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Abstract. A challenging issue in photoacoustic biomedical imaging is to take into account the presence of dis-
persive acoustic media, since these are prone to induce amplitude attenuation and scattering of the photoacous-
tic frequency components. These perturbations are largely the cause for which the photoacoustic tomographic
image reconstruction from projections lacks a plane-wave transport formalism. Attending this problem, we further
develop an analytic formalism of the transport and its numerical implementation accounting for dispersive acous-
tic media. We differentiate three variations of an acoustically perturbing media. Our object of interest is a numeri-
cal description of the light absorption map of a coronal human breast image. Then, we analyze conditions for
which the propagation of photoacoustic perturbations can obey the generalized Heaviside telegraph equation. In
addition, we provide a study of the causality consistency of the wave propagation models. We observe transport
implications due to the presence of dispersive acoustic media and derive model adjustments that include attenu-
ation and diffusion approximations within the two-dimensional forward problem. Next, we restore the inverse
problem description with the deduced perturbation components. Finally, we solve the nonlinear inverse problem
with a numerical strategy for a filtered backprojection reconstruction. At a stage prior to the image reconstruction,
we compensate for the effect of acoustic attenuation and diffusion to calculate the inversions of the wave per-
turbations located within the projections. In this way, we manage to significantly reduce reconstruction artifacts.
In consequence, we prevent the use of some additional image processing of noise reduction. We demonstrate
a feasible strategy on how to solve the stated nonlinear inverse problem of photoacoustic tomography account-
ing for dispersive acoustic media. In particular, we emphasize efforts to achieve an analytical description, and
thus an algorithm is placed, for imaged sound perturbations to be cleaned from acoustic scattering in a simplified
manner. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.7.076010]
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1 Introduction
The use of photoacoustic (PA) tomography in biomedical
imaging has opened up interest to improve early breast cancer
detection, for being a nonionizing tomography modality. The
possibility of expanding the PA waveform model for acousti-
cally perturbed media is a task of intense research. Indeed,
the common plane wave model described by Xu and Wang1

has proven to be successful in homogeneous material or at shal-
low depths, where dispersive acoustic media can be neglected.
However, beyond the perturbation condition, the propagation
model is prone to errors and is likely to introduce artifacts
when reconstructing the PA source. In recent years, efforts have
been focused on either reducing those artifacts that are corre-
lated to reflections and scattering of acoustic waves or in
minimizing blurring from the experimental stage.2–4 Others,
as Dean-Ben et al.5 suggested, the use of a reconstruction algo-
rithm with a statistical detector correction of the perturbation.
The authors of Refs. 6 and 7 reported how to reduce the blurring

and therefore increase the contrast by taking the spatially vary-
ing sound velocity into account. Rivière et al.8 and Ammari9 in
turn introduced an extended wave model whose purpose is to
compensate acoustic attenuation on the measured projection
information, before reconstructing the absorption distribution.

We note that so far the amendments to the underlying trans-
port models, as implemented, still fail to account satisfactorily
for recorded artifacts caused by dispersive acoustic media
when working with PA sources placed within tissue at consid-
erable depth in respect to the surface of reference for the
measurements.10–12 These image artifacts cannot be eliminated
completely, even with contrast agents;13 in fact, some are inher-
ent of the actual physical properties of the medium. Along with
the scenario in Ref. 14, we introduced a sound dispersion
approximation as part of the PA propagation model together
with attenuation considerations. This approach models the
Heaviside telegraph equation in the Fourier domain. In order
to deal with its inverse problems of image reconstruction related
to the transport, we carried out a projection-processing strategy
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similar to that followed by Ammari.9 By following such an
approach, we manage to assure that established reconstruction
algorithms, such as filtered backprojection, can be applied to PA
inverse problems. In the current contribution, we differentiate
the acoustic perturbation among attenuation, dispersion, and
a combination of both by separate operators. By these differen-
tiations of the propagation, we are capable of simulating internal
reflections and image blurring, commonly present in images
produced by PA data. Furthermore, we introduce a methodology
for image reconstruction in PA tomography, where we analyze,
interpret, and propose a practical pathway for including fine-
tuned acoustic attenuation and/or dispersion in the PAwaveform
model.

This paper is organized as follows: in Sec. 2, we present
our proposed extension to the PA propagation model with
Heaviside’s telegraph equation. This is made with the explicit
purpose of accounting for dispersive acoustic media and the
PA attenuation with acoustic dispersion due to the viscoelastic-
ity properties of the transport medium; such that one can recon-
struct the PA distribution source, resulting from the tissue’s
absorption of energy, after being excited by laser light. We out-
line in Sec. 3 a strategy theory for solving the inverse problem
when diffusion assumptions are made and investigate the cau-
sality condition of the models. Computer simulations of the PA
inverse problem are given in Sec. 4. We present numerical sol-
utions to distinct perturbed forward problems and demonstrate
how errors, due to inappropriate projection approximation, can
affect the quality of reconstruction. As part of this proposal,
we also introduce a method to process the projections for per-
turbation adjustment. Along with our presentation, we compare
backprojection results and evaluate the use of the proposed pro-
jection correction strategy. Finally, we give our conclusions and
discuss briefly the implications of our model extension in Sec. 5.

2 Inverse Problems in Waveform
Tomography

In mathematical terms, the PA transport is described as a system
of partial differential equations, modeling the propagation of
acoustic pressure distribution by the function p∶Rn × R → Rþ,
defined over space and time. When the initial pressure distribu-
tion fðxÞ ¼ pðx; 0Þ propagates on weakly scattering conditions
(facing small objects, relative to the wavelength scale), the trans-
port processes, in free space and with stress confinement, allow
the approximation of the sound propagation as a linear integral
equation ∀ x ∈ Ω ⊂ Rn and ∀ t ∈ ½t1; t2� ⊂ Rþ, which is the
solution to the problem

EQ-TARGET;temp:intralink-;e001;63;242Lpðx; tÞ ¼ 0; (1)

EQ-TARGET;temp:intralink-;e002;63;211pðx; 0Þ ¼ fðxÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;185∂tpðx; 0Þ ¼ 0: (3)

Given the initial and boundary conditions, the specific linear
operator L∶Ω × ½t1; t2� → Rþ describes a linear differential
equation of second order. The source distribution f stands in
strong physical relation to the strength of light absorption and
is thus proportional with the magnitude of the PA effect.

The system of Eqs. (1) to (3) is a general description that
implies distinct waveform transport analysis: this set of equa-
tions is valid and defined for a broad domain comprising acous-
tic, electromagnetic, optical, and seismic transport modalities.

In a nonperturbing homogeneous media, the wave transport
is modeled by the linear four-dimensional d’Alembert operator
□, which is a generalization of the Laplace operator ∇2. This is
so by including at once the second partial derivative in time and
the constant sound wave speed c

EQ-TARGET;temp:intralink-;e004;326;697L0p0 :¼ □p0 ¼ ð∂2t − c2∇2Þp0: (4)

In particular for this problem, the integral operator solution
of the acoustic field in dimensions 2 is given by Kirchhoff’s
equation

EQ-TARGET;temp:intralink-;e005;326;633pðx; tÞ ¼ 1

2π
∂t
Z

t2

t1

RΩ½p0�ðx; c0rÞffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − r2

p dr; (5)

EQ-TARGET;temp:intralink-;e006;326;589RΩ½p0�ðx; c0rÞ ¼ 4r
Z

r

0

pðx; t∕c0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p dt: (6)

However, for acoustic dispersive media, the above plane
wave propagation is erroneous, since its lack of consideration
of the diffusion and attenuation processes, both physically
intrinsic conditions of the general phenomena.1,15 When attenu-
ation is present, the waveform operator expresses the Helmholtz
equation as applied in ultrasound imaging, and even PA imaging
with a complex wave number.16 The corresponding mathemati-
cal expression is given as

EQ-TARGET;temp:intralink-;e007;326;461Lapa :¼ □pa þ a � pa: (7)

When sound dispersion occurs as in optical tomography,17

the Boltzmann equation applies

EQ-TARGET;temp:intralink-;e008;326;408Ldpd :¼ □pd þ d � ∂tpd: (8)

In Eqs. (7) and (8), a and d are appropriate weight functions
over C and � denotes the convolution between two functions.
In more complex cases, attenuation and dispersion are simulta-
neously present. This situation is common in PA imaging
of deeper biological tissues.18 The condition leads to the
Heaviside telegraph equation

EQ-TARGET;temp:intralink-;e009;326;311La;dpa;d :¼ □pa;d þ d � ∂tpa;d þ a � pa;d: (9)

This model has been tested by Arridge19 in the field of optical
tomography. Moock et al.14 explored this scenario, with the aim
of modeling the PA transport for dispersive acoustic media,
which is a more realistic representation of the breast tissue. The
study prompted to disclose different wave conditions arising
from the inclusion of acoustic perturbations.

In waveform tomography, it is assumed that for any source f
there exists a projection g dependent on the detector position that
corresponds to what acoustic sensors register at the boundary of
the observed closed and bounded region Ω; over the fixed time
interval ½t1; t2�. The inverse problem of this waveform tomog-
raphy, in two steps, states:

a. Given the projections at the boundary pðy; tÞ ¼ gðtÞ,
with y ∈ ∂Ω, and t ∈ ½t1; t2�.

b. Find the initial sound pressure distribution fðxÞ,
whose projection is then, gðtÞ.

When it comes to solve the inverse problem, it is important
to observe that although the transport obeys a propagation
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model of linear equations, the related inverse problem may be
nonlinear. In fact, in the case of PA, the inversion of the operator
L involves the pressure distribution p and other additional
weight functions a; d, which cannot be reconstructed at once,
e.g., by backprojecting the measured data gðtÞ.

3 Solution of the Dispersive Photoacoustic
Inverse Problems

The inversion of the PA perturbations is the central task of
the considered dispersive inverse problems modeled in Sec. 2.
For biological tissues such an endeavor becomes difficult since
linear operators La, Ld, and La;d impose a nonlinear inverse
problem. Ref. 14 followed the practical strategy of numerically
solving the PA inverse problem modeled by Eq. (9) for an acous-
tically dispersive medium. This method encourages signal pre-
processing including some boundary measurements. As a result,
the impact of sound perturbations within the media tends to
disappear. In the current contribution, we compare the three
propagation models Eqs. (7)–(9) for image reconstruction on
synthetical two-dimensional (2-D) data sets.

When applying the strategy from Ref. 14 to all waveform
conditions, the formalism requires the description of
Eqs. (4)–(9) in the Fourier domain, and consequently with
the pressure distribution expressed by a frequency-dependent
function, p̂. Then, the corresponding operators are

EQ-TARGET;temp:intralink-;e010;63;475ðc2∇2 þ ω2Þp̂0ðx;ωÞ ¼
ı̂ωffiffiffiffiffi
2π

p fðxÞ; (10)

EQ-TARGET;temp:intralink-;e011;63;433½c2∇2 þ ω2 − âðωÞ�p̂aðx;ωÞ ¼
ı̂ωffiffiffiffiffi
2π

p fðxÞ; (11)

EQ-TARGET;temp:intralink-;e012;63;395½c2∇2 þ ω2 − ı̂ωd̂ðωÞ�p̂dðx;ωÞ ¼
ı̂ωffiffiffiffiffi
2π

p fðxÞ; (12)

EQ-TARGET;temp:intralink-;e013;63;358½c2∇2þω2 − ı̂ωd̂ðωÞ− âðωÞ�p̂a;dðx;ωÞ ¼
ı̂ωffiffiffiffiffi
2π

p fðxÞ: (13)

Since in a homogeneous media, there is no random field,
the pressure field is the coherent part to the pressure distribution
p̂0 in Eq. (10) and p̂a in Eq. (11). Instead, although Eq. (12) is
similar to the electromagnetic diffusion in a conducting
medium, the field p̂d should be interpreted as the energy density
of the pressure field and aims to account for the diffused part of
the acoustic field. In Eq. (13), the field p̂a;d should be interpreted
as the energy density of the pressure field, covering the attenu-
ated and diffused parts of the acoustic field. The coherent part is
ignored because we suppose the scatters concentration to be
dense enough as to inhibit it.20

For each case, the source term fðxÞ can be interpreted as the
initial pressure, but if we allow a frequency dependence fðx;ωÞ,
then it can be proportional to the time derivative of the temper-
ature field if heat transport is considered, or proportional to
the electromagnetic density energy if no heat transport is
considered.4,21,22

In this formalism, one can derive an expression between the
homogeneous and the boundary measurements of dispersive
acoustic media, and then obtain their respective wave numbers,
k0; ka; kd, and ka;d. The homogeneous case would produce
k0 ¼ ω

c0
, the wave number of a perfect monochromatic wave,

also known as the dispersion relation. In it, c0 is the constant

sound speed of the given homogeneous medium. However,
when the field is nonmonochromatic and propagates with con-
ditions of acoustic attenuation with dispersion and scattering,
the complete dispersion relations for the propagation of the
field as described from Eqs. (10)–(13) is

EQ-TARGET;temp:intralink-;e014;326;697k ¼ jωj
co

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ı̂

d̂ðωÞ
ω

−
âðωÞ
ω2

s
; (14)

all different cases are properly covered using the proper constant
values, as noted in Ref. 14. Here we need to make a compromise
between having a logic consistency and stable numerical results.
For the calculation of the propagating field, we solve the prob-
lem classically for Eqs. (10)–(13), by means of using their
corresponding integral solutions to state the inverse problem;
instead, for compensating the attenuation we introduce as
novelty, the use of empirical attenuation relations.

3.1 Sound Velocity as Function of the Frequency

Among the several physical properties that characterize a
colloid-like condensed medium, such as the biological tissue,
one can account for its density and its viscoelastic properties.
In terms of PA interpretation, if the medium is homogeneous,
it can be characterized by its attenuation and acoustic dispersion.
However, when the medium is acoustically dispersive, and
simultaneously exhibit scattering, both properties prevent the
sound velocity to remain constant over the transport process.
Therefore, in either case we can assume a physical sound
velocity distribution that is characteristic of the given medium.
Although one can get to know the characteristic PA acoustic
spectral distribution, a priori we cannot predict the spatial evo-
lution of such spectral distribution over the transport process.
Therefore, for simplicity we assume that the simplest form of
the dispersion relation is given as

EQ-TARGET;temp:intralink-;e015;326;363kðωÞ ¼ ω

cpðωÞ
; (15)

where cpðωÞ is the phase velocity that depends on the frequency.
As noted elsewhere in the literature in Refs. 5, 8, 9, 14, 20, 23,
and 24, the initial PA perturbation in the frequency domain is
given by an initial wave packet centered around a certain
frequency. However, when the perturbation propagates under
conditions of either, attenuation with acoustic dispersion, or
changes of acoustic impedance, or both, then the frequency
distribution gets attenuated and the wave packet gets dispersed.
Thus, depending on the length of propagation and on the density
and magnitude of impedance changes, the velocity of propaga-
tion of the wave packet would be dominated by a group velocity,
which in turn is given by the derivative of the wave vector
with respect to the change in frequency. Therefore, in the clas-
sification noted above, this dependency is implicit through the
respective wave number. Even so, in general, one cannot get
to know a prior which one of the noted perturbations would
cause the frequency changes. However, for the theoretical
representation purpose, these can be treated as dispersive
acoustic media. Thus, one can model conditions that inhibit
the PA perturbation of keeping a constant velocity and to be
monochromatic, and yet fulfill the wave equation and introduce
means for improving the image reconstruction process, as
described later in Secs. 3.2 and 4.
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As reported in Refs. 14, 16, 23, and 24, the change of depth,
density (say, viscoelasticity), or acoustic impedance would
force the signal propagation to change its velocity distribution
(group velocity). In Ref. 14, we verified experimentally the
changes in the frequency spectrum, which in the temporal
domain are expressed as temporal stretching or broadening,
as a function of the boundary conditions and physical transport
properties.

Our stated proposition derived from these observations is that
the wave vector is frequency dependent, and in consequence,
the sound velocity cannot be constant. Since we cannot get
to know the actual propagation trajectory, including specific
impedance changes, we suggest that through a global modula-
tion, via the frequency-dependent sound velocity, one can sum-
marize the actual wave vector and the effective sound velocity.
Therefore, we suggest to consider a group-velocity-like, that is,
modulating the wave packet that gives shape to the PA mechani-
cal perturbation. An analogous case to this phenomena is related
to the propagation of an optical field through a random medium,
such as a colloid, where the wave number turns out to be a com-
plex function,25 which is analogous to this displayed here in the
Eq. (10). In Refs. 14 and 23, we displayed and discussed how is
that the sound speed keeps drifting the bandwidth and the peak
value, rather than keeping a constant speed distribution. Hitherto
the inverse problem and thus the conventional PA tomography
reconstruction does not incorporate this change in sound veloc-
ities as part of the solution strategies. Therefore, one of the cen-
tral motivations of the current contribution is to place a formal
discussion of the subject, and then work out a strategy to
dealt with this issue in a practical manner, specifically related
to the image reconstruction in PA tomography. To the best of
our knowledge, we assess that several authors have introduced
methodologies using additional experimental features to include
reference signals or else treating these in a postreconstruction
stage (for the PA signals or the PA tomography images), to
compensate specific image reconstruction defects. Yet, none of
these methods introduce or treat the problem in the way we dealt
with it. The interested reader can review for instance.2–8,16

In this work, we propose a practical projection approxima-
tion to treat and compensate dispersive acoustic media causing
either attenuation, or sound dispersion, or both, directly within
the recorded PA data. The homogeneous transport gives the
recorded data g0 as the projection of f̂0, with wave number k0.
As described by Gutierrez-Reyes et al.,24 by means of using the
appropriate sensing process, the signal read out would not alter
the projection characteristics in a meaningful way. In the pres-
ence of dispersive acoustic media, the PA perturbations would
be distorted due to changes of the acoustic impedance (acoustic
scattering) and attenuation with dispersion due to transport
length in a viscoelastic medium. Both contributions impose
changes on the frequency distribution and, in consequence,
on the characteristic velocity distribution, depending on the
acoustic dispersive properties of the media. This behavior
is apparent from the frequency-dependent wave number
kaðωÞ; kdðωÞ, or ka;dðωÞ.14 Thereafter, when referred generically
to the distinct type of perturbations, we will use the subindex
q ¼ fa; d; adg, respectively. Otherwise, each distinctive
index would be used for naming each perturbation type.
Consequently, we treat the signal alteration as a projection
transformation, caused by the transport perturbation gq, accord-
ingly with the q− perturbation type. We define gq ¼ T qg0,
where

EQ-TARGET;temp:intralink-;e016;326;752T qg0ðtÞ ¼
1

2π

Z
R

ω

c0kqðωÞ
eı̂ωt

Z
t2

t1

g0ðt 0Þe−ı̂c0kqðωÞt 0dt 0dω

(16)

represents how to transform the undistorted projection g0, to
become the perturbed projection gq. As noted before, the q-sub-
index runs as q ¼ fa; d; adg, depending on the perturbation that
is considered: attenuation, sound dispersion, or both, respec-
tively. Since c0 is constant, without loss of generality we can
assume c0 ¼ 1. We notice that Eq. (16) is a consequence that
in the Fourier space g0 and gq are related as

EQ-TARGET;temp:intralink-;e017;326;624ĝ0½x; kqðωÞ� ¼
kqðωÞ
ω

ĝqðx;ωÞ: (17)

The first integral implicitly introduces the attenuation and
diffusion to the clean measure g0 by evaluating its Fourier
transform at kqðωÞ, while the second integral (left) is the inverse
Fourier transform of Eq. (17). In practice, we know the pressure
gq at the boundary and want to recover g0 also at the boundary.
This is done by inverting the transformation Eq. (16). Further,
the three variants of the dispersive acoustic media, represented
by Eq. (16), require some knowledge of the function kðωÞ ¼
kqðωÞ. This function was discussed in Ref. 14, where it was dis-
closed that, depending on the perturbation type, it can be a real
or a complex number. Respectively, the wave number in the
three study cases of acoustical perturbation we discuss becomes
EQ-TARGET;temp:intralink-;e018;326;450

kðωÞ←

8>><
>>:

kaðωÞ ¼ ω
c0
þ 1

2
ı̂ āω2;

kdðωÞ ¼ ω
c0
− 1

2
d̄ω3;

ka;dðωÞ ¼ ω
c0
þ 1

2
ðı̂ āω2 − d̄ω3Þ:

(18)

Here, ā and d̄ represent appropriate weighting factors, mim-
icking perturbations in the tested transport media. The experi-
mental model conditions in Ref. 14 suggest equal constant
values for ā and d̄. Here, we simulate a PA scenario at real breast
scale (the diameter of the average female human breast measures
25 cm). Accordingly, we set the perturbation weights ā ¼ −0.1
and d̄ ¼ 0.1. Moreover, these parameters are close to the model
settings of Ref. 9 and keep all calculations stable.

3.2 Causality Condition

Here, we investigate the causality of the former models. We can
assume that we have a dispersive medium where the wave vector
is kðωÞ ¼ ω

cpðωÞ, as previously noted in Eq. (15), where we allow
the velocity to depend on the frequency, and this being a causal
response implies the existence of an imaginary velocity related
to the real part by the Krammers–Kronig relations that can be
written as a Hilbert transform. One needs to take care of whether
the Krammers–Kronig relations apply or not to the wave vector.
In general, the wave vector depends on the incidence angle and
boundary conditions, which are not intrinsic material properties.
Therefore, rather we consider it to be a self consistent value for a
certain wave equation with dispersion. To verify this assessment
we discuss three cases referring to the wave numbers of Eq. (18).
The first one is already well known in the literature9,26 and the
second has been partially discussed in Refs. 17 and 19, while the
third one relates to the Heaviside equation and that is central for
the current contribution. These cases are as follows.
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3.2.1 Attenuation with acoustic dispersion

Here the wave vector magnitude is defined as

EQ-TARGET;temp:intralink-;e019;63;723kðωÞ ¼ ω

cpðωÞ
¼ ω

c0
þ ā

2
ı̂w2: (19)

We know from the properties of the Hilbert transform that for
a function of complex variable such that the imaginary part is
the Hilbert transform of the real part, it should be an analytic
function (as noted in Sec. 15.1.2 in Ref. 27). Minding Eq. (19),
complex analytic function for the phase of the sound speed is
given as

EQ-TARGET;temp:intralink-;e020;63;615cpðzÞ ¼
1

1
c0
þ ā

2
ı̂z

(20)

and is an analytic function with z ¼ ωþ ı̂τ. When τ ¼ 0we find
that

EQ-TARGET;temp:intralink-;e021;63;551cpðωÞ ¼
1

1
c2
0

þ ā2
4
ω2

�
1

c0
−
ā
2
ı̂ω
�
: (21)

Therefore, the quadratic model describes a material whose
real part depends on the frequency, which is represented by a
Cauchy distribution; turning out then that the parameter ā is
related to the width of the distribution, in which the imaginary
part is its Hilbert transform.

3.2.2 Acoustic diffusivity

This time, let us assume that the velocity is real, although
diffusive as a result of scattering due to acoustic impedance
changes. It places conditions for the PA-induced mechanical
perturbation that prevents it from being monochromatic and
in consequence, an error in causality is introduced as

EQ-TARGET;temp:intralink-;e022;63;365kðωÞ ¼ ω

cpðωÞ
¼ ω

c0
−
d̄
2
w3: (22)

In these conditions we can choose its real part

EQ-TARGET;temp:intralink-;e023;63;311Re½cpðωÞ� ¼
1

1
c0
− 1

2
d̄ω2

; (23)

whose Hilbert transform can be found using a partial fraction
expansion. Furthermore, after using the result Eq. (32) in
Table 15.2 from Ref. 27, it turns out that if d̄ > 0, then the
imaginary part is

EQ-TARGET;temp:intralink-;e024;63;221Im½cpðωÞ� ¼
π

ffiffiffiffiffi
c0

pffiffiffiffiffiffi
2d̄

p
�
δ

�
ω −

ffiffiffiffiffiffiffi
2

c0d̄

s �
− δ

�
ωþ

ffiffiffiffiffiffiffi
2

c0d̄

s ��
:

(24)

However, if instead d̄ < 0, then its Hilbert transform gives

EQ-TARGET;temp:intralink-;e025;63;147Im½cpðωÞ� ¼ −

ffiffiffiffiffiffi
c0d
2

q
w

1
c0
þ 1

2
dω2

: (25)

Therefore, without an imaginary part, this model fails to
fulfill Krammers–Kronig and hence the causality condition.
This case resembles an analogy to the well-known anomalous

optical dispersion. So far, up to the best of our knowledge,
we recognize it as yet an open problem in PA interpretation.

3.2.3 Attenuation with acoustic dispersion and diffusive
scattering

This case is central for the present discussion. Its wave vector’s
magnitude is set to

EQ-TARGET;temp:intralink-;e026;326;667kðωÞ ¼ ω

cpðωÞ
¼ ω

c0
þ 1

2
ðı̂ āω2 − d̄w3Þ: (26)

Here we can choose

EQ-TARGET;temp:intralink-;e027;326;616cpðzÞ ¼
1

1
c0
þ 1

2
ðı̂ ā z − d̄z2Þ (27)

with z ¼ ωþ ı̂τ, which separating the real part and imaginary
part and taking τ ¼ 0 we get that

EQ-TARGET;temp:intralink-;e028;326;551cpðωÞ ¼
1
c0
− 1

2
d̄w2 − ı̂ 1

2
āw�

1
c0
− 1

2
d̄w2

�
2 þ 1

4
ā2ω2

: (28)

Thus, causality prevails. Despite this fact, it becomes appar-
ent that the imaginary part in the velocity spectra model is
required to describe causality with physical meaning. Instead,
if the velocity is a real domain parameter (depending on the
frequency), then an error is introduced that fails the causality
condition. Noticeably, one can get an explicit expression for the
frequency-dependent velocity distribution. In further sophistica-
tion, one can expect to properly describe the coefficients
ā and d̄, and find a proper analytic description in terms of physi-
cal properties. However, such a task is of a nature beyond the
current scope and would be treated in a separate analysis.

By the analysis of the three cases, the constant values
ā ¼ −0.1 and d̄ ¼ 0.1 do not affect the general argument of
causality. These values are only for the purpose of proof of
concept and testing the performance of the interpretation and
reconstruction model. We agree that a much more detailed
description and precise range of values for ā and d̄ is desired.
However, the task by its nature demand deep mathematical
analysis to obtain the conditions, and range of values and sol-
utions that are stable and have a correct physical meaning, and
at once also satisfy the requirements for achieving satisfactory
image reconstructions.

4 Photoacoustic Simulations

4.1 Forward Problem

In order to demonstrate how the modeled sound perturbations
affect the PA reconstruction, we carried out a simulation of
the 2-D propagation through the phantom in Fig. 1. This phan-
tom resembles the anthropomorphic features of a cross section
of a female human breast according to Ref. 28. It is discretized
to offer a simple visualization of different constant geometries
(i.e., indicated by manual annotations of medical experts) and is
here described as a collection of several overlapped circles
and one star displayed by gray scales at distinct values from
½0;1� ∩ Qþ. The data set was generated with a stable and reliable
open source vector graphics editor in such a way that it captures
the geometrical properties of the characteristic biological breast
components. Based on Ref. 28, we assign normalized optical
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absorption coefficients to the different regions values in the
range [0.5, 1] to specify sections of major absorption (dark
gray picture elements), as it is the case of cancerous and glan-
dular tissue. On the other hand, values in the range [0, 0.5] are to
specify sections of lesser absorption (brighter picture elements),
such as fat and fibroadenoma. According to the PA effect, the
light absorption map resembles the initial pressure distribution.
The soft tissues that we include in the phantom appear typically
in a common mammograph and similar values are expected for
PA tomography due to familiar energy absorption characteris-
tics; as an example, see the results shown in Ref. 29. For testing
our algorithms, we used a digitized version of the phantom using
a 400 × 400 image, which allows enough resolution for the
details of the specimen.

Once we decided on the corresponding sound attenuation
and dispersion weights ā and d̄ for a specific application,
and on the complex wave number kðωÞ in Eq. (18), the per-
turbed forward solutions ga; gd, and ga;d can be easily derived
by the homogeneous solution g0 according to the mathematical
expressions in A1-A3 of Sec. 3. For our experiments, we use
180 parallel projections acquired every degree with 400 lines
each. The resulting projection integrations are approximated
by g0 ≈Rf. The perturbed projection data are derived by the
transformation T qg0 as outlined in Eq. (16); i.e., ga ≈ T ag0 in
the case of acoustic attenuation, gd ≈ T dg0 in the case of sound
dispersion, and ga;d ≈ T a;dg0 in the case of both perturbation
factors.

4.2 Classical Filtered Backprojection Results

The digital reconstruction f 0q produced by the classical filtered
backprojection algorithm is obtained by applying inverse Radon
transform with a Ram–Lak filter to the calculated projections
gq; i.e., f 0q ¼ R−1gq. The projections are fast-Fourier trans-
formed and multiplied with the ramp filter in the frequency
domain. After backprojecting every set of the differently per-
turbed data, one can simulate the known artifacts: internal
reflections5 and image blurring,6,7 see Fig. 2. From the visual
inspection, we can give the following observations: while the

result in Fig. 2(a) is an almost error-free image of the original
pressure distribution map f, it poorly represents a realistic
reconstruction of a breast by PA imaging in comparison to real-
istic reconstructions of Ref. 30. Backprojection of La results in
Fig. 2(b) bringing out a blurring effect increasing toward the
upper half of the image, generated in accordance to our attenu-
ation approximation. On the other hand, backprojection of
Ld results in Fig. 2(c) producing internal reflections, directed
toward one side, as determined by the transport propagation
direction. As expected from the telegraph equation, Fig. 2(d)
describes a reconstruction with both phenomena, blurring and
less visible reflections. Besides one can assess that the blurring
component turns out to be dominant over the reflections. A task
oriented figure-of-merit (FOM) is suitable for a qualitative
evaluation of algorithm performance. FOMs provide different
measures of picture distances between a reconstruction and
a phantom. Next, we recall two of the most known standard
criteria for qualitative assessment of the reconstruction.31,32

4.2.1 Normalized root mean squared distance

This criterion emphasizes the importance of large errors
throughout all the J pixels of the discretized images

EQ-TARGET;temp:intralink-;e029;326;502dRMSðf; f 0Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

J
j¼1 ðfj − f 0jÞ2P
J
j¼1 ðfj − fÞ2

vuut ; (29)

where fj and f 0j indicate the j’th element of f and f 0,
respectively. A small value of dRMSðf; f 0Þ indicates a small
reconstruction error.

4.2.2 Structural accuracy (STR)

Let f̄ðmÞ and f̄ 0ðmÞ be the average pixel value of f and f 0, respec-
tively, of those pixels whose centers are within structure m
from the total of M structures. Then, we define the structural
accuracy as

EQ-TARGET;temp:intralink-;e030;326;339dSTRðf; f 0Þ :¼ −
1

M

XM
m¼1

jf̄ 0ðmÞ − f̄ðmÞj: (30)

For the current case, we compare a total number of six struc-
tures (M ¼ 6) as can be distinguished in Fig. 3.

In Table 1, we show the numerical comparison of the per-
turbed backprojection displayed in Fig. 2. The numerical values
are obtained from the above-mentioned FOMs. We notice that
the acoustic dispersion deteriorates mainly the structural accu-
racy and increases the normalized root mean squared (RMS)
distance between the digitized phantom and its reconstruction.
Interestingly, in this specific reconstruction example, the
modeled acoustic perturbations are not linearly dependent. We
consider that this case represents a realistic situation because
attenuation and dispersion have physically distinct origins and
implications.

4.3 Corrected Photoacoustic Projection Data and
Improvement of the Image Reconstruction

The solution strategies elaborated in Sec. 3 give a hint about how
to obtain an estimation of the transport inversion. For further
simulations in a computer, we need to discretize the transport
T in propositions A1-A3 with the complex wave-number

Fig. 1 A 400 × 400 digitization f of the phantom f representing struc-
tures in the coronal view of a breast by geometrical shapes. The light
gray circles (a), (b), and (c) represent bounded and unbounded fibroa-
denomas and the dark circles (d) and (e) represent small cancerous
tumors; a larger tumor is here depicted by a star (f). The expected
absorption coefficients in the anthropomorphic features are quantified
with a value arbitrarily assigned from the interval ½0;1� ∩ Qþ, while the
expected absorption coefficients in the breast glandular tissue (g) are
assigned to a value equal to 0.8 and in fat (h) to 0.2 (in arbitrary units).
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description in Eq. (18); however, its analytical inversion cannot
be guaranteed since the linear system is ill-conditioned because
of the perturbed description. An acceptable discretization T for
the three propositions of A1-A3 can be derived by numerical
analysis. One such discretization is the singular value decompo-
sition (SVD), which approximates T by the matrix product
UWVt where U and V are real or complex unitary matrices
(whose transpose is represented by Vt), and W is a rectangular
diagonal matrix. For a positive real number ε > 0, we can obtain
an approximation of the inverse of T according to

EQ-TARGET;temp:intralink-;e031;326;248T−1
1;εg ¼

XJ
j¼1

wj

w2
j þ ε2

hg;VjiUt
j; (31)

with Uj and Vt
j representing the j’th row of matrices U and Vt,

respectively, and all wj, for all pixel indices 1 ≤ j ≤ J, are non-
negative real singular values (i.e., the square roots of the J eigen-
values). As a follow-up study of the simulations, the inversion of
the discretized transport description of propositions A1-A3 to
better approximate projection data was applied in Ref. 14.
In fact, this strategy has also been used by other authors, such
as in Ref. 9. In respect to the SVD algorithm, when used for
this purpose, it is known to become unstable when ε tends to
zero. Hence, in order to optimize the inversion, we applied
a simple line search strategy, which converged at ϵ ¼ 20.

We want to demonstrate that the corrected projection data are
in agreement with the PA transport model, i.e., T −1

a ga instead of

Fig. 2 Digital reconstructions f 0q from the projection data gq : (a) no transport-dependent artifacts are
visible in f 00 when acoustic perturbations are absent (in the case of g0); (b) f 0a shows image blurring;
(c) f 0d shows internal reflections; and (d) f 0a;d shows the combination of reflections and blurring in
the same reconstructed image.

Fig. 3 Six objects of the phantom of Fig. 1 for a structural accuracy
evaluation.

Table 1 Mean distance and structural performance of the perturbed
noise-free backprojection.

Transport dRMS ðf; f 0qÞ dSTR ðf; f 0qÞ
L0 0.1770 −0.0160

La 0.2990 −0.0623

Ld 0.4153 −0.0546

La;d 0.2944 −0.0588
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ga when attenuation is present, T −1
d gd instead of gd when

dispersion is present, and T −1
a;dga;d instead of ga;d in the case

of both modeled acoustic perturbations and it lead us to
improved backprojection results. Since a qualitative evaluation
is restricted to a computer simulation, as performed here, we
tried to incorporate a realistic error description into our math-
ematical model.

The signal-to-noise analysis in Ref. 33 provides a noise
description of biomedical PA measurements and indicates
how to integrate this noise into our simulation. We have tested
different piezoelectric sensors and measured their ambient
noise. Consequently, we added to our projections additive

Gaussian white noise with mean μ ¼ 50 × 10−4 and standard
deviation σ1 ¼ 2 × 10−4. The resulting signal-to-noise ratio
(SNR), as defined in Ref. 34, is equivalent to μ∕σ1 ¼
25 ≈ 14 dB, which is similar to the case study of Ref. 33.
In addition, a realistic scenario is to assume that light scattering
in deeper biological tissues produces a negative impact on the
PA SNR.22 Therefore, we looked at the scenario when the SNR
is reduced to 25%; thus, we selected σ2 ¼ 8 × 10−4, which
results in μ∕σ2 ¼ 6.25 ¼ 10 log106.25 dB ≈ 8 dB.

In Fig. 4, we present various backprojection reconstructions
obtained from inverting the simulated forward results, and after
following the strategies A1-A3. In the left column, we show the

Fig. 4 Digital image reconstruction f 0 ¼ R−1T −1
q gq : on the left side are the results of the common filtered

backprojection in the presence of additive Gaussian white noise with an SNR of 14 dB. On the right side
are the backprojection after adjustments to th projection data compensating the perturbation of dispersive
acoustic media. The correspondence with Fig. 2 is placed as follow: (a) and (b) correspond to blurring
from attenuation, (c) and (d) to acoustic reflections, and (e) and (f) include both attenuation and
reflections.
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results of backprojecting the perturbed data while in the right
column we show the results after appropriate adjustments that
compensate for the perturbation of the modeled dispersive
acoustic media. A visual inspection of these results suggests that
our methodology was able to minimize both image blurring and
internal reflections; the latter problem seems to be particularly
well resolved in this computer simulation.

For a more quantitative way of evaluating the image
reconstructions, we compared the plots of pixel densities for a
representative column in the phantom and the reconstruction, as
shown in Figs. 5–7. In all studied cases, the reconstruction error,
defined as the sum of all differences between the reconstruction
using corrected PA projection data (black dash-dot curve) and
the ground truth (blue continuous curve), has been considerably
reduced, in comparison with the standard delay-and-sum algo-
rithm (red-dashed curve). When the attenuation perturbs the
transport, the discrepancy between both backprojections and
phantom is less noticeable. The backprojections of the sound
dispersion in turn bring out a strong reduction of the error
oscillations. In the presence of noise, we perform qualitative
image reconstruction analysis taking into account the previously

mentioned FOMs. The results of this analysis are listed in
Table 2 (average values), where the backprojection and the per-
turbation adjusted reconstructions are contrasted. It is apparent
that the application of transport inversion led to success in
almost every transport study; the exception is the case of La

with the poor SNR of 8 dB. In particular, when the dispersive
acoustic media provokes internal reflections due to acoustic per-
turbations, the proposed projection adjustment is highly recom-
mended. When the SNR is high, the sound dispersion correction
achieved a noticeable error minimization (especially in the
center of the reconstruction) with respect to both quality mea-
sures dRMS and dSTR. In turn, the modeled Gaussian white noise
has a mean value close to zero. This correction became less
noticeable as the SNR diminished. From these results, we
may infer that an inversion of the noisy projection information
under the specific circumstances does not adversely affect the
image reconstruction. On the contrary, the projection processing
strategy provides a fundamental improvement on image recon-
structions in the presence of acoustic perturbations. Here, we
identified the model inconsistencies and corrected the projection
data at the stage prior to reconstruction.

Fig. 6 Transport assumption T d with different SNR estimation: (a) 14 dB and (b) 8 dB. The continuous
curve (blue) is the ground truth, the dashed curve (red) is the delayed and sum case, and the dash-dot
curve (black) is the backprojection with signal processing.

Fig. 5 Transport assumption T a with different SNR estimation: (a) 14 dB and (b) 8 dB. The continuous
curve (blue) is the ground truth, the dashed curve (red) is the delayed and sum case, and the dash-dot
curve (black) is the backprojection with signal processing.
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5 Discussion and Conclusion
In this paper, we have extended the previous work,14 detailing
concepts hinted at and however left aside. Among the most
noticeable contributions we cover now is the introduction of
the phase velocity [see Eq. (28)], with explicit frequency
dependence. As a requirement, we also covered the causality
conditions that apply to the different wave functions employed
to describe the PA signal propagation. Also as extension for the
theoretical interpretation, we suggest an integral transformation
as a tool for correcting distortions induced over the initial PA
source; which can also be understood as a density of energy,
with temporary influence from a locally induced temperature
field.21 In addition, we clarify the model description, as a dif-
fusive model of the pressure field in contrast with coherent
model description. This consideration encourages an open dis-
cussion for a better interpretation of the range of parameters
involved in the propagation interpretations. The improvement
is therefore more on the understanding of the meaning and appli-
cation of the concepts, rather than a fundamental change in
the state-of-the-art PA tomography technique, which is already
highly sophisticated.

By now, we have demonstrated that the PA transport in
dispersive acoustic media can be modeled with the Heaviside
telegraph equation, from which can be introduced a consistent
criterion to realize PA image reconstruction accounting for dis-
persive conditions of a given acoustic media, in a simplified
manner. Among the implications we show that if the projection
data are identified as the Radon transform of the perturbed
source, it leads to bad approximations of the initial pressure
[or absorption distribution, or time derivative of the temperature,
according to the interpretation we assign to fðx;ωÞ]. Moreover,
by a computational simulation we demonstrated how this
misinterpretation affects the reconstruction finesse. Yet this
apparent inconvenience brought us to introduce a method for
achieving significant improvement in all study cases. This is
made after using a quality and performance evaluation of the
backprojection algorithm; i.e., by preprocessing the acquired
data we manage to compensate the lack of information content,
which is a consequence of the natural loses over the transport
process. The general assessment is that the improvements we
display here are introduced without demanding further comput-
ing efforts, compared with existing methods.

The findings presented here show the applicability of
common algorithms for image reconstruction from projections
to PA imaging. The general requirement is to ensure that the
acquired data comply with an appropriate perturbed transport
model, as suggested in Ref. 9. Thus, our work encourages
the usage of recent improvements on reconstruction algorithms
to produce much improved results. Consistent with most PA
transport considerations, our model extension unifies actual
theoretical and experimental findings of PA imaging theory
and provides tools for interpreting noise and other sources of
image artifacts. Along the way, we place a classification of
the waveform transport, which are inspired by PA methods
that potentially will benefit biomedical imaging.

Another important aspect of the current contribution is the
introduction of the phase and group velocity concepts; we define
an intrinsic sound velocity depending on the frequency, that is
compatible with the causality condition (possibly a complex
number). As a preliminary step to introduce these concepts,
we choose the parameters according to good numerical results
supported by previous reports.9 In reality, the parameter ā
should be a very small number, ∼6.4 × 10−14 s2 m−1 for water
at 20°C as in Ref. 35 and positive, and it is well understood

Fig. 7 Transport assumption T a;d with different SNR estimation: (a) 14 dB and (b) 8 dB. The continuous
curve (blue) is the ground truth, the dashed curve (red) is the delayed and sum case, and the dash-dot
curve (black) is the backprojection with signal processing.

Table 2 Mean distance and structural performance of the perturbed
noisy backprojection.

Transport

dRMSðf; ·Þ dSTRðf; ·Þ

R−1g R−1T −1g R−1g R−1T −1g

SNR ¼ 14 dB

La 0.2874 0.2100 −0.0544 −0.0270

Ld 0.4220 0.1906 −0.0561 −0.0181

La;d 0.2863 0.2021 −0.0532 −0.0235

SNR ¼ 8 dB

La 0.2822 0.2860 −0.0475 −0.0430

Ld 0.4174 0.2374 −0.0541 −0.0281

La;d 0.2852 0.2807 −0.0518 −0.0380
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that it arises from thermal conductivity and viscosity.26,36 The
other parameter d̄ is related to the diffusion coefficient; and
therefore, somehow is linked to the mean free path between
scatterers;20 so far we must consider it just as an empirical
model, because we are not using the exact dispersion relation
and therefore the meaning has not yet been clarified.
Nevertheless it is noticeable that, when it is present, the meaning
of ā changes. As we see, when ā ¼ 0 and d̄ ≠ 0, the model
description fails to be causal. Indeed this subject requires more
research, aiming among other things, to find out these condi-
tions for which the current predictions match the physical prop-
erties in a close manner. By now we posed it as an intermediate
step to model a diffusive media, keeping in mind that this model
stage can be verified experimentally, and their proper range of
values determined. We also want to emphasize that derived from
the present results, the approach for compensating diffusion and
attenuation using the complete dispersion relation is a topic that
deserves attention. Derived from such considerations we man-
aged to achieve further stable improvements on the task of
image reconstruction; in terms of quantity and quality of infor-
mation, as a complement to the existing theory. As noted within
the contribution, there are several other aspects to be furthered
and thus assess, which other outcomes can be gained.

Indeed it is clear that our proposed methodology can be
extended to other modalities of waveform tomography by cor-
respondingly estimating the model parameters for the specific
inverse problem. Once the appropriate values are selected,
it is important to adjust the acquired PA data to the perturbed
transport model. We are aware that our proposal for PA tomog-
raphy represents a partial step, and further work to characterize
the noise present in the data is yet required in terms of different
kinds of sensing methods.24,37 Advances in this problem with
different perspective in mind may also be found on the field of
inverse media or obstacles, which is at the borderline with image
reconstructions with linear and nonlinear frameworks.21,37–39
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