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Abstract. Self-luminous display devices are essential in various working environments, such as
aircraft cockpits and the driver cab of vehicles and trains, where the external light environment
varies drastically. Owing to the significant illumination changes, auto-adjusted display lumi-
nance based on ambient lighting is necessary for drivers to work efficiently and comfortably.
This study proposes a display dimming model based on three dimensions of ergonomic testing,
consisting of visual performance (VP), visual comfort (VC), and visual fatigue (VF). Five ambi-
ent illuminances, each combined with five display luminance levels, form a total of 25 conditions
demonstrated in this experiment. Using a within-subject design, ten observers experienced all the
combination conditions. The experiment employs the Anfimov table to test the VP, VC scale to
evaluate VC, and VF scale to assess VF. Based on the experimental results, sub-models are
constructed to clarify the characteristics of each dimension (VP, VC, and VF). Subsequently,
the analytic hierarchy process is employed to construct an evaluation system by calculating the
weight of each dimension in the total score. Finally, exponential fitting is utilized to build a wide-
range display dimming model, which explicitly describes the inherent connection of complex
light environment matching. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.3.035110]
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1 Introduction

Self-luminous display devices, such as computers, mobile phones, and tablets, have become
indispensable in our daily lives. Moreover, display devices are increasingly replacing traditional
mechanical buttons, meters, and light guide panels in many essential scenarios of human–
computer interactions, such as aircraft cockpits and the driver cab of vehicles and trains.
However, with the convenience and diverse interfaces enabled by the widespread use of displays,
some challenges still exist. To enable efficient use when there are changes in the external light
environment, the display must be equipped with an adaptive luminance adjustment algorithm,
which matches the light environment and maintains the readability of information. This is impor-
tant for visual performance (VP) and the effectiveness of human–computer interaction.

Recently, some studies have explored the impact of ambient light, and display luminance on
users from different perspectives and have made some progress in both VP and the combined
effects of visual comfort (VC) and visual fatigue (VF). In general, the visual capability increased
as the display luminance increased.1 Xu and Zhu suggested that high performance occurs at high
display luminance, in contrast to low luminance.2 Lin3 also indicated that VP increased with
increasing screen luminance. Regarding ambient light, Shen et al.4 presented a study on elec-
tronic paper displays that showed that the search speed increased as illumination increased from
300 lx (45.6 s), 700 lx (44.18 s) to 1500 lx (43.24 s) for a fixed display luminance. This indicated
that the VP improved with an increase in the ambient illuminance. A similar conclusion appears
in Lin’s5 study, and the results showed that reading comprehension performance was better at
500 lx and 800 lx lighting than at 200 lx. In addition to their impact on VP, ambient light and
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display luminance also impact VC and VF. Lee and Whang6 presented a study in 2012 that
showed that the viewer felt intense VF at high luminance levels over 400 cd∕m2. Wang
et al.7 suggested that luminance is the critical factor that causes VF, and ambient light has a
significant influence on subjective comfort evaluation. It was also found that subjective visual
discomfort only represented a part of mental workload, not the whole VF rating.7 Therefore, it is
important to consider both VC and VF in two dimensions. Base on the above analysis, the def-
inition of the optimal display luminance requires comprehensive consideration of the VP, VF,
and VC dimensions. However, previous studies typically considered one or two of these three
dimensions (3D), and an optimal display luminance model that integrates all 3D needs to be
explored in depth.

In addition to the independent influence of ambient illuminance or display luminance, the
mismatch between ambient light and display luminance is a more important issue in practical
applications. Yang et al. explored the transient effects of extreme weather on pilots’ visual behav-
ior during flight and demonstrated that pulse-changed and step-changed lighting can result in the
temporary visual impairment of pilots.8,9 Rodriguez and Pattini10 investigated the influence of
ambient lighting with a large glare light source on the display VP. The results showed that
memory ability decreased significantly as the glare intensity increased.11,12

Hence, some recent studies have also focused on the interaction between multiple factors
(ambient illuminance and display luminance). These studies explored the optimal display lumi-
nance or ambient illuminance under particular conditions or ranges. Gallimore and Stouffer13

showed that background luminance and surrounding luminance revealed significant interactive
effects on VP. Lin and Huang14 suggested that the combination of ambient illumination and
screen luminance are the key factors for users’VP. Additionally, research by radiologists showed
that the correct LED backlight luminance during different light conditions may positively affect
the perception of the examined sample and reduce VF.15 Na and Suk explored the optimal lumi-
nance of a smartphone under low illuminance. They obtained the optimal luminance for initial
viewing (10 cd∕m2) and continuous viewing (40 cd∕m2) based on users’ subjective judgments.
They also proposed an adaptive display model, in which display luminance increases with the
watching time.16 De Moor et al. investigated how readability and VP varied with seven different
combinations of ambient luminance (ranging from 256 to 1536 cd∕m2) and display luminance
(ranging from 300 to 680 cd∕m2). The results showed that with a decrease in contrast and
increase in ambient luminance, the self-reported valence decreased, and the annoyance and
VF increased.1,17 However, the ambient illuminance and display luminance involved in these
studies are within a specific small range. In addition, most of them are based only on VP, without
consideration of the effects of comfort and VF. Therefore, a comprehensive wide-range display
dimming model is necessary.

Thus, this study aims to explore a display-dimming model that is suitable for a working
environment. The optimization principle of this model is to enhance VP and VC and simulta-
neously reduce VF. Based on this, five ambient lighting levels, each with five display luminance
levels used as the model input, are investigated in this study. The sub-models of each dimension
are carefully investigated in advance. A wide-range dimming curve model is then developed to
provide a matching algorithm for the ambient illumination and display luminance.

2 Methods

2.1 Experimental Setup

A full-scale driving simulator in a simulated cockpit was used in this study for the participants to
be immersed in the pilot’s perspective while observing the display. Participants were asked to sit
in the driver’s seat and fasten their seat belts to ensure that the horizontal distance between the
eye position and display was 900 mm. The eye position height of each subject was maintained at
1200 mm by adjusting the seat height.

The display is embedded in the analog operation panel at an angle of 120 deg to the hori-
zontal plane. Six high-power LED floodlights outside the left-wing porthole of the aircraft were
used to produce five ambient lighting conditions. An extra metal halide lamp in the lower right
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corner of the cockpit was used to achieve the two highest illumination conditions and enhance
the display surface uniformity. No direct glare or secondary reflection glare is caused by these
lamps in the view of the observers. The layout of the simulated cockpit is shown in Fig. 1.

2.2 Lighting Conditions

According to the Weber–Fechner law, human psychological perception is proportional to the
logarithm of physical stimulation. Hence, the ambient illumination and display luminance values
adopted in this study are uniformly distributed on a logarithmic scale over a wide range. The
ambient illumination was set to 1, 10, 100, 1000, and 2700 lx. The use of 2700 l’th instead of
10,000 l’th is owing to the reduction of the ambient illumination by the light shield of the display,
the driver’s sunglasses in a driving cockpit, and the limitations of the laboratory equipment. The
display luminance is set to 1, 10, 100, 1000, and 316 (equals to 102.5) cd∕m2. The value of
316 cd∕m2 served as an interpolation condition to improve the precision of the data structure.

A detailed physical parameter list is given in Table 1. The ambient illumination and optotype
luminance are defined as variables, and the display contrast, line width, color of the optotypes,
and color temperature of the ambient light remain constant.

Some previous studies have shown that reading performance is better for dark text against
a light background (positive polarity) than for light text against a dark background (negative
polarity).18–20 However, another study showed that display polarity does not affect readability.21

The proofreading speed and accuracy were unaffected by the display polarity. Furthermore,
participants’ preferences showed no significant differences in display polarity.22 Therefore,

Fig. 1 Layout of the simulated cockpit used in the experiment.

Table 1 Physical parameters for experimental lighting conditions.

Parameter type Parameter name Values

Variables Ambient illuminance (lx) 1,10,100,1000,2700

Optotype luminance (cd∕m2) 1,10,100,316,1000

Constant Contrast ratio 80:1

Optotypes line width (mrad) 0.6

Color temperature (K) 6500

Duv −0.0089
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the display is set to negative polarity in this experiment, allowing improved fidelity to the aircraft
cockpit or driver’s cab display.

The ambient illuminance is defined as the mean of the illuminance measured at the four
corners and center position on the display’s surface.23 Illuminance uniformity of the display
surface in each condition is obtained by dividing the minimum value of the 5 test points by
the average value, which is >0.85 in each condition. The display luminance is defined as the
optotype luminance in a visual task. The contrast ratio is calculated by dividing the optotype
luminance by the background luminance of the display. In addition, the optotype line width is
calculated using the geometric relationship between the optotype line width on the display and
the eye position. The color temperature refers to a cloudless sky, which is equivalent to 6500 K.24

The illuminance and optotype luminance are measured using an illuminance meter
(CL-200A, Konica Minolta, Japan) and luminance meter (CS-200, Konica Minolta, Japan),
respectively.

2.3 Experimental Process

Ten subjects participated in this study are undergraduates or graduate students in Fudan
University; participants comprised of equal numbers of male and female subjects (average age,
24.20; range, 22 to 26 years). A within-subject design is employed in this experiment, and sub-
jects are asked to complete all conditions in a random order. The sample size is estimated from
the results of the pilot study, including the standard deviation and the difference between groups.
The confidence level is 95%, and the power of the test is 80%. In addition, about 25 sessions are
conducted in five replications to avoid the VF physically caused by the long-time experiment
while providing enough time for the participants to fill in the rating scales.4,17,25 Participants have
normal orthoptists and no other eye diseases. The Ethics Committee of the School of Life
Science, Fudan University, approved all procedures (No. BE2042). All participants provided
written informed consent before the experiment.

Before the start of the experiment, training on measurement exercises and questionnaire
explanations are conducted to enhance the stability of the experiment results. Subsequently, the
experimental sessions are executed. Figure 2 shows the timetable for each experimental session,
which lasts 15 min. Its description and duration are summarized as follows:

a. dark adaptation (3 min);
b. light adaptation (3 min);
c. visual searching task (5 min);
d. VF scale (2 min);
e. VC scale (2 min);

For each session, dark adaptation is arranged to avoid successive contrast effects and VF.26

The 3 min-light adaptation is to make the retina and pupil adapt to the next light condition and in
a stable response state.27–29

Each participant is required to participate in all 25 conditions. In total, 62.5 h were spent in
experimental sessions: 25 lighting conditions × 10 participants × 15 min per session.

Fig. 2 Test procedure for the experiment: the column bar rectangle represents the visual search-
ing task period; the darker grey gridding rectangle represents the period when the visual fatigue
scale is conducted; the diagonal striped rectangles represent the periods when the visual comfort
scale is collected.
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2.4 Measurements

2.4.1 Visual performance

VP means the quality of performance of the visual system of an observer related to central and
peripheral vision (CIE S 017:2011).30 The Anfimov table is a classical method used to inves-
tigate visual searching performance.31–34 A graphical user interface (GUI) is programmed
(MATLAB, Mathworks) using an automatically generated Anfimov table, which consists of
eight letters (A, B, C, B, E, H, K, N, and X). There are a total of 1200 letters in this task, and
each letter randomly appears 150 times, as shown in Fig. 3. The participants are asked to cancel
the “B” behind “H” by clicking it. The program records the hit rate, false-alarm rate, and duration
of the task at the end of each test. In addition, the index of mental capacity (IMC)35 is employed
to represent visual capability, as shown in Eq. (1):

EQ-TARGET;temp:intralink-;e001;116;585IMC ¼ M∕T × ðn − aÞ∕N; (1)

where T denotes the time cost, M represents the total letter count, N represents the number of
letters that should be deleted, n denotes the number of letters deleted correctly, and a denotes the
number of letters wrongly deleted and those that were missed. Finally, the IMC is calculated as
the VP score.

Fig. 3 GUI interface of Anfimov table software: The Amfimov table is located in the center of the
screen. The character line width is 0.6 mrad according to the test point at the fixed eye position.
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2.4.2 Visual fatigue

The VF scale contains seven sets of descriptions that show significant correlations with VF,
which was sensitive in differentiating tracking from reading and monitoring tasks36 and iden-
tified in a previous study.37 A higher score indicates more VF. Table 2 lists the different
categories used for assessing fatigue.

2.4.3 Visual comfort

The VC scale, shown in Table 3, consists of eight pairs of antonyms chosen from Vogels’ ques-
tionnaire, and previous studies from Liu et al. and Lu et al. are referenced for Chinese
translations.38–41 The eight items inquire on the comfort level, mood, and preferences of the
observer in the environment from various angles. Each item is divided into seven levels, and
the results are preprocessed by summing the score of each item. A higher score on the VC scale
indicates a higher level of comfort.

3 Results and Statistical Analysis

Statistical analysis of the raw data is conducted using SPSS Statistics 20 software (IBM). A two-
way analysis of variance (ANOVA) is used for the statistical analysis. The following sections

Table 2 Composition of the VF scale.

Items Not at all————————————extremely

Blurred vision 0 1 2 3 4

Double vision 0 1 2 3 4

Dry eyes 0 1 2 3 4

Hot or burning eyes 0 1 2 3 4

Not at all irritated eyes 0 1 2 3 4

Sore or aching eyes 0 1 2 3 4

Tired eyes 0 1 2 3 4

Table 3 The components of the VC scale.

Positive Negative Citation

Cozy Uncomfortable a, b, c

Harmonious Incongruity d

Tranquil Restless a, b, c

Bright Dim a, b

Like Dislike b

Natural Unnatural b

Lively Lifeless a, b

Clear Blurred a, c

aVogels’ study in 2008.
bLiu’s study in 2015.
cWang’s study in 2014.
dLu’s study in 2019.
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will elaborate on the experimental results from three aspects: VP, VC, and VF. VP refers to the
value of IMC in different conditions; the VC data are collected from the VC scale; the VF data
come from the VF scale. Two of the 25 conditions (1 cd∕m2 under 1000 and 2700 lx) are aban-
doned because the display cannot satisfy the preset parameter value in contrast. Therefore, the
data for these two conditions are not included in the analysis process.

3.1 Visual Performance

The IMC value is used to represent the VP. The calculation process of the IMC is described in
Sec. 2.4.1. Then, an ANOVA was employed to investigate the relationship between VP and
lighting conditions. Levene’s test reveals the equality of error variances. Table 4 gives the
ANOVA results for different dimensions.

Considering the VP as a dependent variable, the ANOVAwith the ambient illuminance and
display luminance as independent variables show a statistically significant effect of ambient
illuminance (F ¼ 2.612, p ¼ 0.037) and display luminance (F ¼ 51.618, p < 0.001). In addi-
tion, the analysis does not show a significant interactive effect between illuminance and lumi-
nance on VP (F ¼ 0.740, p ¼ 0.733).

The mean and standard error of the VP under different conditions are shown in Fig. 4. It can
be observed that the relationship between ambient illuminance and VP is parabolic under low
display luminance conditions. Moreover, the VP exhibits a monotonous increase under high
display luminance conditions. As the luminance increases, the growth rate of the VP simulta-
neously decreases. For different luminance under the same illuminance, the VP exhibits
nonlinear monotonic increases in the high luminance area with the appearance of response
compression.

Table 4 ANOVA results of VP.

Effect Type III sum of squares df Mean square F Sig.

E 0.064 4 0.016 2.612 0.037

L 1.273 4 0.318 51.618 0.000

E × L 0.064 14 0.005 0.740 0.733

Note: E = ambient illuminance; L = display luminance.

Fig. 4 Mean and standard error of mean (SEM) of the VP with ambient illuminance as the inde-
pendent variable for five values of display luminance.
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3.2 Visual Comfort

For the VC, the homogeneity of its variance is tested using Levene’s test. The ANOVA, with the
ambient illuminance and display luminance as the independent variable and VC as the dependent
variable, shows the main effects of ambient illuminance (F ¼ 9.827, p < 0.001) and display
luminance (F ¼ 17.005, p < 0.001). It also presents the significant interactive effect between
illuminance and luminance (F ¼ 3.547, p < 0.001). It reveals that different combinations of
ambient illuminance and display luminance could significantly affect the VC level. Levene’s
test reveals the equality of error variances. Table 5 lists the ANOVA results for different
dimensions.

The mean and standard error of the VC under different conditions are shown in Fig. 5. It can
be observed that for the aspects of illuminance and luminance, the comfort level exhibits an
upward trend first and then a downward trend; the upward and downward speeds are not con-
sistent. In addition, as the luminance level increases, the peak of the VC curve keeps shifting to
the right side of the diagram, which suggests that the optimal illuminance out of VC outcomes
increases.

3.3 Visual Fatigue

An ANOVA is conducted on VF for ambient illuminance and display luminance. Prior to this,
Levene’s test is conducted, and the results reveal the equality of error variances. The ANOVA
shows no main effect of the ambient illuminance on VF (F ¼ 0.875, p ¼ 0.480); however, the
display luminance had statistically significant effects on VF (F ¼ 10.547, p < 0.001). It also
shows a significant interactive effect between illuminance and luminance on VF (F ¼ 3.967,
p < 0.001). This indicates that different combinations of ambient illuminance and display

Fig. 5 Mean and standard error (SEM) of the VC with ambient illuminance as the independent
variable for five values of display luminance.

Table 5 ANOVA results for VC.

Effect Type III sum of squares df Mean square F Sig.

E 7062.437 4 1765.609 9.827 0.000

L 12220.990 4 3055.248 17.005 0.000

E × L 8923.150 14 637.368 3.547 0.000

Note: E = ambient illuminance; L = display luminance.
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luminance may significantly affect VF. Levene’s test reveals the equality of error variances.
Table 6 lists the ANOVA results for different dimensions.

The mean and standard error of the VF under different conditions are shown in Fig. 6. The
three curves of 10, 100, and 316 cd∕m2 show a consistent trend of declining first and then rising.
In addition, this trend is asymmetric in the rising and declining sides. It should be noted that the
curve of 1 cd∕m2 increases with an increase in illuminance, which indicated that the fatigue
increases. Moreover, the curve of 1000 cd∕m2 decreases with an increase in illuminance;
i.e., the degree of fatigue decreases.

4 Establishment of the Display Dimming Model

In Sec. 3, the data of each condition are analyzed in 3D: VP, VC, and VF. In this section, an
integrating dimming curve model based on these dimensions is discussed. The sub-model of
each dimension is first fitted based on the data characteristics and theoretical foundation.
Subsequently, the analytic hierarchy process (AHP) is employed to construct this 3D evaluation
system by calculating the weight of each dimension in the total score (TS); thus, AHP is an
effective method to solve the multi-objective comprehensive evaluation.42 Finally, the exponen-
tial fitting of the TSs is performed to obtain the optimal dimming model in the illuminance-
luminance dimension, as shown in Fig. 7.

4.1 Step1: Establishment of Sub-Model of each Dimension

According to the Weber–Fechner law, the models are established in the logarithmic system of
physical quantities to better match human psychological perception.

Fig. 6 Mean and standard error (SEM) of the VF with ambient illuminance as the independent
variable for five values of display luminance.

Table 6 ANOVA results of VF.

Effect Type III sum of squares df Mean square F Sig.

E 49.587 4 12.397 0.875 0.480

L 597.822 4 149.455 10.547 0.000

E × L 786.973 14 56.212 3.967 0.000

Note: E = ambient illuminance; L = display luminance.
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4.1.1 Visual performance model

Some critical prior knowledge about the VP model was gained in previous studies. Rea and
Ouellette43 verified a significant linear relationship between VP and the logarithm of retinal
illumination. In this study, the relationship between ambient illuminance and VP is parabolic
and a monotonous increase under low and high display luminance conditions, respectively.
Therefore, it can be assumed that the monotonicity under high luminance is owing to the param-
eter values being on one side of the parabolic peak. Thus, the relationship between the logarithm
of the ambient illuminance and the VP is parabolic. In addition, the response compression of
the logarithm of the luminance for VP was confirmed in another study,44 which prompted us to
conduct the logarithmic transformation based on the logarithm of the luminance. Hence, a two-
degree polynomial is used to estimate VP using a least-squares criterion, the illumination value
between 1 and 2700 lx, and the luminance value between 1 and 1000 cd∕m2. The polynomial fit
is a classical method in psychophysical evaluation with a greater role on issues of design and
inference.45 The proposed VP model is shown in Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;202VP ¼ a00 þ a10E 0 þ a01 log10L 0 þ a20E 02 þ a11E 0 log10 L 0; (2)

where VP represents the visual performance, E 0 is the logarithm of the ambient illuminance
value, and L 0 is the logarithm of the display luminance value. The coefficient of each term
is shown in Table 7. Figure 8 shows a graphical expression of the VP as a function of illuminance
and luminance.

The VP model exhibits a good fitting degree with R2 ¼ 0.90, and the Pearson correlation
coefficient is 0.87. The model reveals that the matching degree of display luminance and ambient
illuminance impacts VP, even when the contrast is the same. For example, an excessively bright
surrounding illuminance is not conducive to VP, even if the readability does not change.

Fig. 7 Model structure and process step. The symbols A, B, C, D, and E denote varied lumi-
nance level, A ¼ 1 cd∕m2, B ¼ 10 cd∕m2, C ¼ 100 cd∕m2, D ¼ 316 cd∕m2, E ¼ 1000 cd∕m2,
respectively.
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4.1.2 Visual comfort model

From the data trend of rising first and then falling at different speeds, three-degree polynomials
are used to estimate VC using a least-squares criterion, an illumination value between 1 and
2700 l×, and a luminance value between 1 and 1000 cd∕m2. The proposed VP model is shown
in Eq. (3):

EQ-TARGET;temp:intralink-;e003;116;314

VC ¼ a00 þ a10E 0 þ a01L 0 þ a20E 02 þ a11E 0L 0 þ a02L 02

þ a30E 03 þ a21E 02L 0 þ a12E 0L 02 þ a03L 03; (3)

where VC represents the visual comfort, E 0 is the logarithm of the ambient illuminance value,
and L 0 is the logarithm of the display luminance value. The coefficient of each term is shown
in Table 7. Figure 9 shows a graphical expression of VC as a function of illuminance and
luminance.

The VC model shows an excellent fitting degree with R2 ¼ 0.95, and the Pearson correlation
coefficient is 0.92. The model verifies that the comfortable display luminance increases as the
ambient illuminance increases. When there is a mismatch between the ambient illuminance and
the display brightness, the user’s comfort level will decrease. This mismatch includes high-
luminance displays under dim ambient illuminance and low-luminance displays under bright
ambient illuminance.

4.1.3 Visual fatigue model

For VF, the three curves of 10, 100, and 316 cd∕m2 exhibit the three-degree polynomial features
with a consistent trend of first decreasing and then rising. Moreover, the curves are asymmetric in
the rising and falling sides. However, the 1 and 1000 cd∕m2 curves present a monotonous trend,

Fig. 8 Curved surface of the VP model. VP is plotted as a function of illuminance and luminance,
and both scaled logarithmically.

Table 7 The coefficients of VP, VC, and VF model

Model a00 a10 a01 a20 a11: a02 a30 a21 a12 a03

VP 0.5854 0.04972 0.07283 −0.01249 0.008367 — — — — —

VC 23.01 5.097 17.95 1.475 −0.070 −1.066 −1.728 2.275 −0.5689 −1.625

VF 11.76 −0.3762 −2.297 0.1498 0.1499 −1.035 0.3363 −0.653 0.0664 0.7465
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suggesting that the valleys are not in the parameter range. Hence, three-degree polynomials are
also used to estimate VF using a least-squares criterion, the illumination value between 1 and
2700 lx, and the luminance value between 1 and 1000 cd∕m2. The proposed VF model is shown
in Eq. (4):

EQ-TARGET;temp:intralink-;e004;116;459

VF ¼ a00 þ a10E 0 þ a01L 0 þ a20E 02 þ a11E 0L 0 þ a02L 02

þ a30E 03 þ a21E 02L 0 þ a12E 0L 02 þ a03L 03; (4)

where VF denotes the visual fatigue, E 0 is the logarithm of the ambient illuminance value, and
L 0 is the logarithm of the display luminance value. The coefficient of each term is shown in
Table 7. Figure 10 shows a graphical expression of VF as a function of illuminance and
luminance.

The VF model shows an excellent fitting degree with R2 ¼ 0.96, and the Pearson correlation
coefficient is 0.94. The model indicates that an appropriate matching relationship between ambi-
ent illuminance and the display luminance led to a low degree of VF, as shown in the green area
in Fig. 10. However, when they did not match, severe VF was caused.

Fig. 10 Curved surface of the VF model. VF is plotted as a function of illuminance and luminance,
and both scaled logarithmically.

Fig. 9 Curved surface of the VC model. VC is plotted as a function of illuminance and luminance,
and both scaled logarithmically.
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4.2 Step2: Total Scores Evaluated by Analytic Hierarchy Process

AHP is employed to construct an evaluation system by calculating the weight of each dimension
in the TS. First, a hierarchical model is built, as shown in Fig. 7. Optimal display luminance is the
target layer of the model, and the indicator layer consists of 3D: VP, VC, and VF. The casing
layer consists of conditions with different illuminance-luminance combinations.

The data must be preprocessed to be dimensionless and formed the relative response values44

by dividing the absolute response value by the maximum response value (within the parameters
of this experiment), before entering the model. The preprocessing functions are shown in
Eqs. (5)–(7):

EQ-TARGET;temp:intralink-;e005;116;621VPR ¼ VP∕VPmax; (5)

EQ-TARGET;temp:intralink-;e006;116;577VCR ¼ VC∕VCmax; (6)

EQ-TARGET;temp:intralink-;e007;116;554VFR ¼ 1 − VF∕VFmax; (7)

where VPR represents the relative VP, VPmax ¼ 0.7; VCR represents the relative VC,
VCmax ¼ 0.760; VFR represents the relative VF, VFmax ¼ 27. It should be noted that a higher
VF (VF) value in Eq. (4) generates a more negative fatigue. Therefore, the relative VF is defined
by Eq. (7), where a value of VFR closer to 1 indicates less fatigue with a positive effect.

According to this framework, A is defined as the index matrix, which consists of the relative
VP score VPR, relative VC score VCR, and relative VF score VFR. In addition, the weights
corresponding to the three indicators are α, β, and γ, which is defined as the weight matrix
W. Finally, the product of A and w is the TS. Thus, the TS of each condition can be expressed
as

EQ-TARGET;temp:intralink-;e008;116;434A ¼ ½VPR; VCR; VFR�T W ¼ ½α; β; γ� TS ¼ WA: (8)

To obtain the weight matrixW, a paired comparison matrix X is constructed; the element xij
in the matrix represents the ratio of the degree of influence of the i’th element of A to the target
layer relative to the j’th element:46

EQ-TARGET;temp:intralink-;e009;116;360X ¼ ðxijÞ3×3: (9)

The pairwise comparison matrix data are obtained through expert investigation weight
method37 by employing 33 pilots from Airlines Company. All the pilots have more than 100 h
of flight experience. The expert investigation questionnaire consisted of six items. A rating of
1/9-1–9 is used for each item,42,46 where “1”means the i’th element has the same influence as the
j’th element, “1/9”means that the j’th element has a stronger influence than the i’th element, and
“9” means that the i’th element has a stronger influence than the j’th element. The pilots were

Table 8 Composition of the expert investigation questionnaire.

Element i Element j

VP 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VF

VP 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VC

VF 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VC

VF 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VP

VC 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VP

VC 9 8 7 6 5 4 3 2 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 VF
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asked to answer the questionnaire according to their feelings during flight. The composition of
the expert investigation questionnaire is shown in Table 8.

The consistency of the questionnaires was tested by the consistency ratio.42,46 For those 18
questionnaires, whose CR were smaller than 0.1, were adopted for further determining the
weight vector matrix by the characteristic root method.47 The mean results of the weights of
each dimension are shown in Table 9.

The TS is calculated using Eq. (8). It can be observed from Fig. 11 that the areas with
higher TSs are approximately distributed on the diagonal of the logarithmic coordinate
system. This implies that with an increase in ambient illuminance, the display luminance
should be correspondingly increased to fulfill the comprehensive needs of the observer
in 3D.

4.3 Step3: Exponential Fitting of the Illuminance-Luminance Dimming Model

The TS [based on Eq. (8)] obtained in the second step is the basis for identifying the optimal
combination of illuminance and luminance. The 0-1 standardization of TS different luminance
under each illuminance is processed to find the relatively optimal luminance for each illumi-
nance. The standardized results are shown in Fig. 12, and an area with a relative TS ðRTSÞ >
0.9 is defined as the optimal area. Moreover, an exponential fitting is performed for the highest
RTS (RTS ¼ 1) in illuminance-luminance dimensions, and the dimming model is built as
follows:

EQ-TARGET;temp:intralink-;e010;116;147L ¼ 5.464E0.4922 þ 41; (10)

where E is the ambient illuminance value, and L is the display luminance value. The dimming
model provides a foundation for adaptive dimming curves for cockpit displays and monitors at
work and in daily life.

Table 9 Weights of each dimension by expert investigation weight method.

VP (α) VC (β) VF (γ)

Weight 0.33 0.40 0.27

Fig. 11 Curved surface of the TS model. The TS is plotted as a function of illuminance and lumi-
nance, and both scaled logarithmically.
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5 Validation of the Display Dimming Model

The established model in Sec. 4 is validated with the earlier relative studies, by Xu and Zhu,2

Lin and Huang,14 Buchner et al.,21 etc. 1,16,48 The recommended values or models of display
luminance under different ambient illumination through published ergonomic studies are
included in the verification dataset for this model. The details of the model verification dataset
are shown in Table 10 and Fig. 13. The results showed good validation to the degree that most of
the combinations of ambient illuminance and display luminance in validation dataset are covered
in the optimal area by our proposed model.

Fig. 12 Recommended display diming model in this experiment. The white area in the middle of
the graph indicates that the RTS is >0.9; thus, it is defined as the optimal area. The black curve in
the optimal area is the dimming model [based on Eqs. (4)–(9), RTS ¼ 1]. The gradient area
on both sides is divided according to the contour line of the RTS. A darker color indicates a lower
RTS.

Table 10 The details of the model verification dataset.

Profiles Subjects Age
Display
polarity

Optimization
goal

Lighting
conditions Recommendations

Within the
optimal

area of the
proposed
model

(Xu and
Zhu, 1990)2

n ¼ 9 17 to 34 Negative VP 800 lx 90 cd∕m2 Yes

(Lin and
Huang, 2006)14

n ¼ 28 College
students

Positive VP 200 to
800 lx

100 − 200 cd∕m2 Yes

(Buchner
et al. 2009)21

n ¼ 124 18 to 55 Positive and
Negative

VP 550 lx 77 cd∕m2 Yes

(Na and
Suk, 2015)16

n ¼ 50 MSD ¼
21.76� 3.28

Positive Visual
Preference

<1 lx 40 cd∕m2 Yes

(Kim et al.
2018)1

n ¼ 6 M ¼ 25.2 Positive VP 50 to
500 lx

200 to
500 cd∕m2

Mostly
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6 Discussion

This study is based on a three-dimensional ergonomics study, which investigates the effects of
different display luminance under different ambient illuminance on the user’s comprehensive
outcomes. The research results are divided into two parts. The first part is a separate analysis
of the effects of the 3D. This leads us to recognize the degree and significance of the impact of
the illuminance and luminance on a specific index. The second part is the integration of the 3D.
On this basis, the TS model is constructed for each ambient illuminance, and a wide-range
dimming model is then obtained. The discussion of these two parts is presented separately in
the following subsections.

6.1 Effects of Ambient Illuminance and Display Luminance on each
Dimension

For the VP part, the results of this study show that both the display luminance and ambient
illuminance have significant impacts on VP, even when the contrast is the same. The relationship
between the logarithm of the ambient illuminance and the VP is parabolic. This phenomenon
may be owing to the change in the contrast threshold of the human eye with ambient lighting
intensity. This implies that although the contrast of the display remains constant, the VP declines
when the ambient illuminance increases and the threshold increment of the contrast decreases
because the contrast threshold also increases. For a different luminance under the same illumi-
nance, the VP exhibits an increase with an increase in luminance. Additionally, it reveals the
response compression in the high-illuminance area. In previous studies, only the ambient
illumination or display luminance was used to find the optimal solution under particular
conditions.4,5 For example, Shen et al.4 showed that search speed on an electronic paper display
increased with an increase in illumination from 300 lx (45.6 s), 700 lx (44.18 s) to 1500 lx
(43.24 s). Lin5 showed that illumination intensity significantly affects character identification
performance, which was better at 500 lx and 800 lx than 200 lx. Lin and Huang26 study proved
that the normal white ambient lighting condition with 500 lx was the optimal condition accom-
panied by a display with a primary background. However, these optimal results were obtained
under specific illuminance or luminance conditions. In a real application environment, the envi-
ronmental illuminance is often changed within a range; thus, these results cannot fully support
the dimming of the display. Lin and Huang14 study in 2006 attempted to solve this problem.
The variable was set as the combination of screen luminance and ambient illumination, display

Fig. 13 Validation of the proposed model by earlier studies.1,2,14,16,21
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luminance ranged from 3.1 to 200.0 cd∕m2, and the ambient illumination from 200 to 800 lx.
The study indicated that character identification under relatively high ambient illumination is
more affected by the background luminance of the screen than by the contrast ratio or contrast
sensitivity. In contrast, the parameter range of the present study is broader (the display luminance
and ambient illumination range from 1 to 1000 cd∕m2 and 1 to 2700 lx, respectively), and the
parameters are set equidistantly in logarithmic coordinates according to the human body’s per-
ception characteristics of physical quantities. Our study shows the consistent conclusion that the
readability of negative displays is affected by the display luminance when the contrast remains
constant and obtains optimal display luminance, which can induce the best VP under different
ambient illumination.

For the VC part, the present study identifies that the ambient illuminance and display lumi-
nance reveal interaction effects on VC. Wang et al.25 collected the subjective comfort evaluation
of subjects observing three-dimensional pictures. They indicated that the “highest luminance” of
47.3 cd∕m2 performed better than the low luminance (0.38 cd∕m2) for ambient illuminance
values of both 55 lx and 300 lx. Based on the luminance level in their study, they inferred that
a brighter display luminance creates a more comfortable feeling for viewers. However, this con-
clusion is one-sided because they did not set a high range for the display luminance; thus, the
negative effect of excessively bright luminance was not identified. Huang and Menozzi49 showed
that discomfort glare impairs peripheral VP in the attending stimulus in a virtual reality envi-
ronment. When the display luminance is too high, it becomes a glare light source, which affects
the comfort of the visual environment. The discomfort caused by the low luminance of the dis-
play is primarily owing to the anxiety over not being able to find a target quickly.50 Na and Suk16

showed that people preferred a smartphone screen at 40 cd∕m2 with an ambient illuminance
below 1 lx. This is consistent with the optimal area in Fig. 11. However, 55 cd∕m2 is the optimal
value when compared with the recommended dimming curve in this study, and the difference
may be caused by the experimental design and data analysis. They did not set an intermediate
value between 40 and 70 cd∕m2, and concluded by directly using the relative optimal luminance
among these values. In addition, Lin et al.51 investigated the impact of overall display luminance
on VC in long-distance (5 m) observation. The results showed that the relationship between the
comfort rating and luminance is parabolic. This is very similar to the relationship identified in
this study. The difference is that this study employs a third-degree polynomial to fit the lumi-
nance and VC because the comfort rating declines faster when the luminance is higher than the
optimal value. This suggests that an excessively bright display can cause the glare phenomenon
to affect VC. In general, this study explores the optimal combination of display luminance and
ambient illuminance on a larger scale, and forms a quantitative VC model on this basis.

For the VF part, this experiment indicates that the display luminance primarily affects VF.
Lee and Whang6 showed that VF increased slowly with an increase in the display luminance,
particularly when the display luminance is low. However, at a high luminance level, for which
the luminance of still images was higher than 400 cd∕m2, the viewer felt intense VF. However,
Chang et al.52 indicated that the display medium and ambient illuminance had no significant
effects on participants’ subjective VF. These differences may have occurred because the displays
employed in the experiments were all electronic paper displays, which are not self-luminous
devices.

6.2 Wide-Range Dimming Model based on Three Dimensions

According to the results of each dimension, it can be observed that the optimal conditions for the
3D are varied. For example, high display luminance can contribute to VP; however, it simulta-
neously causes severe VF and low VC. This regular can be explained by the Pearson correlation
analysis results of the data in this study, which shows that a positive correlation between VP and
VC with r ¼ 0.351 (p < 0.01), a negative correlation between VP and VF with r ¼ −0.188
(p < 0.01), and a negative correlation between VC and VF with r ¼ −0.551 (p < 0.01).
Although the results show significant meaning (p < 0.01), it is not a high correlation degree;
that means exploring the optimal combination is a complex optimization problem and all the 3D,
including VP, comfort levels, and VF, should be considered for the dimming model.
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In this study, sub-models of each dimension are constructed to clarify their characteristics.
Moreover, a comprehensive optimal display dimming model is built in the illuminance-
luminance dimension by calculating the weight of each dimension in the TS. This study provides
a basis for solving the problem of complex light environment matching.

However, this study is based on the negative polarity display, and the applicability of the
positive polarity display needs to be further investigated. The parameter range can also be
expanded in future studies. In addition, the participants in this study are in a small age range
from 22 to 26. Due to the ocular structural changes by age,53 a larger age range inclusion criterion
should be considered in future studies.

7 Conclusions

This study proposes a dimming model integrating VP, VC, and VF to set proper screen lumi-
nance and ambient illumination. The effects of different combinations of ambient illumination
and display luminance on human performance, comfort, and VF were investigated. Moreover,
a sub-model of each dimension is constructed to clarify their features. Based on the data analysis,
the following conclusions can be drawn:

• Both the ambient illuminance and the display luminance can significantly impact VP, even
when the contrast remains constant.

• The ambient illuminance and display luminance exhibit interaction effects on VC and VF.
Thus, the display luminance should vary with the ambient illumination.

• Awide range (1 to 2700 lx) dimming model based on 3D is built, which provides a theo-
retical foundation to set the dimming curve of the display devices.
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