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Abstract. Fungi in the Candida genus are the most common fungal pathogens. They not only cause high mor-
bidity and mortality but can also cost billions of dollars in healthcare. To alleviate this burden, early and accurate
identification of Candida species is necessary. However, standard identification procedures can take days and
have a large false negative error. The method described in this study takes advantage of hyperspectral confocal
fluorescence microscopy, which enables the capability to quickly and accurately identify and characterize
the unique autofluorescence spectra from different Candida species with up to 84% accuracy when grown
in conditions that closely mimic physiological conditions. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Candida species are commensal pathogens that usually reside
on mucosal surfaces. If given the opportunity, the fungus will
transition from a commensal organism to become a pathogen,
which can create infections that range from superficial to
systemic. Candida species are the most common fungal patho-
gens, with C. albicans arising the most often followed by C.
glabrata and C. parapsilosis, respectively.1–4 Not only is there
a high mortality rate associated with candidiasis but there is also
a healthcare cost that can exceed billions of dollars annually.1,5–7

To reduce mortality associated with fungal infections, early
and accurate identification is essential. Studies have shown
that late and incorrect diagnosis of Candida species leads to
a significant increase in mortality.8,9 There are multiple clinical
diagnostic methods used to support candidiasis diagnoses.
Regardless of the detection method (e.g., mass spectrometry
and polymerase chain reaction), a microbiological culture
step is usually required prior to pathogen identification. This
culture step can take between 2 and 5 days from receipt of a
clinical sample (e.g., blood, catheter tip, sputum, and urine) for
microbiological identification. This long time-to-identification
can lead to delays in initiation of optimal antimicrobial chemo-
therapy. Previous studies have shown relatively poor sensitivity
of clinical diagnostics for candidiasis, with a 30% to 50%
false negative rate for blood cultures in patients with autopsy-
confirmed cases of candidiasis.10,11 This demonstrates the lim-
itations of both time and reliability of diagnosis for common
existing diagnostic approaches for candidiasis.

Cellular autofluorescence has demonstrated potential as
a clinical diagnostic method because it is noninvasive and
label-free and has the ability to supply morphological and

biochemical information. Studies have shown that autofluores-
cence emission can be used to detect microbial pathogens, such
as Mycobacterium tuberculosis12 and some pathogenic fungi,13

whereas other studies have exploited autofluorescence emission
to detect cancer cells.14,15 Utilizing autofluorescence is possible
due to the differences in both structure and biochemistry of the
pathogen and/or the biochemical changes in cells and tissue
resulting from disease. Recently, fungal pathogens have been
shown to emit autofluorescence in the visible spectrum using
blue/green excitation wavelengths.16 We hypothesize that the
autofluorescence emission can be used as a means of rapid
identification and can be used parallel to traditional methods
to provide a guide for appropriate care at an earlier time.

In this study, we use hyperspectral confocal fluorescence
microscopy (HCFM) and multivariate spectral analysis methods
to resolve multiple autofluorescence spectra in three Candida
species pathogens. Utilizing these methods, we were able to
identify two independent autofluorescence emission spectra in
Candida species grown under physiologically relevant condi-
tions. The relative abundance of these spectral factors, together
with intracellular spatial distribution features, was sufficient to
yield species level differentiation in laboratory experiments.

2 Results
We grew lab strain yeasts of C. albicans, C. glabrata, and C.
parapsilosis described in Materials and Methods for the purpose
of ascertaining if the individual Candida species have unique
autofluorescence characteristics. In these studies, we initially
used three different growth media: yeast extract peptone dex-
trose (YPD) (a rich fungal medium), Roswell Park Memorial
Institute medium (RPMI 1640) with 3-(N-morpholino)propane-
sulfonic acid (MOPS), and pooled human serum. The human
serum growth condition was chosen for continued experimen-
tation because of its similarity to the growth condition of fungal
pathogens in peripheral blood.
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We detected autofluorescence emission from all of the
Candida species in all growth media. However, there were
no significant differences between species grown in YPD and
RPMI when looking at the number of spectral factors detected,
the shape of the spectral factor, their wavelength of maximum
emission, or their relative abundances throughout the fungal
cells. In human serum, however, samples exhibited differences
in autofluorescence depending on the species. Because this con-
dition most closely matches the nature of clinical samples, we
focused our further investigations on autofluorescence compo-
nents for Candida in human serum. The multivariate curve
resolution (MCR) analysis resulted in two different emission
factors for all species [Figs. 1(a)–1(c)]. Factor 1’s spectral
shape and peak (550 nm) are very similar across all species,
leading to the idea that the three species investigated share
a set of common autofluorescent molecules that emit around
550 nm. In contrast, factor 2’s spectral shape and peak (600
to 650 nm) vary depending on which species are being observed
[Figs. 1(a)–1(c)]. For example, C. albicans factor 2 peak is
found at 600 nm, C. parapsilosis factor 2 peak is found at
650 nm, and, interestingly, C. glabrata factor 2 peak is broad
(the peak encompasses 600 to 650 nm). When we examined
autofluorescent emission from human serum alone, it did not
match either factor found in the Candida samples and is not
an obvious linear combination of the two factors [Fig. 1(d)].

Along with the spectral factors, the MCR analysis also
returns concentration maps that indicate the relative abundance

of each spectral factor. To determine if the spatial localizations
of autofluorescence emissions were similar, these concentration
maps were overlaid to create composite images, where the
green and red color channels correspond to the independent
concentration map corresponding to spectral factor 1 and 2,
respectively. The composite images were then examined to
see if the individual factor’s emission came from similar
spatial localizations. We found that C. albicans factors were
mostly spatially separated, whereas both C. glabrata and
C. parapsilosis factors were found to be localized in the
same general area within the cells. Next, we compared the
spatial localization patterns between species and found unique
patterns for each species (Fig. 2). In the case of C. albicans,
we found very small features mostly composed of factor 1
that were on average around 0.42 μm2. For C. parapsilosis,
we observed large features primarily composed of factor 2
that are on average around 1 μm2. However, features in C. glab-
rata images contained both factor 1 and factor 2 with an average
area around 0.27 and 0.67 μm2, respectively. Remarkably,
the majority of autofluorescence from C. parapsilosis comes
from factor 2. Mean factor 2 intensity of the C. parapsilosis
features was twofold greater than C. glabrata features and
tenfold greater than C. albicans features. Similar trends are
also observed when quantifying the other characteristics of
C. parapsilosis autofluorescence. These differences in autofluor-
escence emission geometry as well as other autofluorescence
characteristics allowed us to create a classifier from the spatial

Fig. 1 MCR identified emission spectra of Candida species. (a–c) Two emission spectra that were
derived from MCR analysis after 16 h of incubation with Candida species. (d) Emission spectra of
human serum at 0 h incubation and 18 h of incubation to demonstrate that emission factors found in
Candida samples are not due to emission of human serum. (a–c) Fungal emission spectra are composed
from ≥ 80 cells and (d) serum emission spectra composed from 1 sample at 0 h of incubation and 18 h of
incubation.
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and spectral features of the autofluorescence emission that are
unique to individual species.

To create an image diagnostic algorithm based on the auto-
fluorescence emission, we quantified multiple spatial and spec-
tral characteristics of each of the autofluorescence signatures
from the feature within the hyperspectral fluorescence images.
To validate the accuracy of the classification tree, we measured
three statistics for six levels of pruning using the training set
(described in Materials and Methods) and plotted the accuracy
of both the training set and test set [Figs. 3(a) and 3(b)]. The
statistics and accuracy plot revealed some of the less pruned
classification trees (i.e., larger classification trees) have a lower
true predictive error, demonstrating that the full classification
tree may have been overfitting and that the predictions reflected

noise or outliers. The accuracy plot also depicted the pruning
level (i.e., size of the classification tree) where the training
set and test set diverged. Based on these results, we selected
level 4 as the optimal pruning level. From the pruned tree,
we were able to achieve 84% accurate species identification
from the test set of data [Fig. 3(b)]. We were also able to observe
which autofluorescent characteristics were used to construct the
classification tree (Fig. 4). Interestingly, in this predictive model,
factor 1 autofluorescent characteristics are more important than
factor 2 characteristics for predicting the Candida species. We
then calculated the predictive accuracy for identifying each
species in the independent test set. The classification tree was
able to predict 75% of C. albicans samples accurately, 88%
of C. glabrata accurately, and 83% of C. parapsilosis accu-
rately. On closer inspection of the results, it was found that
C. albicans was misidentified twice, once with C. glabrata and
once with C. parapsilosis. Whereas C. glabrata was found to
only be misidentified with C. parapsilosis and C. parapsilosis
misidentified with C. glabrata.

3 Discussion
Candida species are well known for their ability to cause mor-
bidity and mortality. It is also known that some species, such as
C. glabrata, have intrinsic resistances to azole-based antifungal
drugs.17,18 Due to this, it is important to be able to quickly and
accurately identify the pathogenic fungal species prior to admin-
istering treatment. The method we describe in this study takes
advantage of the spatial and spectral resolution of HCFM. The
ability to characterize the unique autofluorescence spectra in the
different Candida species coupled with their spatial localiza-
tions has allowed for species level identification of Candida spe-
cies yeasts grown in conditions that closely mimic pathological
conditions and commonly available clinical specimen types.

The serum growth condition was chosen and designed to be
a model of growth conditions in blood. Most of the samples
assayed for Candida in diagnostic reference laboratories are
peripheral blood (∼96% of specimens in our clinical isolate
library) and the remainder are mostly medical devices in inti-
mate contact with central circulation. Serum is a reasonable
and tractable model for blood in that it contains all noncellular
blood components except clotting factors. It is commonly used
to study the response of Candida to growth in conditions
that mimic growth in systemic circulation. Indeed, Candida
species are known to respond to growth in serum with

Fig. 2 Representative R-G composite images of two autofluorescence factors of Candida species. The
green channel reflects factor 1 signal and the red channel reflects factor 2 signal. Red boxes are to
highlight autofluorescent feature within the fungal cells. Color channels in each image are scaled
independently of each other, using a minimum to maximum scale to enhance visualization. Image
size and magnification are the same for all images.

Fig. 3 Classification tree pruning. (a) Overfitting decreases the accu-
racy of the classification tree for the test set. Pruning level for classi-
fication tree was chosen by the divergence of the test set and training
set, which corresponds with pruning level 4 (i.e., a 12 node classifi-
cation tree). (b) Table displaying statistics for the different pruning
levels of the classification tree. Bold statistics indicate chosen level
for prediction analysis of the test set.
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significant physiological changes, such as alterations of cell wall
components19 as well as germination of filamentous cells in C.
albicans. Therefore, we designed this condition to test whether
growth in conditions mimicking those of clinical specimens
would induce physiological changes in Candida that might
alter its autofluorescence. These conditions would be more rep-
resentative of the autofluorescence spectrum of Candida to be
detected in clinical specimens relative to standard fungal culture
medium growth conditions. Continuation of these studies into
whole blood and direct visualization on catheter tips would
be productive and promising ways to extend this work in the
future.

Emission of autofluoresence in fungi is commonly due to
native fluorophores, such as flavins.20 Flavins and flavoproteins
likely contribute to the fungal autofluorescence that we
observed. Flavin compounds emit around 530 nm from 460 nm
excitation,21 which match closely with our factor 1 peak
wavelength and our excitation line. Flavin molecules also
associate with the plasma membrane, intracellular granules,
and mitochondria.22 We did not observe any autofluorescent
signatures around the plasma membrane, but we did observe
intracellular signatures for factor 1. For both C. albicans and
C. glabrata, we detected small features for factor 1 leading
to the possibility that we observed flavin molecules either in
intracellular granules or mitochondria. Interestingly, when
observed, factor 1 tended to be smaller in size than factor 2.
Also, factor 1 tended to be located inside areas that also con-
tained factor 2, leading us to speculate that factor 2 may be
another native fluorophore, yet to be described, that occupies
a similar subcellular compartment.

By utilizing autofluorescent emission characteristics, the
classification tree is able to accurately predict the Candida spe-
cies, demonstrating the robustness of the procedure as a quick
and accurate identification method. Under current conditions,
the classification tree can identify 84% of samples accurately.
It is generally appreciated that cell size varies in the Candida
genus. For example, C. parapsilosis is on average 2 to 4
times larger than C. glabrata.23 However, in this current

experiment, it was not possible to measure the area of the fungal
cells with accuracy in an automated fashion. Future experiments
with a membrane-specific contrast agent added to the medium
just prior to imaging could improve the accuracy by incorporat-
ing information on the size of the cells.

Previous studies have shown that by utilizing a single exci-
tation source coupled with a monochromator and correlating
microbial sample type with the intensity of emission at several
wavelengths, it was possible to discriminate bacterial and fungal
species.16 In contrast, our approach uses the entire emission
spectrum from 500 to 850 nm to identify multiple component
spectra in the specimens. Our results also extend earlier
approaches by measuring autofluorescence events at the individ-
ual cell level, whereas other methods use a population-based
approach and measure the overall autofluorescence signature
of a population of cells. Finally, our approach utilizes identify-
ing information from the subcellular spatial distribution of
autofluorescence signals. Other molecular methods, such as
fluorescent in situ hybridization (FISH), have been described
both as quick and accurate.24 However, utilizing FISH requires
that each species needing identification has its own unique probe
as well as preparing the sample in such a way that the probe can
enter the cell and a culture step to generate enough sample to
work with. Because our method does not require large numbers
of cells and is a label-free method, it may be usable on a min-
imally processed clinical specimen, perhaps even as a point of
care diagnostic.

As a potential method for identifying fungal pathogens, we
provide comparisons to published data on performance of other
diagnostic methods currently in use. These comparisons illus-
trate the advantages, primarily in terms of speed of diagnosis,
of our method over certain current limitations with commonly
used methods. However, we also point out that detection of
fungi by autofluorescence is best thought of as an adjunctive
diagnostic test to classical microbiology. These methods will
still be required to confirm microbiological identification and
to measure drug sensitivities. We think that as the autofluores-
cence method matures, more detailed effectiveness comparisons

Fig. 4 Feature characteristics are used to accurately predict species. The pruned classification tree indi-
cates that factor 1 characteristics are crucial for accurate species identification.
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with other technologies would be a worthy subject of future
investigation.

In summary, currently deployed fungal species identification
methods based on culture can range from 2 to 5 days depending
on the method being used, which can cause complications
related to delays in treatment. The laboratory investigation con-
ducted demonstrates a 75% prediction accuracy for C. albicans,
88% prediction accuracy for C. glabrata, and 83% prediction
accuracy for C. parapsilosis in clinically relevant media.
The next step to determine robustness of this method will be
to include clinical samples. Our work represents the first step
toward developing a label-free method for rapid, culture-free
identification of fungal species. If used parallel with traditional
methods it could provide a guide for appropriate care at an
earlier time and could reduce morbidity and mortality.

4 Methods

4.1 Yeast Growth/Preparation

C. albicans (ATCC, MYA-2876), C. glabrata (ATCC, 2001),
and C. parapsilosis (ATCC, 22019) were grown from glycerol
stock, stored at −80°C. Samples were grown in YPD, RPMI-
1640 + 0.165M MOPS, or human serum (EMD Millipore, S1)
for 16 h at 37°C in an orbital shaker at 250 rpm. Yeast were then
put on microscope slides and sealed with nail polish.

4.2 Hyperspectral Confocal Fluorescence
Microscopy

A custom built HCFM was used to acquire the autofluorescent
emissions from the samples. Previous work describes the
methodology for image acquisition using the custom built
microscope.25 In summary, a 488-nm laser (Coherent, Inc.
Sapphire) and a 60× apochromat objective (Olympus Plan
Apochromat, NA 1.4) were used to excite fluorescence from
a diffraction-limited spot. The laser power was ∼80 μW at
the entrance to the microscope and the integration time was
0.2 ms∕pixel. To detect fluorescent emissions, a prism spec-
trometer coupled to an electron multiplying charged-coupled
device camera (Andor Technologies, Inc., iXon) was used.

4.3 Spectral Analysis

All images were preprocessed to remove known spectral
artifacts introduced by the imaging system (cosmic ray spikes,
detector offset, and structured dark noise),26 as well as to cali-
brate the wavelength axis. The resulting individual spectral
images were combined into three composite image data sets,
one for each Candida species. MCR was performed on each
of these composite data sets to develop a spectral model
that described more than 98% of the spectral variance. The
MCR algorithm has been described previously27,28 and has
demonstrated success in exploratory analysis to identify under-
lying spectral components from multicomponent biological
systems.29,30 The MCR results identified near-identical spectral
components regardless of the yeast species; therefore, a com-
bined spectral model for all three species was deemed appropri-
ate. This combined model was generated by performing MCR
on a combined set of images from all three species and described
>96% of the spectral variance in the data. Classical least squares
prediction was used to determine the location and abundance of
each spectral component in the spectral images. Images corre-
sponding to the location and abundance of individual spectral

components were exported as Tif files for subsequent image
processing.

4.4 Classification

Fiji (ImageJ) was used to threshold and quantify features.
A threshold of three standard deviations above background
intensity was used to extract features for all emission factors.
Quantification of features was measured for total and average
intensity per feature, average intensity variance per feature,
total and average number of features per cell, and total and aver-
age area of features describing the nature of the autofluorescence
in the cells. The characteristics were then compiled and input
into a binary classification tree algorithm. A classification tree
analysis was developed in MATLAB® using the statistics, and
a machine learning toolbox (Mathworks, version 2015a) was
then used to create the classification tree and accuracy statistics.
To test the performance of the classifier, we divided the data
into a training group of 337 cells and a test group of 37 cells
(composed of 10% of each species population). To validate
the accuracy of the classification tree, we measured three statis-
tics: cross validation error, resubstitution error, and the true
predictive error for six levels of tree pruning using the training
set. To calculate the true error of prediction, the number of mis-
classifications in the test set was divided by the total number of
samples in the training set. All data presented were pooled from
triplicate biological replicates of samples.
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