run.
After the session, participants’ strategies were noted down and saved for the fNIRS session (see
Table S2 in the Supplementary Material for examples of such strategies). BrainStim v1.1.0.1
stimuli presentation software (Gijsen, S., Maastricht University, The Netherlands) was used for
both the f/MRI and fNIRS sessions.

Fig. 1 Overview of this study. The study consisted of three separate sessions: one f/MRI, one
neuronavigation, and one fNIRS session. The first two sessions aimed at collecting necessary
information to create the different optode layouts for each participant. Specifically, the LIT approach
used a literature review to design the optode layout. The PROB approach used probabilistic func-
tional MRI maps, individual anatomical data, and head-anatomy information for channel selection.
The iFMRI approach used individual anatomical data and individual functional activation maps,
together with head-anatomy information for channel selection. Finally, the fVASC approach used
individual anatomical, functional, and vascular data, together with head-anatomy information for
channel selection. Monte Carlo simulations were used to select the best channel pair for each
approach, mental-imagery task and participant. The selected channels were used during the
fNIRS session to obtain information on signal quality and to measure functional activity elicited
by the mental-imagery tasks.
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2.1.3 Data analysis

This section will briefly describe the data analyses steps that were followed for each modality.
For further details, we refer the reader to Sec. A.2 in the Supplementary Material. Unless stated
otherwise, all f/MRI data analyses were performed in BrainVoyager QX v2.8 (Brain Innovation
B.V., Maastricht, The Netherlands).

Structural and vascular data. Structural images were aligned to the plane containing the
anterior and posterior commissures, corrected for spatial-intensity inhomogeneities and brain-
masked. The white/gray matter (WM/GM) and gray matter/cerebrospinal (GM/CSF) boundaries
were detected using automatic segmentation tools. These images were inspected, manually cor-
rected when necessary, and used to create WM and GM reconstructions of the cortical surface.
Vascular data were aligned to the anatomical data for each participant, segmented using auto-
matic segmentation tools, and manually corrected when necessary. For more details, see Sec. A.2
in the Supplementary Material.

Functional data. Functional data were preprocessed and spatially coregistered to the struc-
tural image. Next, we calculated a voxelwise general linear model that contained a separate
boxcar predictor for each of the mental-imagery task conditions convolved with a standard dou-
ble-gamma hemodynamic response function and six additional predictors estimated from the
motion-estimation procedure in BrainVoyager QX. Individual functional maps were created
by contrasting each mental-imagery task versus the rest condition in the voxels that were part
of the fNIRS-coverage mask (see Sec. A.2 and Fig. S1 in the Supplementary Material for details)
and corrected using a cluster threshold that allowed for a 5% loss of active voxels. These func-
tional maps were then sampled to surface activation maps (from −1 to þ3 mm from the GM/
WM segmentation boundary) for generating subject-specific probabilistic maps.

Probabilistic functional maps were created separately for each participant and mental-
imagery task following a leave-one-subject-out procedure.33 In short, for each participant,
surface activation maps from the remaining participants were first aligned to a common space
(see Sec. A.2 in the Supplementary Material) and a probabilistic map was computed for each
mental imagery task and hemisphere. The resulting maps were transformed back into individual
volume space. The final maps (three per participant) were used as ROIs for Monte Carlo
simulations (see Sec. 2.2.2). Examples of probabilistic maps are shown in Fig. S2 in the
Supplementary Material.

Neuronavigation session. Seventeen of the originally included 21 participants underwent
this session, as P07, P08, P13, and P18 dropped out of the study. A neuronavigation system
(Zebris CMS20 ultrasound system, Zebris Medical GmbH, Isny, Germany) in combination
with BrainVoyager QX 2.1 TMS Neuronavigator software (Brain Innovation, Maastricht,
The Netherlands) was used to acquire the coordinates of 130 EEG positions for each participant
(see Fig. 3). These 130 locations were determined based on the layout of EasyCap 128Ch

Fig. 2 Schematic representation of session 1. Twenty-one participants underwent a 1-h long
experiment in the MRI scanner, during which individual anatomical, functional, and vascular data
were collected. During the functional run, participants had to perform inner-speech, mental-
calculation, or mental-rotation for 10 s each with interleaved resting periods of 20 s. Task order
was randomized.
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ActiCap (EasyCap GmbH, Herrsching, Germany), whose size was selected based on individual
head sizes. Specific details on cap and sensor placements can be found in Sec. A.3 in the
Supplementary Material. The session lasted ∼1 h.

2.2 fNIRS Session

2.2.1 Participants

P12 dropped out of the study. Thus, 16 of the 17 participants that participated in the f/MRI
and neuronavigation sessions took part in this session, out of which 10 were female
(mean age ¼ 29.81� 5.22).

2.2.2 Designing approach-specific optode layouts

This process can be divided into three main stages: channel-sensitivity computation, channel
selection, and building a participant-specific layout (see Fig. 4 for a summary).

Channel sensitivity to ROI computation. The first stage aimed at computing the
channel-sensitivity profiles using Monte Carlo simulations. Each of the four approaches had
a unique combination of ROI definition and type, software, and brain model used to compute
the simulations.

The LIT approach represents a scenario where no individual MRI anatomical data are avail-
able, and the target ROI is selected based on a literature review. Given such scenario, fOLD
toolbox29 provides an easy way to compute the sensitivity profiles to the selected ROIs.
This is because fOLD uses an atlas head model as the input to the Monte Carlo simulation and

Fig. 3 Schematic (left) and reconstructed (right) locations recorded during the neuronavigation
session. This layout is an extension of the international 10-20 system, it contains 130 locations
and the nomenclature is based on 19. The Cz location is indicated with a red circle. The schematic
representation is based on the NIRx montage editor template, while the reconstructed locations
belong to participant P04.
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offers different brain parcellation atlases for ROI definition in the target head-model space. In
addition, it is freely available, easy to install, and has a user-friendly graphical interface. fOLD
uses MCX package34 to compute the light-sensitivity profiles of optodes placed in predefined
locations on the scalp, namely points corresponding to the extended 10-10 and 10-5 systems
(130 points in total). It then provides a list of channels with the highest sensitivity to the
ROI that can be exported for subsequent computations. PROB, iFMRI, and fVASC approaches
represent scenarios where individual MRI anatomical data are accessible. Since fOLD does not
offer the option of using individual head models to compute Monte Carlo simulations, these were
computed using the MCX package directly through its MATLAB interface (v2015b, The
MathWorks, Inc., Natick, Massachusetts). The remaining differences between the four
approaches are summarized in Table 1, and more detailed information is provided in the
Supplementary Material.

Optimization of the optode layout. During the second stage, the most-informative chan-
nels were selected for each of the four approaches and tasks by maximizing their total sensitivity
to the target ROI. The maximization problem was subject to two constraints:

(1) The interoptode distance was limited to the 25- to 40-mm range.
(2) The optode layout for each approach consisted of two channels that shared a common

detector (thus including three optodes per approach).

We followed an iterative approach to address the optimization problem. It begins with the
construction of an empty solution, where no optode pair is selected. The algorithm then prunes
the optode pairs that do not satisfy the interoptode distance range constraint. Next, it ranks all
possible optode pairs according to their contribution to the total sensitivity and selects one pair as
the seed in each iteration. The algorithm then transfers the selected optode pair to the solution
matrix, and it removes from the list the channels that do not share the same detector. Next, it selects
the first channel from this list (i.e., the one with the highest sensitivity). Since the target number of
channels (=2) has been reached after this step, the accumulated total sensitivity of the selected two
channels and the source–detector indices are stored in the solution matrix. These steps are repeated
until all optode pairs are used as seeds. Finally, the two channels that lead to the highest total
sensitivity for either constraint set constitute the selected channels for creating the setup.

Fig. 4 Summary of the key steps involved in optode-layout design for each of the four approaches
evaluated in this study. The process was divided into three main stages: (1) channel sensitivity
to ROI computation, (2) channel selection, and (3) building a subject-specific layout. For the first
stage, each of the four approaches had a unique combination of ROI definition/type, software, and
brain model used to compute the Monte Carlo simulations. During the second stage, the most-
informative channels were selected for each of the four approaches and two mental-imagery
tasks. The last stage combined all the layouts into one. LOO, leave-one-out; COG, center of
gravity; NN, neuronavigation.
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Creating the setup. The first and second stages were repeated until approach- and task-
specific optode layouts were created (12 per participant, since there were three tasks and four
approaches). The last stage aimed at combining all optode layouts into a single one individually
for each participant.

Two out of the three mental-imagery tasks that participants performed during the f/MRI ses-
sion were selected for the fNIRS session. This measure was necessary as pilot measurements

Table 1 Comparison between Monte Carlo simulation approaches.

fOLD DIRECT MCX

Approach where
software is used

LIT PROB, iFMRI, fVASC

Number of simulated
photons

108

Source modeling Pencil source

Detector modeling Pencil source

Source/detector
locations

130 points according to extended
10-20 EEG systems (defined using

Mesh2EEGa)

130 points according to extended 10-20
EEG system + subject-tailored (derived

from neuronavigation session)

Channel definition
criterion

Neighboring optical positions on
10-10/10-5 systems (median

interoptode distance of 36 mm)

Interoptode distance range of 20 to
45 mm

Anatomical model Atlas head model (MNI Colin 27) Individual anatomy (individual space)

Number of tissues 5 5 (PROB, iFMRI) or 6 (fVASC)

Wavelength (nm) Mean (690, 750, 780 830) [default in fOLD]

Optical
properties

Used? Used?

LIT Tissue μs (mm−1) g μa (mm−1) n PROB, iFMRI fVASC

Yes Scalp 0.72 0.01 0.017275 1 Yes Yes

Yes Skull 0.92 0.01 0.011925 1 Yes Yes

Yes CSF 0.01 0.01 0.002500 1 Yes Yes

Yes Gray matter 1.10 0.01 0.019500 1 Yes Yes

Yes White matter 1.35 0.01 0.016900 1 Yes Yes

No Vasculature 73.31 0.405 0.9825 1 No Yes

Resolution of
anatomical model

2 × 2 × 2 mm 1 × 1 × 1 mm

ROI type Anatomical (literature review + Juelich
brain parcellation)

Functionally derived

Output type Anatomical sensitivity (in %) to a
given ROI

Functional sensitivity (in %) to a
given ROI

Platform for MCX
simulations

Ubuntu 16.04.02 LTS (Xenial Xeurs) with
Intel Xeon E52650 v3 2.3 GHz, GeForce

Gtx 770, and CUDA 8.0

Ubuntu 16.04.4 LTS, Intel(R) Xeon(R)
CPU E5-2697 v2 @ 2.70 GHz, 256 GB
RAM, Tesla K20Xm, and CUDA 9.1.85

aMultimodal Neuroimaging Laboratory; μs∕g∕μa∕n: scattering/anisotropy/absorption/refraction parameters.
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performed with optode layouts designed to account for all three tasks elicited high discomfort in
participants. This decision ensured that the optode setup would maximally consist of 24 optodes
(three optodes per layout × four approaches × two mental-imagery tasks), which should con-
stitute a reasonably comfortable setup for participants and thus should prevent them from with-
drawing from fNIRS recordings due to setup-related discomfort.35–37 This selection was carried
out at the individual subject level. Finally, the eight layouts (four per task) were combined
manually into a single one. See Table S7 in the Supplementary Material for a summary of the
mental-imagery task selection procedure and Table S8 in the Supplementary Material for the
resulting selected task pair per participant.

2.2.3 Experimental design

The fNIRS experiment consisted of one session that lasted ∼1.5 h. During this time, participants
performed six, around 8-min long functional runs. In each of the runs, participants were acous-
tically cued to perform one of the two mental-imagery tasks selected for them or to rest. Six, 10-s
long trials were presented for each mental-imagery task, interleaved with a jittered rest condition
with mean duration of 22 s (jittering was of �2 s), see Fig. 5. Thus, participants performed 60
trials for each mental-imagery task across the six runs. Trials were pseudorandomized across
runs. Participants were instructed to use the same strategy they used in the scanner (first session).
For that, they were given a document prior to the fNIRS experiment where their strategies had
been noted down. Participants were asked to avoid any potential jaw movements during the
functional runs and to keep their eyes closed throughout the run.

2.2.4 fNIRS signal acquisition

fNIRS data were recorded using a continuous-wave system (NIRScout-816, NIRx,
Medizintechnik GmbH, Berlin, Germany). The optode setup varied across participants, but they
had some features in common: all setups contained eight sources and eight short-distance chan-
nels (SDCs). The SDCs were formed by short-distance detectors placed at 8 mm from a given
source. The interoptode distance of the standard channels (here on called normal-distance chan-
nels, NDCs) ranged from 25 to 40 mm. Sources emitted light at wavelengths 760 and 850 nm,
and the light intensity acquired at the detector side was sampled at 7.8125 Hz. The fNIRS cap
was placed for each participant according to the measurements taken during the neuronavigation
session. Besides the standard cap fixation (using the chin band), the fNIRS was fixated onto the
participant’s head with three medical tape stripes (connecting the cap and the participant’s fore-
head) to assure the cap would not shift during the measurements. In addition, a black, plastic
overcap was placed on top of the fNIRS cap to additionally prevent ambient light from reaching
the spring-loaded optodes.

Fig. 5 Schematic representation of a functional run during the fNIRS session. During each men-
tal-task period, participants were acoustically cued to perform one of the two mental-imagery
tasks for 10 s while keeping their eyes closed. When participants heard “rest,” they were asked
to stop the task and await the next instruction. IS, inner-speech; MC, mental-calculation; MR,
mental-rotation.
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2.2.5 fNIRS data analysis

Preprocessing. P03 and P21 were excluded from subsequent analysis (see Sec. A.4 in the
Supplementary Material for further information). For every subject and run, the raw optical
intensity data series were converted into changes in optical density (OD) values using Homer2.38

CV values were calculated for the entire run for each channel and those with a CV ≥ 7.5% were
discarded from the analysis (see Fig. S7 in the Supplementary Material). Next, the motion detec-
tion algorithm hmrMotionArtifactByChannel was applied to the OD time-series to identify
motion artifacts in each channel. Then, motion-corrected OD data were transformed to change
in concentration values through the modified Beer–Lambert law with an age-specific differential
path length factor.39

Assessment of degree of layout (dis)similarity across approaches. The first goal
of this study was to assess whether the resulting optode layouts differed across approaches. To do
so, the number of overlapping channels and the Euclidian distance between their centers of
gravity was computed for each pair of approach-specific layouts, task, and participant. These
calculations were averaged across participants afterward and task- and layout-specific frequency
maps were computed.

Single-run estimates calculation. The short separation regression approach40 was
applied on the unfiltered Δ½HbO�- and Δ½HbR�-NDC data to remove signal from extracerebral
layers of the head. This was done for each NDC and chromophore using the SDC closest to the
NDC as the regressor. The SDC-corrected time course was used as input for the ar_irls algorithm
in NIRS Brain AnalyzIR Toolbox.41 This algorithm uses an autoregressive (AR) model for cor-
recting motion and serially correlated errors in fNIRS. The function was adapted to use the
ordinary least squares method instead of the robustfit approach. The maximum AR model order
to be considered was set to four times the sampling rate. The design matrix included the two task
predictors convolved with a standard hemodynamic response function (default hemodynamic
response function from SPM12). The task predictor for Δ½HbR� was set to −1∕3 of the
Δ½HbO� amplitude. In addition, a set of low frequency discrete cosine terms were defined as
confound predictors using the dctmtx function in NIRS Brain AnalyzIR Toolbox with a cut-off
frequency of 0.009 Hz.

Multirun ROI analysis. We combined the information from both channels comprising each
layout to run an ROI analysis as described in Ref. 41 and expanded their procedure to include
multiple runs,

EQ-TARGET;temp:intralink-;e001;116;311βROI ¼ cβchannel; (1)

EQ-TARGET;temp:intralink-;e002;116;268CovROI ¼ cCovβcT; (2)

where in this study βchannel is the multirun beta estimate and the Covβroi is the multirun covariance
matrix estimated from the concatenated residual time courses and the design matrix. Finally, c is
the contrast vector whose coefficients are 0 if the channel does not belong to the ROI and is 0.5 in
the two channels that belong to the ROI.

Multirun block averages and contrast-to-noise ratio. The SDC-corrected and unfil-
tered Δ½HbO� and Δ½HbR� time courses were filtered using a zero-phase, band-pass finite
impulse response filter of order 1000, with cutoff frequencies of [0.008, 0.25 Hz]. Block aver-
ages were computed for each channel and mental-imagery task by taking the average of all trials
and runs 4 s before the onset of the task until 15 s after the offset of the task.

The contrast-to-noise ratio (CNR) as was calculated for each channel, ROI and chromophore
using the equation described as35

EQ-TARGET;temp:intralink-;e003;116;112

jmeanðdurÞ −meanðpreÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðdurÞ þ varðpreÞp ; (3)
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where pre represents the rest period from 4 s before onset of task to 0 s; and dur represents the
task period from 5 to 15 s post task-onset, as in Ref. 42.

Statistical analysis. The second goal of this study was to compare the fNIRS-signal
strength and sensitivity obtained from the optodes placed according to the four different
approaches. Group differences in terms of CNR and ROI t-estimates were assessed using a non-
parametric ANOVA (Friedman test) and follow-up Wilcoxon-paired signed rank tests, one-sided
and corrected for multiple comparison with the Benjamini–Hochberg method. Group differences
were computed considering: (1) each mental-imagery task separately and (2) all mental-imagery
tasks together. In addition, we quantified the number of participants that showed significant
increase in the ROI activation.

fNIRS data projection onto cortical surface and comparison with fMRI data. We
used the inverse distance weighting method described in Ref. 43 and detailed in the
Supplementary Material to interpolate fNIRS data on the cortical surface. The projection weights
and voxels were used to compute spatially weighted fMRI block averages to assess the temporal
correlation between fNIRS and fMRI signals (via Pearson’s correlation). The same computations
were performed at both, the single channel and layout level. The latter was used to extract the
peak and spatially weighted average t-estimates of individual fMRI activation of the voxels
labeled as GM to assess how well the fNIRS ROIs targeted individual activation maps.

3 Results

3.1 Using Different Information Sources for Optode Placement Results
in Different Optode-Layout Designs

Figure 6 shows the mean percent overlap [Fig. 6(a)] and mean Euclidian distance between the
COGs of each pair of optode layouts across participants [Fig. 6(b)]. The color of each cell indi-
cates the standard error of the mean. The LIT approach contained no channels that overlapped
with the remaining approaches for neither mental-calculation (MC) nor mental-rotation (MR)
tasks. Channels placed according to the PROB approach partially overlapped with those from
iFMRI and fVASC approaches for MC task. Channels from iFMRI and fVASC approaches over-
lapped the most. Regarding IS task, P05 showed an overlapping channel between PROB and
fVASC layouts (P02 had none). The mean Euclidian distance between the COGs was consid-
erably high (>55 mm) for almost all pair of layouts, which indicates that layouts were located in
spatially separated areas. IFMRI and fVASC layouts were located, on average, in close proximity
for the MC task (6.45 mm) and to a lesser extent for MR (42.22 mm). The Euclidean distance for
IS ranged between 9.08 mm (PROB-fVASC) and 100.19 mm (LIT-iFMRI) for P05 and between
26.83 mm (LIT-PROB) and 75.98 mm (LIT-iFMRI) for P02 (not shown in Fig. 6). Similarly, the
frequency maps shown in Fig. S9 in the Supplementary Material indicate that (1) the selected
channels vary considerably across participants for PROB, iFMRI, and fVASC approaches;
and (2) iFMRI and fVASC show the highest and most similar spatial extension for MC and
MR tasks.

3.2 Significant Differences in fNIRS Signal Strength and Sensitivity
Across the Four Optode-Placement Approaches

The Friedman test was computed separately for each chromophore (Δ[HbO] and Δ[HbR]) and
considering (1) all mental-imagery tasks together and (2) each mental-imagery task separately.
ForΔ½HbO�, CNR and ROI t-statistics significantly differed across layouts (CNR: Fr ¼ 41.63, df
4,14, p < 0.0001 || ROI t-statistics: Fr ¼ 31.66, df 3,14, p < 0.0001) when all mental imagery
tasks were considered together. Both metrics also also differed significantly across layouts for
MC (CNR: Fr ¼ 24.67, df 3,14 p < 0.0001 || ROI t-statistics: Fr ¼ 23.18, df 3,14 p < 0.0001)
and MR (CNR: Fr ¼ 25.72, df 3,12 p < 0.0001 || ROI t-statistics: Fr ¼ 14.06, df 3,12
p < 0.005). Post-hoc pairwise comparisons (Wilcoxon signed-rank tests, one-sided) revealed
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that optodes placed using LITapproach had significantly lower CNR and t-statistics compared to
the other three approaches (see Fig. 7). As for Δ[HbR], CNR and ROI t-statistics significantly
differed across layouts (CNR: Fr ¼ 18.32, df 4,14, p < 0.001 || ROI t-statistics: Fr ¼ 27.48,
df 3,14, p < 0.0001) when all mental imagery tasks were considered together. These metrics
also differed significantly across layouts for MC (CNR: Fr ¼ 7.98, df 3,14, p < 0.05 || ROI
t-statistics: Fr ¼ 15.46, df 3,14, p < 0.01) and MR (CNR: Fr ¼ 8.23, df 3,12, p < 0.05 || ROI
t-statistics: Fr ¼ 10.56, df 3,12, p < 0.05). Post-hoc pairwise comparisons showed a similar
trend as Δ½HbO�. A similar analysis was carried out based on effect sizes (see Fig. S10 in the
Supplementary Material), which showed a similar trend observed in Fig. 7.

Figure S11(a) in the Supplementary Material shows examples of participants with typical
hemodynamic responses (a positive deflection in Δ½HbO� and a negative deflection in
Δ½HbR�) for the four approach-specific optode layouts, while Fig. S11(b) in the
Supplementary Material shows examples of participants with weak/inverted hemodynamic
responses for the four approach-specific layouts.

Figure 8 shows the percent of participants that resulted in significant activation for each
mental-imagery task. For both chromophores, the percent of participants with significant
ROI activation increased with increasing the amount of individualized information, and pla-
teaued after including individualized functional maps (for MC task) or was slightly reduced
after including vascular information (MR task). For the IS task, PROB and fVASC approaches
and PROB and iFMRI approaches contained significant ROI activation for both participants
(100%) regarding Δ½HbO� and Δ½HbR�, respectively. As for MC and MR tasks, the number
of participants with significant activation was higher for more individualized approaches than
the LIT approach.

Fig. 6 Assessment of degree of layout (dis)similarity across approaches. (a) Average number of
overlapping channels for each pair of approach-specific layouts for MC (left) and MR (right) tasks.
The numbers in each cell represent (a) the average number of overlapping channels or (b) the
average Euclidian distance between COG for each pair of approach-specific layouts for MC (left)
and MR (right) tasks. Colors represent the standard error of the mean. MC, mental-calculation;
MR, mental-rotation.
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3.3 Spatial Specificity of fNIRS-ROIs

To assess how well the fNIRS ROIs targeted individual fMRI activation maps, we computed
weighted average and peak fMRI responses within the regions of the cortex interrogated by
fNIRS channels. The two plots in Fig. 9 show when a sphere with radius r ¼ 20 mm was used
that both the average and peak responses for LIT are significantly lower than the other
approaches (significance assessed by signed rank test and one-sided FDR corrected). Using

Fig. 7 (a) CNR and (b) ROI t -statistics-based group comparison across layouts. Results were
evaluated separately forΔ½HbO� (top, in each subplot) andΔ½HbR� (bottom, in each subplot), when
all three mental-imagery tasks were considered together as well as separately for MC and MR
tasks (left, middle, and right column, respectively). LIT performed significantly worse than the
PROB, iFMRI, and fVASC approaches for both chromophores when all tasks were considered
together. A similar pattern was observed for MC and MR tasks for Δ½HbO�. Gray dots represent
single-subject CNR/ROI t -statistic values for a given mental-imagery task. Whiskers represent the
1.5 times the interquartile range. Significant pairwise differences (calculated using Wilcoxon
signed-rank test, one-sided, and corrected for multiple comparisons) are indicated with asterisks:
*** = q½FDR� < 0.001; ** q½FDR� < 0.01; * q½FDR� < 0.05. MC, mental-calculation; MR, mental-
rotation.
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Fig. 9 (a) Assessment of layout specificity to fMRI activation maps and (b) of the temporal corre-
lation between fNIRS and fMRI time courses. Peak and average values extracted from fMRI acti-
vation maps were highest for channels placed according to iFMRI and fVASC approaches and
lowest for the LIT approach, independent of the size of projection spheres used to extract the values
(data not shown). Time courses of channels placed according to the LIT approach showed signifi-
cantly lower temporal correlations with fMRI-signal time courses than following the iFMRI and fVASC
approaches. Significance was assessed with Wilcoxon-paired signed tests (one-tailed) and was
corrected for multiple comparisons. *** q½FDR� < 0.001; ** q½FDR� < 0.01; * q½FDR� < 0.05.

Fig. 8 Percent of participants that resulted in significant activation for each mental-imagery task,
optode layout, and chromophore. For both chromophores, the percent of participants with signifi-
cant ROI activation increased with increasing the amount of individualized information used to
create optode layouts until a certain point: it plateaued after including individualized functional
maps (for MC task) or was slightly reduced after including vascular information (MR task).
MC, mental-calculation; MR, mental-rotation.
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different sphere sizes did not affect the results (data not shown). The temporal correlation
between fNIRS and fMRI time courses [Fig. 9(b)] showed a similar tendency but with smaller
differences for Δ½HbO� (and examples of both fNIRS and fMRI time courses are shown in Fig.
S11 in the Supplementary Material).

4 Discussion

Designing optimized optode layouts is particularly relevant for fNIRS-based BCI and neurofeed-
back applications, where developing robust systems that use limited number of optodes is crucial
to remain practical and comfortable for clinical applications. From the many tools currently
available to optimize optode-layout design, we compared four approaches that incrementally
incorporated individual information of participants (LIT, PROB, iFMRI, and fVASC) while par-
ticipants performed mental-imagery tasks typically used in fNIRS-BCI experiments. Our results
show that the four approaches resulted in different optode layouts and that the degree of overlap
varied across approaches, with the highest overlap and smallest distance between iFMRI and
fVASC layouts. Further, channels placed according to the LIT approach showed significantly
lower CNR and t-values than those of the channels placed according to the remaining approaches.
We observed no significant difference among PROB, iFMRI, and fVASC approaches when all
three mental tasks were considered together.

4.1 Understanding the Difference in Performance Across Layouts

4.1.1 Lower performance of the LIT approach

Figure 10 shows the average and peak responses for LIT were significantly lower than the
remaining approaches. The temporal correlation between fNIRS and fMRI time courses showed
a similar tendency. These observations were expected since PROB, iFMRI, and fVASC
approaches were based on fMRI information. However, if the individual fMRI map is used
as the ground-truth measure of cerebral activity due to its superior resolution and higher
SNR, Fig. 10 shows that the LIT approach could not capture the underlying signal as good
as the other approaches.

Several factors may have contributed to that. First, the head model used for Monte Carlo
simulations for LIT differed from the other approaches (Colin27 head atlas versus subject-
specific anatomical model, respectively). Although head atlases are good approximations, the
tissue geometries may significantly differ from other adults.44 Second, mental-imagery instruc-
tions used in this study differed from the reviewed studies used for the LIT approach, which may
have contributed to a suboptimal selection of the ROIs. Due to the small number of participants
for the IS task (N ¼ 2), the following lines will focus only on MC and MR tasks. The majority of
reviewed papers that reported using (complex) mental arithmetic aimed at increasing the working
memory demand and thus mainly measured brain activation in the frontal lobe. In contrast, we
asked participants to recite common multiplication tables, which is considered an easy task and
thus may have elicited lower responses in frontal and parietal areas when compared to more
complex problems.45 As for mental rotation, previous work used visually presented cues that
had to be mentally rotated, such as geometric objects.46–57 We did not visually present the target
object, as participants had to imagine a person rotating while keeping their eyes closed. In turn,
unlike the reported studies, there was no reference object to compare to the rotated item. These
differences could cause the recruitment of the areas involved in the task to be slightly different.

The agreement between the LIT ROIs and the individual activation maps was assessed by
first transforming the former maps to single subject space and subsequently computing the dice
coefficient between both maps. For comparability purposes, the same computation was per-
formed between the probabilistic and individual activation maps. A significant difference
(p < 0.001) between diceLIT;iFMRI and dicePROB;iFMRI suggests that the ROIs chosen with the
LIT approach are not as predictive of the fMRI maps as probabilistic maps are. In addition,
peak t-values for the LIT layout were extracted by masking functional activation maps. The
peak t-values were significantly lower for LIT-ROIs than PROB and iFMRI (see Fig. S11 in
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the Supplementary Material). Overall, these post-hoc tests provide some evidence that the ROI
definition was suboptimal for the LIT approach.

4.1.2 No significant difference between fVASC and iFMRI layouts

The fVASC and the iFMRI approaches only differed in the number of tissues used during Monte
Carlo simulations: the fVASC condition included additional participant-specific vascular infor-
mation. Including additional vascular information did not result in a significant difference com-
pared to the iFMRI layout at the group level. This is mainly because the generated layouts were
similar between them, as indicated by the channel overlap across layouts and the Euclidian dis-
tance (Fig. 6). This high similarity seems to be driven by the functional ROIs, which was the
same for both approaches. Our decision to use a small number of optodes for each layout, the
constraints to select them, and segmentation-related factors (see the limitations Sec. 4.2.2) may
have also limited the improvements expected from the fVASC approach.

4.1.3 PROB performs similar to iFMRI and fVASC

We observed that CNR and t-statistics performed similarly for the PROB approach compared to
the iFMRI and fVASC approaches. Figure 9 also shows that, descriptively speaking, the peak
and average values captured by channels defined based on the PROB approach are closer to those
of iFMRI and fVASC approaches than the LIT approach is. This is because PROB approach-
based activation maps show high spatial correspondence when compared to the reference fMRI

Fig. 10 Percent improvement in performance [in terms of (a) t -statistics and (b) CNR)] versus the
additional time required to acquire/analyze the data (in hours). All values are relative to the LIT
approach (in light pink), here considered the “baseline.” The bigger white circles represent the
median of the percent improvement in t -statistics/CNR values for each layout when all three tasks
are considered together. The dashed line represents the predicted percent improvement in per-
formance for a given processing time. Points above/below the line indicate that the percent
improvement of a given performance measure is higher/lower than the temporal resources spent
to achieve that gain.
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maps for each participant and mental task. Indeed, the average spatial correlation (assessed by
Spearman correlation) between probabilistic maps and individual activation was 0.63 when all
tasks are considered together and of 0.63 for MC and 0.64 for MR tasks. For IS, the values
ranged between 0.52 and 0.66. These values, together with the results presented in this study,
suggest that using probabilistic maps defined on individual anatomical space can be used for a
new subject (as long as the functional maps used to create the probabilistic maps are based on the
same or similar task).

4.2 Optode-Layout Design and Its Limitations

4.2.1 Cost function, optimization problem, and constraints

The cost function maximized the total sensitivity to the preselected ROI and was the same as in
Ref. 5. However, the algorithmic approach to solve the optimization problem was tailored to
account for the constraints imposed by our particular research question(s), experimental design,
and the nature of our ROIs (which consisted of multiple noncontiguous regions). This entails that
our algorithmic approach may not be (and was not designed to be) generalizable to other exper-
imental designs.

As for the optimization constraint set, the optode layout for each of the four approaches
consisted of two channels that shared one optode. This was motivated by its suitability for clini-
cal settings. However, due to recent technological developments, wearable, ergonomic fNIRS
instruments58 with a high number of optical channels and easy setup are becoming a reality,1

which could relieve this optimization constraint in the future.

4.2.2 Monte Carlo simulations

Our light-sensitivity profiles may contain estimation errors due to a number of simplifications.
First, the head models used in this study did not consider that the skull can contain cancellous
and cortical bone, and the soft tissue may contain fat and muscle that have different optical
properties.59 Second, both sources and detectors were modeled as pencil sources instead of sep-
arately being modeled according to their function (they emit or detect light) and technical char-
acteristics. Third, we did not distinguish between arteries and veins when defining the head
model. Even if our decision can be justified by the relatively small difference in optical properties
between veins and arteries compared to the remaining tissues, we cannot discard divergence in
the results if arteries and veins had been distinguished. Optical properties also differ depending
on the diameter of blood vessels,60 which we did not take into account in this study. Finally, our
vascular maps depended on manual segmentation, which may have introduced variability. Future
studies may overcome these limitations by mapping superficial (scalp/skull) vasculature with
more optimized MRI sequences,61 and by distinguishing between arteries from veins and their
diameters.62,63

4.2.3 Mental-imagery task selection

Combining approach-specific layouts for both mental-imagery tasks caused incompatible optode
placements in some participants. The decisions taken to overcome these problems, together with
the subject-specific task selection led to an unequal number of participants for each task
(NIS ¼ 2, NMC ¼ 14, NMR ¼ 12), which made the group analysis for IS task unfeasible. To
overcome the incompatibility problem, future studies could test the performance of different
layouts in different runs/sessions (using a given layout at a time), whose order could be counter-
balanced to account for run/session effects. In addition, a single mental-imagery task could be
studied at a time.

4.3 Implications for BCI Applications

In fNIRS-BCI applications for motor-independent communication and control, brain responses
from a set of tasks are discriminated by exploiting information in distributed patterns of brain
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activity using multichannel pattern analysis (the equivalent to multivoxel pattern analysis in
fMRI studies) or using univariate analysis in combination with smart paradigms.10–12,16,64,65

For either approach, it is important to ensure there is a set of channels that contains sufficient
task-related information to discriminate responses. This study constitutes a relevant prestep for
both as it compared approaches that used different amount of individualized information to
design task-specific, optimized layouts that should result in informative channels.

The percent of participants with significant activation increased with the amount of individu-
alized information used to create the optode setup, but only until a certain point (adding vas-
culature information did not increase or even reduced the percent of participants for MC andMR,
respectively). Although all participants showed significant activation levels for every mental task
during the fMRI run, none of the approaches using fMRI information managed to get all par-
ticipants to have significant ROIs for MC and MR tasks. It is unclear whether a given level of
fMRI activation is enough to guarantee the detection of task-related fNIRS signal. Even if both
neuroimaging methods measure the hemodynamic response to neural activity, fNIRS is highly
dependent on the individual anatomical features, such as the scalp-brain distance (which differs
across the head).17 In addition, our fNIRS results might have been affected by the discrete spatial
locations used in this study (130 EEG positions). Spatially less restricted or unrestricted optode
placement would likely improve the results.66

4.4 Recommendations for Optode Placement and the Way Forward

Effective optode-layout design balances a number of potential tradeoffs. The extended layouts
based on the international 10-20 system or its extensions can be used to study functional network
dynamics and are adequate when target ROIs are not easy to define.66 In addition, although the
target ROI may not be optimally sampled (due to unavoidable regions not covered by a source–
detector pair when creating optode layouts and the lower spatial resolution associated to fNIRS
compared to fMRI), the chance of completely missing it is relatively low. That said, smaller
setups are preferred in fNIRS-BCI applications due to their superior practicability and patient
comfort. However, they run a higher risk of missing signal from the target ROI due to anatomical
or functional differences between individuals. As a result, small BCI setups are likely to benefit
from supplementary f/MRI data investigated in this work. The recommendations and conclu-
sions presented here therefore focus on this particular fNIRS application.

Considering that additional individualized information has an associated acquisition/analysis
cost, it is worth asking, especially when temporal/monetary/material resources are limited: how
much individual information is worth to include for designing optode layouts? Figure 10 shows
the predicted percent improvement in performance (in terms of t-statistics [top] and CNR
[bottom]) versus the additional time required to acquire/analyze the data relative to the LIT lay-
out (considered the “baseline” approach). Points above the line indicate that the percent improve-
ment of a given performance measure is higher than the temporal resources spent to achieve that
gain. The figure suggests that including individual anatomical data with independent (PROB
layout) or individual functional data (iFMRI layout) improves the performance while efficiently
using temporal resources. It also suggests that the fVASC approach in its current form is not as
cost-effective.

The analysis described above focused only on a small part of the multidimensional problem
related to cost-effectiveness. Naturally, costs and benefits of including more individualized infor-
mation for creating clinically practical layouts should be assessed in that very context. For exam-
ple, in certain (rare) cases such as long-term BCIs in “locked-in” patients, using individual (f)
MRI data may result in increased ability to communicate, i.e., provide considerable benefit. In
that case, even though using individual (f)MRI is more resource-demanding, the benefits would
outweigh the costs.

In view of these observations, we encourage researchers to use individual functional and
anatomical data for designing optode layouts when possible, but when anatomical data are avail-
able and functional data are not, probabilistic functional maps constitute a promising and eco-
nomic alternative. FMRI-based probabilistic functional maps of the human ventral occipital
cortex,67 human motion complex,68 face selective areas,69,70 finger dominance in the primary
somatosensory cortex,71 or across the whole cortex72 are freely available or available on demand.
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However, we could not find any published work on probabilistic mental-imagery maps, which
could be beneficial for optode placement in BCI research. To improve this situation, the prob-
abilistic functional maps of the three mental-imagery tasks used in this study (in MNI space) are
available upon request. Finally, in the absence of functional and anatomical information (for
example, when a patient cannot go into the scanner for incompatibility or cost-related reasons),
a few strategies could be employed. One of them involves using functional probabilistic maps in
combination with atlas-based anatomical information. Even though this approach was not tested
in this study, we believe it can be beneficial. If probabilistic maps are unavailable, ROI selection
should be guided by relevant body of work or meta-analyses that describe tasks closely related to
the ones to be used during the fNIRS session. In parallel, a larger setup could be initially
employed in a “localizer” run to determine the most informative channels which could be sub-
sequently scaled down to consider only the most informative channels. In this study, once the
target ROIs were selected, we used fOLD29 for designing our optode layout due to its user-
friendly features. However, other toolboxes such as Array Designer1 and software, such as
NIRStorm (a BrainStorm plugin for fNIRS analysis27), also offer promising and flexible tools
that were not explored in this study.

5 Conclusions

In this paper, we compared four approaches to design small fNIRS optode layouts that represent
various scenarios research groups may encounter when planning fNIRS-BCI experiments. By
providing the insights of such comparisons, we hope to have offered an informative framework
so that researchers can efficiently use resources for developing robust and convenient fNIRS-
BCI systems for clinical use.
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