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Abstract. Analytical expressions for the plasmon resonance frequencies of prolate and
oblate spheroids and their dependence on ellipticity have been derived, and approximate
bounds on these frequencies established. These formulas may be useful in tuning the
plasmon resonance within certain limits. With increasing aspect ratio, the prolate
spheroid resonance is red shifted relative to a sphere with no lower limit under the
assumptions of a Drude dispersion model. On the other hand, the oblate resonances
are blue shifted as the spheroid becomes increasingly flat, but up to a limit.
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1 INTRODUCTION
There has been a growing interest in using plasmonics-related properties of metallic
nanostructures for a wide variety of applications. Our laboratory has extensively inves-
tigated surface-enhanced Raman scattering (SERS) in the development of plasmonics-
active SERS substrates for chemical sensing and biosensing [1-3]. Plasmonics refers to
the study of enhanced electromagnetic properties of metallic nanostructures. When a
metallic nanostructured surface is irradiated by an incident electromagnetic field (e.g.,
laser light), conduction electrons are displaced into frequency oscillation equal to the
incident light. These oscillating electrons, called “surface plasmons,” produce a sec-
ondary electric field, which adds to the incident field. When these oscillating electrons
become spatially confined, as is the case for isolated metallic nanospheres or otherwise
roughened metallic surfaces (nanostructures), there is a characteristic frequency (the
plasmon resonance) at which there is a resonant response of the collective oscillations
to the incident field. This condition yields intense localized fields which can interact
with molecules in contact with or near the metal surface. Plasmon resonance frequencies
of metallic spheroids and spheroidal nanoshells have been previously investigated [4-5].

It is well known that the plasmon resonance frequency of a spheroid can be shifted
by varying its shape. For example, by increasing the aspect ratio of a prolate spheroid,
the plasmon resonance is red shifted. On the other hand, the resonance frequency of an
oblate spheroid is blue shifted relative to that of a sphere, but up to a limit. Although
this fundamental behavior has been demonstrated by other authors, we have not seen
the bounds on the plasmon resonance frequencies given explicitly for the prolate and
oblate cases as a function of ellipticity. In this work we derive analytical expressions for
the plasmon resonance frequencies of prolate and oblate spheroids and their dependence
on ellipticity and establish approximate bounds on these frequencies. Our analysis is
carried out using the simplifying assumptions of the quasi-static approximation and a
Drude dispersion model for the dielectric constant. As a result, our results will only
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be qualitatively correct, but should nevertheless provide reasonable estimates of the
dependence of the resonances on the spheroid shape. We also assume that the dipolar
resonance dominates, which is generally accurate for particles much smaller than an
optical wavelength [6]. In calculating the resonances for various aspect ratios for both
prolate and oblate spheroids, we use the optical constants for the Drude model derived
by fitting the Drude parameters to the data of Johnson and Christy [7].

2 ANALYSIS USING A DRUDE DISPERSION MODEL
When light is incident on a metallic nanoparticle, the plasmon resonances occur at the
poles of the induced dipole moment. Suppose we assume an ellipsoidal particle with
polarizabilities, αx, αy and αz, along its principal axes. Letting (E0x, E0y, E0z) denote
the components of an incident electric field E0 along these axes, the dipole moment
induced in the particle is

p = αxE0xx̂ + αyE0yŷ + αzE0z ẑ, (1)

where x̂, ŷ and ẑ are unit vectors oriented along its principal axes. We first consider
a prolate spheroid with the z-axis directed along its symmetry axis. Denoting by a
and b the spheroid’s semi-major and semi-minor axes (with a > b) and εr its relative
permittivity, the polarizabililties αx, αy and αz are given by [8]:

αj =
V ε0(εr − 1)

1 + (εr − 1)Lj
, j = x, y, z, (2)

where V = 4πb2a/3 is the spheroid volume and Lx, Ly and Lz are the three spheroidal
depolarization factors, given by

Lz =
1 − e2

e2

[
1
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ln
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)
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]
(3)

Lx = Ly =
1
2
(1 − Lz) (4)

and e ≡ √
1 − (b/a)2 is the ellipticity of the prolate spheroid. When e → 0, the spheroid

becomes a sphere, Lx = Ly = Lz → 1/3 and αx = αy = αz.
For an oblate spheroid (a < b), the depolarization factors are [8]

Lz =
1 + f2

f2

[
1 − 1

f
tan−1 f

]
(5)

Lx = Ly =
1
2
(1 − Lz) (6)

where f ≡ √
(b/a)2 − 1. Note that f = b e/a, where e ≡ √

1 − (a/b)2 is the ellipticity
of the oblate spheroid. Again when e → 0, the spheroid becomes a sphere and Lx =
Ly = Lz → 1/3.

The frequency of the plasmon resonance occurs when the real part of the denominator
of Eq. (2) vanishes:

Re{1 + (εr − 1)Lj} = 0. (7)

To determine the frequencies of these resonances, we use the Drude free-electron model
for the frequency-dependence of the dielectric constant, given by
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εr(ω) = ε∞ − ω2
p

ω(ω + iγ)
, (8)

where ωp is the plasma frequency of the bulk material, γ is the width of the resonance
and ε∞ is the high-frequency limit of the dielectric constant.

We can compute the frequencies of the plasmon resonances for either prolate or
oblate spheroids by substituting Eq. (8) into Eq. (7) and solving for ω. This gives the
following expression for the plasmon resonance frequency of the spheroid:

ωres =

[
ω2

p

ε∞ − 1 + 1/Lj
− γ2

]1/2

. (9)

Typically, γ � ωp, and a reasonable approximation is obtained by neglecting the γ2

term:

ωres =
ωp√

ε∞ − 1 + 1/Lj

. (10)

Note that for the case of a sphere, Lj = 1/3 and ωres = ωp/
√

ε∞ + 2.
Now assume a longitudinally incident electric field (parallel to the symmetry axis

of the spheroid), in which case we set Lj = Lzin the above formulas. For the prolate
spheroid the bounds on e and Lz are 0 ≤ e < 1 and 0 < Lz ≤ 1/3. In the limit as the
aspect ratio becomes large, e → 1 and Lz → 0. For the oblate spheroid the bounds on
e and Lz are 0 ≤ e < 1 (or, equivalently, 0 ≤ f < ∞) and 1/3 ≤ Lz < 1, and in the
limit as the oblate spheroid becomes flat, e → 1 (or f → ∞) and Lz → 1. Thus, for the
prolate case, the bounds on the plasmon resonance frequency, ωres, may be written

ωp√
ε∞ − 1 + 1/Lz

≤ ωres ≤ ωp√
ε∞ + 2

, 0 < Lz ≤ 1/3, (11)

where the left-hand side can, in principle, go to zero as Lz → 0. For the oblate spheroid,
the bounds on the plasmon resonance frequency become

ωp√
ε∞ + 2

≤ ωres <
ωp√
ε∞

. (12)

Thus, from Eq. (11) we see that, as the aspect ratio of the prolate spheroid becomes
large (Lz → 0), the resonance frequency is red shifted without bound. From Eq. (12),
as the oblate spheroid becomes increasingly flat, the resonance frequency is blue shifted,
but up to the limit given by the right-hand side of Eq. (12).

Oubre and Nordlander [9] give values for the constants ωp and ε∞ for silver and gold
derived by fitting the Drude model (8) to the data of Johnson and Christy [7]. They
obtain for silver, ε∞ = 5.0 and h̄ωp = 9.5 eV, and for gold, ε∞ = 9.5 and h̄ωp = 8.95
eV. Using these values in Eq. (11), the model predicts bounds on the resonant frequency
for a prolate spheroid which, after converting to wavelength, are (in nm):

345 ≤ λres < ∞ (silver)
470 ≤ λres < ∞ (gold)

and the bounds on the oblate resonances are:

292 ≤ λres ≤ 345 (silver)
427 ≤ λres ≤ 470 (gold)

Journal of Nanophotonics, Vol. 2, 029501 (2008)                                                                                                                                    Page 3



In the first two inequalities the infinity indicates that the Drude model predicts no
upper bound on the wavelength in the limit as the aspect ratio of the prolate spheroid
increases without bound. However, eventually other mechanisms will take effect and the
Drude model will break down. For example, the Drude model will require modification
when the mean-free path of the electrons exceeds the thickness of the spheroid.

For the transverse mode, Eq. (4) implies the following bounds on Lx for the prolate
spheroid: 1/3 ≤ Lx < 1/2, where Lx = 1/3 again corresponds to the limit of a sphere.
Also, as Lx → 1/2, the prolate aspect ratio increases without bound. From Eq. (10)
these limits lead to the following bounds on the frequency for the transverse mode of
the prolate spheroid:

ωp√
ε∞ + 2

≤ ωres <
ωp√

ε∞ + 1
. (13)

These bounds are narrower than and bracketed by the bounds of the longitudinal
mode for the oblate spheroid, given by Eq. (12). Finally, for the transverse mode of the
oblate spheroid, we have 0 ≤ Lx < 1/3, where, as Lx → 0, the spheroid becomes increas-
ingly flat. This result leads to frequency bounds identical to those for the longitudinal
mode of the prolate spheroid.

3 ANALYSIS USING TABULATED DISPERSION DATA
The above results were computed using the expression Eq. (8) for the dielectric constant
using fitted values for ω∞, ωp and γ. An alternative approach is to search the tabulated
data for the frequency that satisfies the relation Eq. (7) for a given parameter Lj , which
is defined by the spheroid shape. That is, we search for the zeros of the function

F (ω) = 1 + (Re{εr(ω)} − 1)Lj = 0, (14)

given data for the real part of the dielectric constant, Re{εr(ω)}. For this purpose, we
use Johnson and Christy’s data for Re{εr(ω)}, which is plotted in Figure 1.

Figure 2 shows plots of F (ω) for a prolate spheroid of aspect ratio a/b = 5 (Lz =
0.056) for silver and gold. The plasmon resonance frequencies for the two metals are
given by the zero crossing of the graphs, which are h̄ωAg = 2.04 eV and h̄ωAu = 1.76 eV.
These values compare well with those predicted by formula (10), which are h̄ωAg = 2.029
eV and h̄ωAu = 1.741 eV. Figure 3 is a plot of F (ω) for an oblate spheroid of aspect ratio
b/a = 5 (Lz = 0.751) for silver and gold. For silver, we obtain a zero crossing at 3.78
eV, as compared to 4.11 eV computed using Eq. (10). However, for the case of gold, the
graph does not cross zero, which evidently indicates that a gold oblate spheroid of this
aspect ratio will fail to have a plasmon resonance. Nevertheless, formula (10) predicts
such a resonance at h̄ωAg = 2.854 eV, since the Drude model generates a smooth curve
that crosses the zero axis.

Finally, as evident from Eq. (9), the effect of a nonzero γ in Eq. (8) will result in
a small red-shift in all of the above values. For very small particles, a correction to γ
derived from the bulk material is often included to account for electron scattering from
the particle boundaries, but this correction is expected to have a relatively minor effect
on the location of the resonance frequencies.
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Fig. 1. Real part of dielectric constant (from [7]).
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Fig. 2. Plot of the function F (ω) given by Eq. (14) for a prolate spheroid.
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Fig. 3. Plot of the function F (ω) given by Eq. (14) for an oblate spheroid.
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