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Abstract. Fluorescence lifetime imaging �FLIM� is very demanding
from a technical and computational perspective, and the output is
usually a compromise between acquisition/processing time and data
accuracy and precision. We present a new approach to acquisition,
analysis, and reconstruction of microscopic FLIM images by employ-
ing a digital micromirror device �DMD� as a spatial illuminator. In the
first step, the whole field fluorescence image is collected by a color
charge-coupled device �CCD� camera. Further qualitative spectral
analysis and sample segmentation are performed to spatially distin-
guish between spectrally different regions on the sample. Next, the
fluorescence of the sample is excited segment by segment, and fluo-
rescence lifetimes are acquired with a photon counting technique.
FLIM image reconstruction is performed by either raster scanning the
sample or by directly accessing specific regions of interest. The
unique features of the DMD illuminator allow the rapid on-line mea-
surement of global good initial parameters �GIP�, which are supplied
to the first iteration of the fitting algorithm. As a consequence, a de-
crease of the computation time required to obtain a satisfactory
quality-of-fit is achieved without compromising the accuracy and pre-
cision of the lifetime measurements. © 2008 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.2950308�
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Introduction

unctional fluorescence microscopy imaging spatially local-
zes and distinguishes between different flurophores or differ-
nt local environments that the fluorophore is sensitive to. In
hat respect, fluorescence lifetime imaging �FLIM�1,2 and hy-
erspectral imaging �HSI� are important alternatives/
xtensions to steady-state fluorescence imaging �FI�. Al-
hough straightforward and easy to implement, FI is usually
ather approximate for quantitative measurements. To apply
uorescence intensity for quantitative imaging, one needs to
arefully normalize the results, since the absolute fluorescence
ntensity depends on many factors such as intensity of excita-
ion, concentration of the fluorophore, light scattering, and
ariations in local environment. Moreover, fluorescence-
ntensity-based imaging is hampered by a number of common
xperimental artifacts coming, for example, from coexistence
f two or more dyes with overlapping absorption/fluorescence
pectra. Ratiometric fluorescence spectroscopy can be helpful
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332-78-9038; E-mail: Artur.Bednarkiewicz@jrc.it.
ournal of Biomedical Optics 041316-
when the probe’s fluorescence spectrum at two or three spec-
tral bands behaves in a predictable way3 according to the
strength of the local environment �e.g., �Ca2+� or pH�. How-
ever, the number of ratiometric probes available is limited.
Therefore, quantitative imaging basically requires measuring
and further analysis of fluorescence spectra and/or fluores-
cence lifetimes for the entire sample. Thanks to FLIM and
HSI imaging techniques, quantitative biomolecular interaction
directly studies living cells, and examination of both the struc-
ture and function of living cells and tissues is possible. Fluo-
rescence lifetime imaging has been applied to differentiate
between histological structures in normal and neoplastic tis-
sue; to probe intracellular pH,4 calcium,5 and oxygen6 concen-
trations; and to map protein interaction with fluorescence en-
ergy transfer �FRET�. The reasonably high spectral or
temporal resolution required for quantitative studies �e.g.,
monitoring of fluorophore concentration, FRET distance,
FRET efficiency etc.� raises new problems of speed and ac-
curacy of experimental data processing and analysis,7,8 espe-
cially when a large number of spatial locations are to be ex-
amined. The bottleneck effect in hyperspectral imaging or

1083-3668/2008/13�4�/041316/13/$25.00 © 2008 SPIE
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uorescence lifetime imaging is recording and analysis time,
nd to keep that time reasonably short, field of view or spatial
esolution as well as the acquisition time per pixel is mini-
ized, which results in relatively low signal-to-noise ratio

SNR� and in consequence to low accuracy. Technical aspects
f FLIM techniques and instrumentation can be found in Refs.
and 10. We limit our further discussion to time domain
ethods only.
In this work, we present a new approach to acquisition,

nalysis, and reconstruction of microscopic FLIM images that
ombines a digital micromirror device �DMD�-based random
ccess spatial illuminator and a traditional time-correlated
ingle photon counting �TCSPC� approach. The application of
programmable array microscope �PAM� with a DMD pat-

ern projector has been already demonstrated for frequency
omain optically sectioned FLIM imaging,11 optical section-
ng in fluorescence microscopy,12,13 spatially selective photo-
nitialization of chemical reactions,14 fiberoptic confocal

icroendoscopy,15 and confocal fluorescence imaging
icroscope.16,17 Recently, we have demonstrated a DMD-

ased time domain FLIM and HSI imaging.18 We also extend
he work presented in Ref. 19 with a detailed description and
iscussion concerning global FLIM algorithms and advan-
ages of our approach in that respect.

Global Analysis
he analysis of a large collection of fluorescence decays is

equired to reconstruct a FLIM image in a reliable, accurate,
nd fast way. Considerable effort has been devoted to the
evelopment of mathematical techniques to analyze experi-
ental decays for FLIM.20–22 A variety of rapid lifetime de-

ermination algorithms have already been developed for fast
nd reliable fluorescence lifetime estimation based on a lim-
ted amount of datapoints. These include variable multiple
ime gates23 as well as overlapping gates24 for single and two
xponential decays. Due to physical and technical limitations,
hese methods are only able to approach actual fluorescence
ifetime values with certain accuracy and in certain experi-

ental conditions.
In our studies, we have applied the well-recognized TC-

PC technique for fluorescence decay recording. Unfortu-
ately, the TCSPC-based FLIM imaging suffers from low
peed of image acquisition and data analysis. A limited tem-
oral resolution of photon counting board electronics and a
imited response time of the photodetectors are observed as a
onfaithful �broader� response to a very short excitation light
ulse. The total effect is described by the instrument response
unction �IRF� that should then be accounted for during the
ata analysis. The experimental dataset is therefore a convo-
ution of a fluorescence decay curve with the IRF curve, but
o exact analytical method exists that allows deconvolving
uorescence decay only.

To speed up the construction of a FLIM image, either the
umber of raster scanning points can be limited �leading to a
eduction in the spatial resolution or field of view�, or faster
but approximate� algorithms can be employed. However, to
cquire enough photons for reliable analysis, and due to the
pecificity of the photon counting technique and biophysical
imits, the acquisition time per pixel cannot be decreased be-
ow a certain threshold.
ournal of Biomedical Optics 041316-
Another interesting FLIM data analysis approach is based
on global analysis �GA�.25,26 Basically, by decreasing the
number of fitted parameters, GA methods reduce the degrees
of freedom of the fitting algorithms to increase accuracy and
decrease the convergence time. Two global analysis methods
for a double exponential model exist.27 In spatially time in-
variant fit �TIF�, fluorescence decay histograms are summed
over all available pixels �some other methods exist like quad-
rant segmentation, see Table 1� to extract global short and
long decay components. The established decay components
are kept invariant over all the spatial locations, while the ratio
between their amplitudes �fraction parameter� is optimized in-
dependently for all the pixels to reach the best convergence
between the experimental dataset and a theoretical model. It
is, however, not possible to supply good initial fitting param-
eters �GIPs� for the fraction parameter, since the TIF approach
averages information coming from all the pixels. In another
approach, called global fitting �GF�, initial intensity and frac-
tion components are allowed to vary independently over all
spatial locations. There exists, however, only one �variable
but global� set of short and long decay components that is
adjusted and shared for all the pixels simultaneously. Due to
the large-scale problem to be solved, GF is much slower than
pixel-by-pixel fitting. The data analysis accuracy, understood
as the smallest discrepancy between the experimental data and
the model, gains with application of GA, as was demonstrated
by Verveer, Squire, and Bastiaens27 for frequency domain
FLIM and double exponential models. With the spatially in-
variant decays assumption, poor SNR decay curves could be
accurately modeled with the double-exponential model, while
pixel-by-pixel raster scanning allowed the reconstruction of
only single decay. On the other hand, the applicability of the
spatially invariant decays assumption should be validated
when any of these methods is to be applied to measurements
on biological systems.

Unlike traditional GA approaches, the method presented
here engages sophisticated preprocessing to gain not a single
but a set of GIPs that correspond to different regions on the
sample. In that respect, GA algorithms are limited and local-
ized to a defined region of interest. A similar idea was pro-
posed by Pelet et al.,25 where the initial estimates were calcu-
lated off-line. The GIPs were calculated based on summed
decay histograms that corresponded to manually selected mor-
phological features of the sample. The decision was taken
based on sample observation in white light. The application of
sample texture25,28 or rapidly estimated fluorescence lifetimes
was also suggested to be useful for sample segmentation and
estimation of the GIPs. While being more time efficient and
biologically relevant in comparison to traditional global algo-
rithms, the approach assumes experience of the operator or
prior knowledge of the sample. Manual image segmentation is
heuristic and susceptible to interoperator variation in recog-
nizing and outlining respective morphological structures.

In our case, the preprocessing is semiautomatic, which
makes it potentially useful in automated microscopy for high-
content imaging. Basically, the preprocessing helps to spa-
tially and qualitatively distinguish between variations in in-
herent properties of the sample to subsequently gain prior
knowledge about exact spectral �HSI� or temporal �FLIM�
properties of the fluorophores over all spatial locations. This
is of great interest for FLIM, since it allows the extraction of
July/August 2008 � Vol. 13�4�2
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Table 1 Characterization of initial guess schemes in terms of approach, advantages, and disadvantages.

nitial guess
approach� Advantages Disadvantages Description

ull guess
single
ecay�

Slow All coefficients are randomly chosen
within a physically meaningful range

mage
verage
global�

Fast supplying
of GIP

• Weak decays
with “exotic” decay
constants will be lost
and analysis will not
gain using GIP.
• Controversial
from multiexponent
decay analysis
perspective.

All the decay curves within the FLIM
image are summed. The decay
constants obtained from the averaged
decay are then supplied as GIP for the
following fitting performed for every
decay within the FLIM image. Both
time invariant fit and global fitting
can be applied for further analysis of
raster-scanned data.

uadrant
verage
global�

• Off-line
analysis.

As in the case of image average
approach, except for that a set of four
GIPs are obtained by summing the
decay histograms in each quadrant of
the image. Both time invariant fit and
global fitting can be applied for further
analysis of raster-scanned data.

ivision
global�

An extension of quadrant average
method. In the first step, decay curves
from 16 squares are analyzed separately
to obtain GIPs. Next, each of the squares
is divided into another four squares and
analyzed again with GIP from the
previous step. The procedure is repeated
until full resolution of the FLIM image
is obtained.

apid
ifetime
etermination
RLD� �single
ecay�

Fast supplying
of GIP

• Controversial
from multiexponent
decay analysis
perspective.
• Limited
accuracy.
• On/off-line
analysis.

Before fitting step, every decay curve
within the FLIM image is analyzed
independently with the RLD algorithm to
obtain GIP individually for every pixel.

apid
ifetime
etermination
global�

Fast supplying
of GIP

• Controversial
from multiexponent
decay analysis
perspective.
• RLD may
increase contrast for
better segmentation
used in following
segmented global
analysis.
• Off-line
analysis.

Modification of RLD algorithm where
GIPs are averaged based on
segmentation of approximate FLIM
image obtained with the RLD algorithm.
The approximate FLIM image
segmentation provides higher contrast
opposite of fluorescence intensity or
white light anatomy image.

hite light
mage
egmentation
local�

Fast supplying
of GIP

• Does take into
account only
morphology of the
sample.
• Manual
segmentation
algorithm is subjective
and will not
distinguish between
different fluorophores.
• Off-line
analysis.

White light image of the sample is
segmented based on a grayscale level
to group pixels of similar intensity or
appearance. The experimental decay
histograms measured for the pixels
belonging to the respective segments are
summed. Limited number of decay
curves corresponding to number of
segments are obtained and fitted with a
model to extract decay coefficients,
which then serve as GIPs for further
fitting performed for every decay in the
FLIM image.
ournal of Biomedical Optics July/August 2008 � Vol. 13�4�041316-3
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IP sets, each set being associated with a particular region on
he sample. This approach essentially improves the accuracy
nd speed of FLIM data analysis and image construction.

Materials and Methods
.1 Optical Setup
he hardware setup consisted of basically illumination and

ight collection paths as presented in Fig. 1. The light source
as a pulsed laser diode LD �Pmax=1 mW, tFWHM=50 ps,
DH 405 nm� working at a 40-MHz repetition rate with a
DL 800-B pulsed laser diode driver from PicoQuant GmbH
Berlin, Germany�. The light from the laser diode was di-

Table 1

nitial guess
approach� Advantages Disadva

luorescence
olor and
ntensity
mage
ased
egmented
LIM �local�

• Fast
supplying of
GIP.
• No or
little confusion
between
different
fluorophores.
• For best
acquisition and
highest SNR,
acquisition time
can be
individually
adjusted for
regions or
pixels, based on
its fluorescence
intensity.

• Not s
for high
photode
fluoroph
• Might
problem
environm
depend
fluoroph

ig. 1 Schematic representation of the optical setup. The computer c
ends the masks to the DMD projector, and collects the signal from t
ournal of Biomedical Optics 041316-
verged by a 3� anamorphic prism �Melles Griot, Bensheim,
Germany� and Galileo beam expander to homogenously illu-
minate the digital micromirror device surface �Discovery™
1100 controller board with 0.7 XGA 1024�768 mirrors UV
enhanced DMD chip from Texas Instruments �Dallas, Texas��,
which was used as a reflection-type spatial illuminator. The
device was controlled through a fast USB 2.0 port and cus-
tomized LabVIEW �National Instruments, Austin, Texas� li-
brary �Tyrex Services Group Limited, Austin, Texas�.

The DMD surface was placed in the location of the field
iris in the back illumination port of the Olympus IX71 �Ham-
burg, Germany� microscope. The light reflected by the micro-

tinued.�

Description

le

r

Steady-state color fluorescence image is
segmented based on the hue/intensity
division to group pixels of similar
spectral properties �color� together.
Single HB/SB decay per segment is
acquired and analyzed to find GIPs.
Global methods like time invariant fit
and global fitting can be applied off-line
for further analysis of raster-scanned
or wide-field time-gated data.
Pixel-by-pixel data fitting with reliable
GIP can be performed on-line.

fluorescence image acquisition from the CCD camera, prepares and
ctor.
�Con

ntages

uitable
ly
gradab
ores.
be
atic fo
ent

ent
ores.
ontrols
he dete
July/August 2008 � Vol. 13�4�4
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irrors �i.e., the DMD image� was projected through the con-
itioning optics, back excitation port of the microscope, filter
ube �FC� �U-MWBV2�, and 20� microscope objective,
nto the flat surface of the sample. The wide-field fluores-
ence intensity was transmitted through the dichroic filter and
aptured through the side port and 10� microscope objective
irectly to a single photodetector D. A photomultiplier tube
R6060-02 from Hamamatsu Photonics, Milano, Italy� with
igh voltage power supply �PS325 Standford Research Sys-
ems, Milano, Italy� was used as a photon counter. Addition-
lly, a high-speed preamplifier module �PAM 102-T from Pi-
oQuant� was used as an amplifier and inverter to fit the
equirements of the photon counting PCI board �TimeHarp
00 Board from PicoQuant GmbH, Berlin, Germany�. A color
harge-coupled device �CCD� camera �The ImagingSource
FK 41BF02, Bremen, Germany� placed in the image plane
f the second side-port of our microscope captured fluores-
ence images. The 32-bit RGB color mode with 1280

960 pixel resolution was used in all experiments.
A PC controlled the DMD and TimeHarp 200 card with

ctiveX LabVIEW components supplied by hardware pro-
ucers. Custom written software �LabVIEW 7.0 platform�
erformed system calibration, fluorescence image acquisition,
nalysis and segmentation, iterative scanning with on-line
ata acquisition, and on-line data analysis and image recon-
truction �described in Sec. 3.4�. Raster scanning was per-
ormed by sequentially switching a single pixel �or a rectan-
ular bin of pixels� from the OFF into the ON state. In the ON
tate, a single mirror or a selected group of micromirrors was
ilted to reflect the excitation light through the optics and filter
ube to the sample. The excitation light reflected from all
ther micromirrors �in the OFF state� was dumped. During
pot illumination of the sample, the fluorescence lifetime was
ecorded and processed to reconstruct FLIM images on-line.
ext, the mirror�s� was switched off to move to the next seg-
ent of the image. Since the acquired fluorescence signal was

orrelated with coordinates of the respective DMD micromir-
or or group of micromirrors, image reconstruction could be
erformed by false coloring of the respective FLIM image
ixels using the on-line processed fluorescence information.

.2 Samples
he phantom sample was prepared using two types of quan-

um dots. Adirondack Green �CdSe, �emi�520�10 nm� and
ops Yellow �CdSe, �emi=560�10 nm� from Evident Tech-
ologies �New York, USA� were mixed with PVA alcohol
1:1�. Drops of each mixture were placed on the glass micro-
cope slide in close proximity and allowed to dry. As a bio-
ogical sample, human umbilical cord blood cells—neural
tem cells stained with Hoechst dye—was used.

.3 Data Simulation and Processing
hree algorithms were implemented to perform experimental
ecay fitting to verify their precision, accuracy, and time effi-
iency. These were: 1. a “rapid double” exponential decay
lgorithm with overlapping time windows,24 2. a double decay
evenberg-Marquard least-square fitting algorithm, and 3. a
ouble IRF Levenberg-Marquard least-square fitting algo-
ithm, in which the IRF was taken into account. For the quan-
ournal of Biomedical Optics 041316-
titative comparison, artificial datasets were generated using a
double exponential model

I�t� = I0 · �A · exp�− t/�1� + �1 − A�

· exp�− t/�2�� � IRF�t,t0� + P�IBK� . �1�

Here I0 is the total intensity �photon counts� at the moment t0
when the excitation pulse intensity is the highest, and A is a
fraction parameter that informs about the ratio between short
�1 and long �2 decay components. A set of 200 datapoints
with 0.039-ns resolution was used to simulate a single experi-
mental dataset. The IRF�t , t0� was assumed to be a Gaussian-
shaped peak with a maximum at time t0 and with a full-width
at half maximum equal to 0.25 ns. Noise with a Poisson dis-
tribution of amplitude Ibk was also added.

For the simulation studies, the accuracy of the fitted pa-
rameters estimation was measured as �X� /X, where �X� and X
�X=A, �1 and �2� represent measured averaged and expected
values, respectively. The quality of data fitting performed for
the experiments on the samples was measured by normalized
�2 /N goodness of fit, defined as the sum of squared residuals
normalized with respect to experimental value and number of
time points �N�. The normalization factor 1 / �N+ p� typically
accounts for a number of fitting parameters p. However, dif-
ferent fitting methods were compared with the rapid algo-
rithm, and therefore the 1 /N normalization factor was used.
The �2 is not the best error estimator, since it assumes a
Gaussian error distribution. This assumption is not valid, es-
pecially for the low photon-count rate case, and the resulting
decay parameters become intensity dependent and are gener-
ally underestimated. The problems arising from the low pho-
ton counts can be resolved by applying a maximum-likelihood
estimator �MLE� with Poisson statistics.29 However, since the
input decay histogram is the same for all the fitting algo-
rithms, for simplicity we applied the �2 /N goodness of fit
measure.

3.4 Data Acquisition and Processing Algorithm
In our approach, we preceded raster-scanned FLIM �Sec.
3.4.3� with whole field fluorescence image acquisition and
analysis �Sec. 3.4.1�, to semiautomatically discriminate be-
tween different structural or functional sample regions. The
goal of the method was to supply fluorescence decay fitting
algorithms with a set of GIPs �Sec. 3.4.2� to increase the
accuracy and speed of FLIM image reconstruction.

3.4.1 Fluorescence-based image segmentation
In the first step of the algorithm presented here, whole field
fluorescence image segmentation has been implemented. The
system calibration was achieved by projecting a rectangle,
defined by a pair of DMD coordinates
�X1

DMD,Y1
DMD;X2

DMD,Y2
DMD�, onto a homogenously fluores-

cent calibration sample. Extracting the rectangle corners
�X1

F ,Y1
F ;X2

F ,Y2
F� from the fluorescence image acquired with a

camera allowed us to convert coordinates from the sample
plain to respective DMD mirror coordinates, and vice versa.
This step was necessary to control further data acquisition and
analysis.

With a calibrated 1000 lines / inch grid covered with a
fluorescent dye, we estimated to have 0.235 �m /pixel and
July/August 2008 � Vol. 13�4�5



0
t
a
i
e
c

i
a
c
m
fl
t
a
i
f
r
a
c
g
t
a
s
=
t
i

T
d
v

F
a
E
t

Bednarkiewicz and Whelan: Global analysis of microscopic fluorescence lifetime images…

J

.399 �m/mirror on the sample surface. A single mirror was
herefore represented by 1.7 pixels of the CCD camera. When
ll the DMD micromirrors were in the ON state, the total
llumination area was equal to 240�180 �m. The CCD cam-
ra field of view could acquire the pattern projected by only
entral 752�564 micromirrors of the DMD.

After the calibration step, a color wide field fluorescence
mage I�x ,y� �x=0. . .1024, y=0. . .768� of the sample was
cquired �see Fig. 2�a�� with a high-pass dichroic filter and a
olor camera. This was achieved by switching all the DMD
irrors to the ON position for the time required to record the
uorescence image. Since we intended to discriminate be-

ween different spectral features based on the color CCD im-
ge, the Hue-saturation-luminance �HSL� color space was of
nterest because the spectral information �hue� is separated
rom the intensity �luminance� plane. The hue histogram rep-
esents hue components available in the image �see Fig. 2�b��,
nd by subdividing the hue histogram into Nr number of
lasses Hr �r=1. . .Nr−1, H0=0, HNr=255, Hr�Hr+1� that
roup similar spectral features, spectral segments were ob-
ained. Within a single hue class, intensity segmentation could
lso be additionally performed, but here we focus on the hue
egmentation only. A reference map of the hue segments Sr
�S�x ,y�=r ;r=1. . .Nr	 was created, and every pixel within

he map was assigned to a defined hue class with the follow-
ng algorithm

for �r = 1;r � Nr;r = r + 1�

S�x,y� = 
 0 IH�x,y� � Hr � IH�x,y� 	 Hr−1

r* Hr−1 � IH�x,y� 	 Hr
� . �2�

he r is the index of successive hue range, and �Hr−1 ,Hr�
esignates edges of that range. The IH�x ,y� relates to the hue
alue at the �x ,y� position.

ig. 2 Schematic representation of segmentation algorithm used for g
nd, further segmentation of the hue histogram �b� Hr, binary masks
xperimental fluorescence decays Dr were sequentially collected for e
able Tr with decay model constants was created.
ournal of Biomedical Optics 041316-
Based on hue segments Sr and the calibration step, binary
masks Br �r=1. . .Nr� �see Fig. 2�c�� were also created �Br
= �S�x ,y�=r	, where r* in Eq. �2� takes value corresponding
to the ON state of the mirror� to control the pattern projected
by the DMD spatial illuminator. These masks allowed the
selective illumination of the sample corresponding to the dif-
ferent hue segments. Since the fluorescence of respective
spectrally similar regions within the sample segment origi-
nated from similar fluorophores, all the pixels within the same
segment could be provided with initial guess information be-
fore the detailed pixel-by-pixel analysis. As many segments as
necessary can be defined to extract and provide detailed
analysis with reliable GIP collection.

3.4.2 Estimation of good initial fitting parameters
In the second step of the algorithm �see Fig. 2�c��, the binary
masks �Br� were sequentially projected by the DMD illumi-
nator �see Fig. 2� onto the sample, and the excited fluores-
cence photons were simultaneously recorded with a single
photodetector and the TCSPC board from the whole field of
view. A hardware binning �HB� term may be used for that
acquisition mode as opposed to software binning �SB�, which
sums up individual poor SNR datasets coming from the pixels
contained within the Br masks. Both approaches are feasible,
but the HB offers improved SNR. The other advantages of HB
over SB are covered in Sec. 5.

By illuminating the sample segment by segment �Sr�, the
Nr decay histograms �Dr� were collected and analyzed with a
fit function in Fig. 2. In the case of double exponential decays,
the fraction parameter Ar and the short �1

r and long �2
r decay

constants were calculated and stored in table Tr= �Ar ,�1
r ,�2

r	
�r=1. . .Nr�. Therefore, the Sr segments and in consequence
every single pixel S�x ,y� in the FLIM image referred to the
respective set of global initial coefficients from the Tr table,
for more detailed fitting.

nalysis FLIM imaging. Based on color fluorescence image �a� I�x ,y�
ere created and successively �r=1,2,3� sent to the DMD projector.

attern projected on the sample. After analysis �Fit�Dr ,P��, a reference
lobal a
�c� Br w
very p
July/August 2008 � Vol. 13�4�6
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Furthermore, the set of GIPs allowed generating the model
ecay curves with the expression

Im
r �t� = �Ar · exp�− t/�1

r� + �1 − Ar� · exp�− t/�2
r�� � IRF�t,t0� .

�3�

he model decay curves were additionally stored in the refer-
nce table for every segment defined in this step �Fig. 2�c��.

The last, third step of the algorithm is schematically pre-
ented in Fig. 3. The preprocessing steps �Secs. 3.4.1 and
.4.2� may be followed by three different routes of data analy-
is and FLIM image reconstruction. In the first approach, the
ecay model parameters stored in the Tr table serve as GIPs
or further on-line �or off-line global� fitting and analysis of
he raster-scanned fluorescence lifetimes �Fig. 3�a�,
it�De ,TS�x,y�� step	. In the second route �Fig. 3�b�� called seg-
ented FLIM �SFLIM�, fitted parameters take over the GIP

alues from the reference table Tr directly to reconstruct
LIM image rapidly. This approach is described in more de-

ail later. The last route, briefly discussed later and presented
n Fig. 3�c�, is the off-line data analysis with global algo-
ithms �time invariant or global fitting� but is restricted to the
egments that were designed in the preprocessing step �Sec.
.4.1� and exploiting GIPs calculated off-line �Sec. 3.4.2� for
ach segment. The last route is described for the sake of clar-
ty but no global fitting was used in the work.

n-line raster-scanned data analysis. Switching the �x ,y�
MD mirror ON let us illuminate selected regions of the

ample and collect the corresponding fluorescence decay his-
ogram D �x ,y , t�. It has already been demonstrated that fit-

ig. 3 Schematic representation of the FLIM image reconstruction app
r �see Fig. 2�c�� by the value r=S�x ,y�. �a� The basic analysis approac

or further raster scanning and on-line data analysis performed for eve
here the FLIM image pixels F�x ,y� took over their values directly
lgorithms analysis was limited to collection of histograms correspon
e

ournal of Biomedical Optics 041316-
ting algorithms supplied with GIP converge to reliable solu-
tions faster than in the untrained �full-guess� case. Owing to
the preprocessing steps, for every experimental decay
De�x ,y , t�, the global set of GIPs �Ar ,�1

r , t2
r� had already been

determined before the raster-scanning begun. Based on the
GIPs, the IRF convolved decay datasets Im

S�x,y��t� were pre-
pared and stored in the reference table already in the prepro-
cessing stage.

The classical �GIP supported or untrained� fitting of raster-
scanned datasets could be preceded with optionally solving a
linear problem

De�x,y,t� = c�x,y,t� · Im
S�x,y��t� + Ibk�x,y,t� , �4�

where Ibk�x ,y , t� is the background noise level. Finding the
average value and standard deviation of c�x ,y , t� by solving

c�x,y� = �De�t� − Ibk�x,y,t�
Im

S�x,y��t� 
 , �5�

lets us quantify how well the model describes the experimen-
tal decay. The comparison is time efficient, since only a single
pass and simple mathematical operations are required. A nar-
row distribution of the c�x ,y , t� along the time scale t is a
good indicator whether the phenomenological parameters
�A ,�1 ,�2� should be taken directly from TS�x,y� table, need to
be fine tuned using the TS�x,y� table as GIP, or have to be
calculated from scratch. When the overlap between the model
and experimental decay was satisfactory, no further steps were
required and the decay coefficients sought were simply sub-
stituted with GIP values �A�x ,y�=TS�x,y�

A , �1�x ,y�=TS�x,y�
�1 ,

s. Every pixel in the reference map was related to the reference table
er scanned FLIM� treated �S�x,y� values from the reference table as GIP
l. The second data analysis method was �b� segmented FLIM imaging,
the reference table F�x ,y�=TS�x,y�. �c� In the third approach, global
segments.
roache
h �rast

ry pixe
from

ding to
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2�x ,y�=TS�x,y�
�2 �. Otherwise, the coefficients stored in Tr table

erved as GIP for further iterative convolution fitting with
educed number of iterations. The �A�x ,y� ,�1�x ,y� ,�2�x ,y�	
fit�Dt , �AS�x,y� ,�1S�x,y� ,�2S�x,y�	� fitting function �see Fig.
�b�� delivered the best decay model parameters by optimiz-
ng the initial set of coefficients TS�x,y�
�AS�x,y� ,�1S�x,y� ,�2S�x,y�	 to minimize

�2

N
�TS�x,y�� =

1

N
· �

t=1. . .N

�De − Fit�Dt,TS�x,y���2

De
, �6�

here De is the experimental decay histogram. The presented
pproach should be particularly advantageous when the IRF is
ncluded in the data analysis, which traditionally leads to ex-
remely time-consuming data analysis.

egmented fluorescence lifetime imaging. According to
he second possible analysis route of step 3, the global decay

odel parameters stored in the Tr table were treated as the
nal results by default, i.e., A�x ,y�=TS�x,y�

A , �1�x ,y�=TS�x,y�
�1 ,

2�x ,y�=TS�x,y�
�2 with neither linear approach nor further opti-

ization involved. Thus, solely based on fluorescence image
egmentation and hardware binned fluorescence lifetime ac-
uisition and analysis performed globally for all available
egments, the FLIM image was reconstructed rapidly.

lobal algorithms in fluorescence lifetime imaging. Ac-
ording to the third possible analysis route of the analysis step
epicted in Fig. 3�c�, the global decay model parameters

ig. 4 A comparison of the output of the three algorithms: �a� doub
iddle row� IRF function taken into account. �c� overlapping mod
istograms of A, �1, and �2 parameters are shown and compared w

urves.
ournal of Biomedical Optics 041316-
stored in the Tr table can be used as a set of GIPs for further
off-line global algorithm analysis. The global analysis term
used in the work has a broader meaning and relates to global
and segmented hardware-binned GIP calculation, as distinct
from global analysis methods only. Nevertheless, time invari-
ant fitting may potentially be applied in the raster-scanning
route either on- or off-line as presented in Figs. 3�a� and 3�c�.
Global fitting can only be applied off-line �Fig. 3�c��, when
the decay histograms for all the pixels are available. What is
the most important implication of the preprocessing step is
that the global algorithms may be restricted to, and supplied
with, a set of GIPs dedicated for respective sample segments
that correspond to actual functional and morphological fea-
tures.

4 Results
Figure 4 shows the distribution of double decay model coef-
ficients �A, �1, �2� obtained with the three algorithms used in
the presented study. Histograms of the respective parameters
were built based on the analysis of 200 decays generated with
Eq. �1�. The initial parameters �A=0.8, �1=0.5, �2=2.5 ns,
I0=200; Ibk=4� were kept constant during the simulation,
while the noise was regenerated for every iteration. The �
parameter and goodness of fit condition used in the
Lavenberg-Marquard algorithm30 were equal to 1e-6 and

�2 /N�0.025, respectively.

Figure 5 demonstrates how the hue-based segmentation of
a color fluorescence image �Fig. 5�a�� should be performed to
spectrally and spatially distinguish between regions contain-

nent fit with �double IRF, top row graphs� and �b� without �double,
d double exponent estimation �rapid double, bottom row graphs�.
fixed values A=0.8, �1=0.5, and �2=2.5 ns used to generate decay
le expo
e rapi

ith the
July/August 2008 � Vol. 13�4�8
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ng different fluorophores �Figs. 5�c� and 5�d��. In the first
tep, the hue histogram was divided into two ��0;78� and
79;155�� ranges marked with vertical lines in Fig. 5�b�. Next,
ccording to the algorithm presented in Sec. 3.4.1, pixels hav-
ng hue values within respective ranges were separated from
ach other to form binary masks �Figs. 5�c� and 5�d�, respec-
ively�. Within a single hue range, fluorescence intensity
ariation was also observed �false color maps in

ig. 5 Step-by-step explanation of the segmentation algorithm applie
orresponding hue histogram. Hue segments were manually selecte
epresents the hue scale and is a guide for the eye to compare with
79;155� ranges, respectively, are shown in �c� and �d�. False-colored
espective �c� and �d� binary masks applied to the fluorescence image

ig. 6 �a�, �b�, and �c� Binary masks and �d� through �g� demonstrate
�e�� dyes, respectively. Short decay components obtained by hardwa
ournal of Biomedical Optics 041316-
Figs. 5�e� and 5�f��, which let us subdivide the fluorescence
image �Fig. 5�a�� masked by hue segments �Figs. 5�c� and
5�d�� into hue-intensity segments, as presented in Fig. 6.

A SFLIM image is presented next to the steady-state fluo-
rescence image in Fig. 7 for comparison. The FLIM image
was superimposed on the fluorescence intensity image by sub-
stituting the hue component value of the color image with a
value of single exponent fluorescence decay coefficient that

phantom. Color fluorescence image of �a� the phantom and �b� the
are marked by vertical lines; color bar at the bottom of graph �b�
he binary masks corresponding to pixels owning hue in �0;78� and
rmalized fluorescence intensity distribution �e� and �f� correspond to

ence intensity segments defined for yellow �Fig. 5�f�� and green �Fig.
ing of fluorescence for respective masks are indicated.
d for a
d and
�a�. T

and no
.

fluoresc
re-binn
July/August 2008 � Vol. 13�4�9
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as normalized and scaled to represent a 3- to 4-ns time-
cale.

Figure 8 compares the segmented FLIM �top� and raster-
canned FLIM �bottom� images acquired using HUCBC—
eural stem cells stained with Hoechst dye. Only one hue
egion was used �hue= �104;181�� here, and additionally
even intensity components within that hue segment were de-
ned. A double-exponent model was used to fit the experi-
ental datasets, thus three false color images �A, �1, and �2�

re presented. For the raster-scanning FLIM image, only a
ubregion of the sample was studied to limit the scanning and
nalysis time. Opposite the visual comparison presented in
ig. 8, Fig. 9 quantitatively compares the short component
ecay between the SFLIM and raster-scanned FLIM images.
he segmentation algorithm has defined three “intensity” seg-
ents �the binary masks are presented in Figs. 9�b�–9�d�� that

over the whole area of interest. For these three segments
rojected on the sample one after the other, the fluorescence
ifetimes were measured and the double-exponential modeling

Fig. 7 A comparison of �a� the steady-state fluorescence im

ig. 8 A comparison of ��a�, �b�, and �c�� segmented FLIM and ��d�,
e�, and �f�� raster-scanned FLIM of the human umbilical cord blood
ells—neural stem cells stained with Hoechst dye. The double expo-
ent model was used for data analysis. Ratio between short and long
ecay component A, short decay �1, and long decay component �2
re presented.
ournal of Biomedical Optics 041316-1
provided us with �1 equal to 1.94, 1.95, and 2.08 ns for seg-
ments in 9�b�–9�d�, respectively. These discreet values are
compared with the distribution of short components of fluo-
rescence lifetimes �Fig. 9�e�� obtained for all the “pixels” in-
cluded in the area of interest during raster scanning.

5 Discussion
The main goal of GIP calculations is to provide a fitting al-
gorithm with reliable phenomenological parameters to reduce
the number of fitting iterations and improve FLIM imaging
throughput. However, the main drawback of the traditional
approaches �Table 1� is the lack of the correspondence be-
tween how the GIPs are acquired �e.g., in the quadrant aver-
age manner� and the actual morphology or photobiochemical
structure of the sample. Although segmentation based on a
white-light image has been presented in the context of a GA
approach,25 the implementation was effectively manual and
thus could be improved by an automated, less subjective treat-
ment of the bright field intensity. Nevertheless, it would seem
more appropriate to employ fluorescence-based image seg-
mentation for FLIM preprocessing rather than a white-light or
morphology approach. This is because a correspondence ex-
ists between fluorescence intensity �measured with, for ex-
ample, a color CCD camera� and the photophysical properties
of the fluorophores �measured as fluorescence spectrum or
fluorescence lifetimes�.

One disadvantage of using a fluorescence image for seg-
mentation is the fact that during wide-field imaging, the de-
tector gathers out-of-focus fluorescence, leading to fluores-
cence image blurring and as a consequence degrades the
quality of the segments. This could be avoided by using
raster-scanned datasets for segmentation, but at a significant
cost in terms of time. Another solution would be to use exci-
tation light sectioning for improving the spatial resolution of
fluorescence images, as already demonstrated in non-DMD31

and DMD12,13 based optical microscopy setups.
In the context of the work of Verveer, Squire, and

Bastiaens,27 it is important to improve the SNR to gain reli-
able GIPs for further analysis of poor SNR individual
datasets. Software binning accumulates both signal and noise
and requires dedicated steps to remove the background. Hard-
ware binning generally improves SNR by default and gives
better results than SB. More importantly, however, HB better
exploits the dynamic range of the detector and acquisition
board and significantly reduces the time required to establish

d �b� a segmented FLIM image obtained for the phantom.
age an
July/August 2008 � Vol. 13�4�0
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IPs. While HB with a DMD spatial illuminator requires only
ne measurement per segment and avoids signal collection
rom nonfluorescent sample regions, SB requires “blind” col-
ection of large datasets without knowledge of which data are
ctually useful. Therefore, in comparison to off-line data
nalysis, preprocessing by means of fluorescence image seg-
entation seems to be a significant improvement in terms of

peed and accuracy of high-content studies.
During segmented fluorescence lifetime acquisition and

IPs estimation, besides the decay constants, many other co-
fficients �e.g., fluorescence intensity, relative intensities of
he components, background, total photon counts, etc.� can be
xtracted and stored. Moreover, the model decay curve itself
an be generated and stored. Due to the spatial correspon-
ence between the steady-state fluorescence intensity with
henomenological parameters, individual adjustments to, for
xample, acquisition time can be performed for every pixel to
ptimize SNR or to improve the dynamic range of the photo-
etector. A similar approach, developed originally to reduce
hotobleaching of biological samples, was recently proposed
y Hoebe et al.32 and was realized by modifying a confocal
canning microscope with an acousto-optic modulator. The
hoton counts were continuously monitored and the exposure
ime was reduced in proportion to the fluorescence intensity
y actively reducing the excitation light intensity. In our adap-
ive approach, the photodetection dwell time is directly con-
rolled. Therefore, the acquisition time can be shortened or
engthened depending on the fluorescence intensity, thus

aintaining a consistent SNR and effectively extending the
ynamic range of detection.

In the preprocessing algorithm presented in Sec. 3.4, the
olor fluorescence image �Fig. 5�a�� was used to perform hue-
ased �Fig. 5�b�� segmentation to spectrally and spatially dis-
inguish between regions that contain different fluorophores
Figs. 5�c� and 5�d��. Further intensity-based segmentation
ithin respective hue segments was performed �Fig. 6� to

ccount for issues such as nonhomogeneous illumination.
ooking at the result presented in Fig. 7�b�, one can notice
ome fluorescence lifetime variations across the FLIM image.
his is due to the fact that the least-square goodness-of-fit
stimators used together with low photon counts delivered
ntensity dependent values of fluorescence lifetimes.29 Never-
heless, opposite to standard stead-state wide field fluores-
ence imaging, the output FLIM image was less susceptible to
xperimental conditions and exhibited better contrast between
he two sample regions.

As illustrated in Fig. 4, a satisfactory level of precision and
ccuracy could only be obtained with the double exponential
ecay model when the IRF was taken into account. With this
pproach, the accuracy was equal to �A� /A=1.01, ��1� /�1

1.01, and ��2� /�2=1.04 while the standard deviation was
maller than 0.02. Although the rapid algorithm was fast and
upplied reasonable �2 values, the calculated accuracy was
qual to �A� /A=0.88, ��1� /�1=1.10, and ��2� /�2=1.17. Fit-
ing the decaying part of the experimental curve �without con-
idering the IRF� delivered decay components relatively fast
nd accurately ���1� /�1=1.00, ��2� /�2=1.01�, although the
ccuracy in calculating the fraction parameter was poor
�A� /A=0.84�.

Although being accurate, the double IRF modeling was
ournal of Biomedical Optics 041316-1
much slower in comparison to less accurate methods, and
therefore is usually associated with low throughput in FLIM
imaging. This is mostly due to the application of time-
consuming iterative convolution-based fitting that is required
when IRF is accounted for in detailed and quantitative studies.
With a customized LabVIEW Levenberg-Marquard fitting
function, the typical calculation time obtained was equal to
987�90 ms and 43�1.6 ms, respectively, for fitting with
and without considering the IRF. When GIPs were supplied,
the calculation time was reduced to 609�67 and 40�5 ms,
respectively. Additionally, the analysis time for the double
IRF method strongly depended on the number of experimental
datapoints due to the convolution between the theoretical de-
cay model and the IRF function performed in every iteration.
The �2 /N ��2� was found to be 0.27�0.05 �54.6� and
0.09�0.01 �18.2� for respective cases, and no noticeable
change in �2 values was observed whether GIPs were sup-
plied or not. The rapid double decay lifetime determination
algorithm required only 0.29-ms calculation time and resulted
in �2 /N ��2�=0.14�0.06 �27.8�. The �2 /N obtained for the
rapid double algorithm was apparently smaller or comparable
to the results obtained with the fitting algorithms. However,
when the initial coefficients for the first iteration of the double
IRF algorithm were fixed to A=0.705, �1=0.549, and �2
=2.925, as obtained with rapid double method, the �2 /N ��2�
increased to 9.3 �1936�. This suggests that the analysis of only
the decaying part of the fluorescence lifetime �as is the case
for double and rapid double algorithms� underrated the value
of the short component and its contribution to the whole ex-
perimental dataset. Additionally, the absolute values of the
rapid algorithm output varied with the time window used to
select the decaying part of the experimental dataset. There-
fore, it is questionable whether rapid fluorescence estimation
algorithms are reliable enough for raster-scanned data seg-
mentation.

When the linear approach extended the double IRF fitting
procedure, the Im

i �t� dataset corresponding to a given segment
was restored directly from the reference table. Around 5.8 �s
�50 times less than for the rapid double algorithm� was re-
quired to verify whether the set of initial coefficients TS�x,y�
accurately modeled the experimental dataset or not. The ad-
vantage of using GIPs and the linear approach is particularly
obvious when arduous calculations �i.e., time-consuming
model generation based on reliable GIPs� are performed be-

(a)

(b)

(c)

(d)

(e)

Fig. 9 Segmented FLIM image of short component �Fig. 8�b�� was
composed of the three fluorescence lifetimes that were experimentally
measured for �b�, �c�, and �d� masks projected on the sample �a�. The
experimental decays measured while the sample was exposed to
these spatial patterns are compared with the distribution of fluores-
cence lifetimes obtained in raster-scanning and fitting �rapid-double
algorithm� mode �Fig. 8�e�� for the same region in the sample �a�.
July/August 2008 � Vol. 13�4�1
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ore actual on-line pixel-by-pixel data analysis. The off-line
ata analysis �with e.g., time invariant global decay analysis�
s also possible when software binning is performed on the
nprocessed FLIM datasets.

Traditionally, time-domain FLIM image reconstruction is
erformed pixel by pixel or by using global algorithms. For
emonstration purposes, we have used raster-scanned sequen-
ial decay analysis and image reconstruction �Fig. 3�a��. How-
ver, the DMD-based spatial illuminator provides the addi-
ional possibility to access any ROI on the sample by
witching on the groups of corresponding micromirrors. Ow-
ng to that feature, therefore, another new and interesting im-
ging modality has been demonstrated. Segmented FLIM im-
ging basically visualizes the fluorescence lifetime
oefficients intended to be GIPs for further eventual adjust-
ents, as ultimate values that need no further optimization. A
FLIM approach may only be appropriate for certain func-

ional imaging applications. For example, the SFLIM may be
uitable to discriminate between multiple fluorophores with
verlapping emission spectra, but would not be useful to de-
ermine the molecular environment of the fluorophore. In the
rst case, qualitative differences between these few spectrally
verlapping dyes are mapped on the sample, and fluorescence
ifetimes are measured in respective sample segments to pro-
ide better contrast and potentially deliver quantitative infor-
ation. Assuming the homogeneity of illumination and insen-

itivity of the fluorophore to its environment, which is true for
uantum dots and many other fluorochromes, we may con-
lude that SFLIM is able to provide fast FLIM image pre-
iewing to study spatial distribution and relative concentra-
ion of fluorescent dyes in multiplexed systems. In the second
ase, since the hue-intensity-based segmentation is suscep-
ible to dye concentration, illumination homogeneity, and lo-
al microenvironment, the fluorescence intensity of diluted
ut unquenched dye can be easily mismatched with high-
oncentration high-quenching cases. In this case, the SFLIM
ay not be sufficiently resolvable to reconstruct microenvi-

onment variations.
To compare DMD raster-scanned FLIM images with the

egmented FLIM approach, we have selected and measured
he same sample region with the two techniques. The fraction
arameter A �Fig. 8�d��, obtained with the rapid double expo-
ential model, applied to the raster-scanned datasets ap-
roaches a value of 1 and the long component is quasi-
andomly distributed. Most probably this is due to low total
hoton counts encountered during raster scanning, and sug-
ests that a single decay model could be sufficient to provide
easonable results. This is not the case for SFLIM analysis
Fig. 8�a��, which demonstrates A approaching a value of 0.85
nd a long component measured at the nucleus site equal to
.70 ns. The long component is thus observed only for
FLIM and demonstrates that the SNR has been improved in
omparison to the raster-scanning case. The origin of this long
omponent is presently unknown to us. The average values of
hort decay components are around 2.1 and 1.9 ns, as mea-
ured for SFLIM and FLIM, respectively, and are slightly
ower than the literature data for Hoechst dye �2.2 to 2.3 ns�.
ince we did not store the experimental decay datasets but
ather saved the decay coefficients as a color image directly,
he scales for the � and � images in Fig. 8 differ. Neverthe-
1 2

ournal of Biomedical Optics 041316-1
less, the absolute values �at least for �1� correspond in both
SFLIM and FLIM cases. This is visualized in Fig. 9, where
the short fluorescence lifetime component measured for the
three segments �Figs. 9�b�–9�d�� covering the region of inter-
est compare well with the decay distribution observed for the
raster-scanned case �Fig. 9�e��.

To judge if the three-step algorithm presented here is jus-
tified or maybe off-line data preprocessing is sufficient for
improvement of GIP estimation and data management, three
different scenarios can be considered. In the first one, follow-
ing “blind” raster scanning that is subject to poor SNR, the
rapid lifetime estimation algorithm is applied to establish
sample segments that exhibit similar decay properties. Next,
off-line accumulation of the fluorescence lifetime histograms
within the segments is performed to further estimate GIPs for
more detailed pixel-by-pixel or global data analysis. Although
attractive, it is questionable to use the first scenario for com-
plex systems like double exponential decay imaging. The
rapid estimation algorithms may not be reliable enough to
define segments properly and to group identical fluorophores
to further estimate GIPs. However, rapid lifetime estimation
for GIP assessment performed on the pixel-by-pixel bases
seems to be reasonable.

In the second scenario, wide-field fluorescence image is
acquired prior to raster scanning to perform sample segmen-
tation. However, the fluorescence decay dataset accumulation
is performed off-line with SB on the set of blindly collected
fluorescence signals. The segmentation step is followed by
more detailed off-line pixel-by-pixel or global analysis ex-
ploiting the GIPs. This approach is justified and recommended
for biological systems to limit photobleaching. When the pho-
todamage is not a critical issue, hardware binning is prefer-
able for GIPs estimation, as in the third scenario described
before. Due to the reliability of the GIP parameters estimated
in the preprocessing step, the approach offers more rapid data
analysis, a better SNR, and ultimately more accuracy, as well
as the ability to provide the results on-line. Adaptive FLIM
image reconstruction is performed by exploiting all the pre-
processed information. The DMD-based spatial illuminator is
flexible enough to perform any of the described scenarios
with no optical system rearrangements. Global analysis algo-
rithms can be easily adapted off-line, with the advantage for
initial fitting parameters to be informed by GIP established in
relation to functional/morphological sample structure.

6 Conclusions
We propose a new approach to FLIM imaging based on good
initial global fitting parameters estimation. The estimation re-
lies on the averaged hardware-binned fluorescence signal
from disjointed or contiguous segments of a sample. The seg-
ments are semiautomatically designed based on division of
the hue/intensity histograms of the color fluorescence image
of the sample. Segments prepared like this allow us to selec-
tively photoexcite the regions of the sample exhibiting similar
spectral properties. The fluorescence lifetimes are recorded
and analyzed for the entire collection of the segments and
serve as a set of good initial fitting parameters for further
raster scanning and more detailed on-line data analysis.

Additionally, we demonstrate the improvement in FLIM
data analysis time without compromising the accuracy or pre-
July/August 2008 � Vol. 13�4�2
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ision in extracting the fluorescence decay phenomenological
oefficients. The improvement is achieved because the heavi-
st computational work to estimate GIPs and respective decay
odels is performed in the data preprocessing step. During
LIM reconstruction, an on-line computationally efficient
alidation of the model and further optional fitting is per-
ormed rather then blind data analysis.

Additionally, when a sufficient number of segments is de-
igned, the GIPs calculated in the preprocessing step of the
resented algorithm become the final decay coefficients, with
o need for further optimization. The segmented FLIM image
s therefore obtained in a rapid manner, by the acquisition and
nalysis of only a very limited number of fluorescence decay
urves.

We demonstrate that the presented algorithm combined
ith a DMD-based spatial illuminator offers a lot of flexibility

n FLIM data acquisition and management, opposite of spatial
nd photophysical constrains of traditional global data pro-
essing. The implications of our approach in terms of fitting
ccuracy are substantial for many biological studies including
RET, redox state imaging, or high content imaging.
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