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Abstract

Significance: To achieve early detection of osteoporosis, a simple bone densitometry method
using optics was proposed. However, individual differences in soft tissue structure and optical
properties can cause errors in quantitative bone densitometry. Therefore, developing optical
bone densitometry that is robust to soft tissue variations is important for the early detection of
osteoporosis.

Aim: The purpose of this study was to develop an optical bone densitometer that is insensitive
to soft tissue, using Monte Carlo simulation and machine learning techniques, and to verify its
feasibility.

Approach: We propose a method to measure spatially resolved diffuse light from three direc-
tions of the biological tissue model and used machine learning techniques to predict bone density
from these data. The three directions are backward, forward, and lateral to the direction
of ballistic light irradiation. The method was validated using Monte Carlo simulations using
synthetic biological tissue models with 1211 different random structural and optical properties.

Results: The results were computed after a 10-fold cross-validation. From the simulated optical
data, the machine learning model predicted bone density with a coefficient of determination
of 0.760.

Conclusions: The optical bone densitometry method proposed in this study was found to be
robust against individual differences in soft tissue.
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1 Introduction

Bone strength is determined by two factors: bone mineral density (BMD), which is a measure
of bone mass, and bone quality, which is a measure of bone structure and microfractures.1

Osteoporosis is a disease in which the bone strength is reduced, thereby increasing the risk
of fracture.1 Bone mass increases during growth, peaks in the twenties, and declines with age
from around the forties.2 However, failure to achieve sufficient peak bone mass increases the risk
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of future osteoporosis. Fractures due to osteoporosis reduce the quality of life3,4 and, in the long
term, significantly increase the risk of mortality, regardless of the presence or absence of
fractures.5,6 Osteoporosis is called the “silent disease” because there are often no subjective
symptoms even when bone mass is reduced.7 In addition, two-thirds of hip fracture patients
will never regain their previous activity level.1 Accordingly, early detection of a decrease in
BMD might be an effective tool for early intervention.

The gold standard for BMD measurements is double energy x-ray absorptiometry (DXA),
which quantifies BMD as areal BMD (aBMD, g∕cm2).1,8,9 Although DXA has excellent fracture
prediction capabilities,9–11 its application to the early detection of low BMD is limited by its large
size and the risk of exposure to ionizing radiation. Quantitative ultrasound (QUS) is the only
method for measuring bone without ionizing radiation and may predict fracture risk independ-
ently of DXA.1,12 However, QUS scores are distinct from measurements based on BMD, and
diagnostic criteria have not been defined. Motivated by the need to measure BMD in a simple
and safe manner for the early detection of osteoporosis, optical bone densitometry has been
studied.13,14

Bone densitometry using near-infrared light could be a new screening method for osteopo-
rosis. Near-infrared light has excellent biological penetration properties,15 and there is a strong
relationship between BMD and light scattering phenomena.16,17 The bone matrix is composed of
calcium-containing hydroxyapatite crystals deposited on a collagen fiber matrix. The principle of
BMD measurements using x-rays, including DXA, is based on the linear relationship between
the concentration of the crystal and the absorption of x-rays. The bone also intensely scatters
optical photons because of these crystals. An early in vitro study by Takeuchi et al.18 showed
a strong correlation between transmitted light intensity and aBMD. In addition, Ugryumova
et al.16 showed that the scattering coefficient correlates with compact bone BMD on visible and
near-infrared wavelengths.

Despite the strong relationship between BMD and light scattering, the bone matrix is not
the only substance that scatters light in biological tissues. Most bones are at least covered
by soft tissues, such as the dermis and subcutaneous tissue. In the visible and near-infrared wave-
length range, quantitative measurement of BMD is difficult because of variations in soft tissue
structure and optical properties caused by individual differences. For example, Pifferi et al. used
time-resolved transmittance spectroscopy (TSR) to measure the calcaneus; however, they dem-
onstrated that large measurement errors can occur because of differences among subjects and the
complexity of the soft tissue.19 In addition, Chung et al. reported a correlation between near-
infrared light transmittance and aBMD in the ultradistal radius, but they were concerned about
the bias from soft tissue.14 We previously reported that the slope of the intensity distribution
formed by diffuse reflected light correlates with BMD but showed nonlinear variation with skin
thickness and BMD.13

We propose the following approach to solve the problem of variation in optical measurements
resulting from individual differences in soft tissue. First, spatially resolved steady-state diffuse
light was measured in three directions in the medium. Here, the three directions are backward,
forward, and lateral to the direction of ballistic light irradiation. The method is based on the idea
that there is a functional relationship between the measurement direction and light scattering
by the bone. In addition, the penetration depth of the light reflected in the backward direction
corresponds to approximately half of the distance between the light source and the detector,20

and the light observed in the forward and lateral directions reflects all information on the light
path to get there. Specifically, diffuse light spatially resolved in different directions provides
mixed information about the structure and optical properties of all tissues through which the
light passes, with different degrees of influence depending on the location being measured.
Second, the relationship between diffuse light and BMD acquired at different positions was
generalized using machine learning (ML) techniques. ML is a method of analyzing data in which
a computer automatically learns and discovers the rules and patterns behind the data.21 For an
ML model to have sufficient generalization performance, it needs data from a population with
sufficient variance to represent individual differences in soft tissue and BMD.

Biological tissue models with random structures and optical properties were generated, and
the light transport was simulated using the Monte Carlo method. The biological tissue model
consisted of the dermis, subcutaneous tissue, and bone tissue. The structural and optical
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properties of the soft tissue were randomly determined to represent a population with sufficient
variance. In the bone tissue, the three-dimensional (3D) trabecular pattern was generated using
Alan Turing’s reaction-diffusion model22 because it is difficult to assign the trabecular bone a
single optical property representative of a BMD value. The reaction-diffusion model is a widely
used mathematical theory for describing the pattern formation process in biology, which is
observed in bone during the early stages of calcification and development.23,24 Because trabecu-
lar bone has a 3D nonlinear structure, the simulation was performed using a voxel-based Monte
Carlo (VMC) model, which is a 3D extension of the Monte Carlo model for steady-state light
transport in multilayered tissues (MCML) by Wang et al.25,26

The purpose of this study is to develop and validate an ML prediction model with diffuse
light as training data using a Monte Carlo simulation. The Monte Carlo model simulated spa-
tially resolved steady-state diffuse light data acquired in three directions of the biological tissue
model assuming an ultradistal radius. If this method is sufficiently accurate, it can be used for
simple and safe bone densitometry, thus contributing to the early detection of osteoporosis.

2 Materials and Methods

2.1 Generation of Biological Tissue Model

The procedure for generating the biological tissue model is shown in Fig. 1. The biological tissue
model consisted of the bone tissue, subcutaneous tissue, and dermis. The bone tissue was com-
posed of the cortical bone, trabecular bone, and bone marrow. In this section, we describe the
four steps for generating the biological tissue model.

In the first step, the structural properties of the biological tissue model were determined ran-
domly. The structural properties of the biological tissue models are listed in Table 1. The thick-
nesses of the dermis and the subcutaneous tissue were determined using random numbers of
uniform probability with a range of 1 to 2 mm27 and 1 to 6 mm,28 respectively. The structural

Fig. 1 Procedure for generating tissue models.

Table 1 Structural properties of biological tissue models.

Thickness in z- and x -axis
direction (mm) BV/TV

mBMD
(g∕cm3) Ref.

Dermis 1.0 to 2.0 — — Kozarova et al.27

Subcutaneous 1.0 to 6.0 — — Hassager et al.28

Cortical bone Osteoporosis 0.487 ± 0.138,
osteopenia 0.571 ± 0.173,
normal 0.804 ± 0.149.

— 1.2 Boutroy et al.29

Trabecular bone 17.15 minus the cortical
bone thickness

Osteoporosis 8.5 ± 2.2,
osteopenia 10.3 ± 3.0,
normal 13.4 ± 2.8

1.2 Boutroy et al.29

The values showing the range (number–number) have a uniform distribution of probability, and the mean ±
standard deviation has a normal distribution. The three states of cortical bone thickness and BV/TV correspond
to their respective values.
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properties of the bone tissue were based on measurements of the ultradistal radius of women
by Boutroy et al.29 The cortical bone thickness (C.Th) and trabecular bone volume (BV) ratio
[BV/tissue volume (TV)] vary at different stages of osteoporosis (osteoporosis, osteopenia, and
healthy subjects). Therefore, the C.Th and BV/TV were determined using random numbers,
assuming a normal distribution with different mean and variance values for each stage of
osteoporosis. The distributions of C.Th and BV/TV were correlated with a Pearson correlation
coefficient r of 0.54. The BMD of bone matrix (mBMD) assumed 1.2 g∕cm3 of fully calci-
fied bone.

In the second step, the trabecular pattern was generated using Alan Turing’s22 reaction-
diffusion model. The modeling was based on a report by Miura and Maini.30 The governing
equation of the diffusion-reaction model is

EQ-TARGET;temp:intralink-;e001;116;603

(
∂u
∂t ¼ fðu; vÞ þ duΔu
∂v
∂t ¼ gðu; vÞ þ dvΔv

: (1)

This equation is called the activator-inhibitor system and is represented by the nonlinear reaction
functions fðu; vÞ and gðu; vÞ, as well as diffusion terms, where u is the concentration of the
activator and v is the inhibitor. The nonlinear terms f and g are

EQ-TARGET;temp:intralink-;e002;116;516f ¼ 0.6u − v − u3; g ¼ 1.5u − 2v: (2)

The diffusion term Δ is the Laplace operator, and du and dv are the diffusion coefficients.
In this study, du and dv were set to 0.0002 and 0.01, respectively. The governing equation
[Eq. (1)] was solved by an implicit scheme31 based on the Fourier transform on a 0.025 grid
in a 720 × 720 × 720 3D grid space, assuming periodic boundary conditions. The calculation
was repeated 100 times with dt ¼ 1, and the solution was confirmed to converge. The initial
states of u and v were assumed to be uniformly distributed random numbers within a range
of �0.5.

In the first step, the border between the trabecular bone and bone marrow space was defined
by the threshold uth. First, a uth was applied to ten trabecular patterns, which were determined by
randomly generating u with 10 different initial conditions. Accordingly, 10 trabecular bones
were created with a similar BV/TV, in which u ≥ uth was defined as the trabecular bone and
u < uth as marrow space. By repeating this process with 13 uths, as shown in Fig. 2, the relation-
ship between uth and BV/TV was obtained and is expressed as follows:

Fig. 2 Relationship between BV/TV and uth, where uth is the threshold of the activation factor u.
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EQ-TARGET;temp:intralink-;e003;116;735uth ¼ −7.662ðBV∕TVÞ3 þ 1.645ðBV∕TVÞ2 − 0.452BV∕TV þ 0.604: (3)

Equation (3) was fitted to a polynomial function using the least-squares method. Next, the voxel
size uwas defined. Because u is composed of voxels that do not have a size, we set the voxel size
to 24.5 μm. This voxel size was similar to the resolution of the μCT image. The generated tra-
becular bone appeared to replicate the trabecular pattern observed in the real bone, as shown in
Fig. 3. In addition, the generated trabecular bone was comparable to the ultradistal radius with
respect to the trabecular number (Tb.N, mm−1),29 fractal dimension,32,33 and structure model
index (SMI),34,35 as shown in Table 2. These values quantitatively evaluate the trabecular bone
shape. Because of the anisotropy of the trabecular pattern, the trabecular space (Tb.Sp) and vari-
ance (Tb.Sp SD), as well as the trabecular thickness (Tb.Th), were smaller than those of the
ultradistal radius. In this study, this model was selected as the trabecular bone model because
it can represent BMD changes in BV/TV, and the trabecular pattern resembles the shape of the
real bone. Bone histomorphometry measurements were derived using TRI/3D-BON-FCS (Ratoc
System Engineering Co. Ltd., Japan).

In the fourth step, the bone tissue, subcutaneous tissue, and dermis were defined, and a bio-
logical tissue model was generated, as shown in Fig. 4. The biological tissue model was assumed
to be the ultradistal radius, and the bone axial direction was set as the y axis. First, the size of

Fig. 3 Comparison of appearance between (a) trabecular bone generated by the reaction-
diffusion model and (b) a μCT image of a bovine trabecular bone taken from a femoral neck.

Table 2 Comparison of measurements of bone histomorphometry between the trabecular bone
generated by the reaction–diffusion model and that of the human ultradistal radius.

Generated trabecular bone Trabecular bone of the ultradistal radius

Normal Osteopenia Osteoporosis Normal Osteopenia Osteoporosis Ref.

BV/TV (%) 13.4 10.3 8.5 13.4 ± 2.8 10.3 ± 3.0 8.5 ± 2.2 Boutroy et al.29

Tb.N (mm−1) 1.74 1.51 1.32 1.71 ± 0.22 1.44 ± 0.29 1.32 ± 0.21

Tb.Th (μm) 56 52 49 78 ± 11 71 ± 11 63 ± 11

Tb.Sp (μm) 204 211 219 517 ± 88 656 ± 187 714 ± 140

Tb.Sp SD
(μm)

40.6 42.5 44.3 212 ± 58 342 ± 201 340 ± 89

Fractal
dimension

2.13 2.03 1.93 2.33 ± 0.04 2.24 ± 0.03 Bayarri et al.33

SMI 2.04 2.27 2.44 2.26 ± 0.38 Zhou et al.35

Degree of
anisotropy

1.01 1.02 1.03 1.45 ± 0.09
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bone tissue was determined. To ensure sufficient size in the bone axial direction, the generated
trabecular bone was copied and joined in the y axis direction. From the cross-sectional area of the
ultradistal radius,29 a square with a size of 17.15 mm per side was defined as the outer bone
surface (OBS) in the x-z plane (Fig. 4). Thus, the size of the bone tissue was 17.15 mm on
the x-z axis and 35.28 mm on the y-axis. This size is comparable to the area of the trabecular
bone in the distal radius.29 Next, a cortical bone with a size of C.Th was defined from the OBS
toward the center of the trabecular bone, and the bone tissue was generated. The aBMD of the
bone tissue was defined using BV/TV, the size of the OBS in the x-axis direction (lobs, cm), and
mBMD as follows:

EQ-TARGET;temp:intralink-;e004;116;397aBMD ¼ mBMD

�
1 − ð1 − BV∕TVÞ

�
1 −

2C:Th
lobs

�
2
�
: (4)

Finally, the subcutaneous tissue and dermis were generated in order from the OBS to the outward
direction of the bone tissue, as shown in Fig. 4. All of the above processes were coded in
Python 3.8.

2.2 Monte Carlo Simulation

Light transport in the synthetic biological tissue model was simulated using the Monte Carlo
method. To deal with a tissue model containing trabecular bone with a 3D nonlinear pattern
(Fig. 4), a VMC was built by extending MCML25,26 to three dimensions. To represent individual
differences, the optical properties of soft tissues were randomly determined.

The VMC, as a voxel element, was defined as a hexahedron of size lv (24.5 μm). Voxels are
assigned eigenvalues linked to optical properties and addresses indicating their location, and
each voxel has a 3D space with the center coordinates as the origin. Photon packets were
launched orthogonally onto the center of the biological tissue model, as shown in Fig. 4, which
corresponds to a collimated infinitely narrow beam of photons. The weight of the initial photon
was set to 1, and the specular reflection of light was treated in the same manner as in the MCML.
Because the VMC has boundaries in six directions, the condition for a photon packet to hit with
the voxel boundary is as follows:

EQ-TARGET;temp:intralink-;e005;116;135s − db ≥ 0; (5)

EQ-TARGET;temp:intralink-;e006;116;92s ¼ −
lnðξÞ

μa þ μs
; (6)

Fig. 4 Appearance of the synthetic biological tissue model assuming the ultradistal radius.
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where s is the propagation distance of the photon packet in one step25 and db is the distance to the
voxel boundary. ξ is a uniformly distributed random number between 0 and 1, and μa and μs are
the absorption and scattering coefficients, respectively. db is calculated using the direction vector
μ ðμx; μy; μzÞ and position p ðpx; py; pzÞ of a photon packet inside the voxel as

EQ-TARGET;temp:intralink-;e007;116;687db ¼ min

8>>>>><
>>>>>:

lv
2
−px signðμxÞ

jμxj
lv
2
−py signðμyÞ

jμyj
lv
2
−pz signðμzÞ

jμzj

; (7)

where a photon packet hits the voxel boundary orthogonal to the axial direction, thus yielding a
minimum value for db (i.e., if the expression involving px and μx is the smallest compared with
the other two, then the photon packet hits the boundary on the y–z plane). The positive or neg-
ative axial directions of the hitting photon packets can be determined from the direction vectors.
When a photon packet hits a boundary, s is updated with

EQ-TARGET;temp:intralink-;e008;116;541siþ1 ¼ si − db: (8)

If there is a difference in the refractive index between the next and current voxels, whether the
photon is internally reflected or transmitted is determined by the Fresnel equations and random
numbers in the same manner as in MCML. For example, when a photon packet is transmitted,
the photon position is updated from pi to piþ1 and address ai ðax; ay; azÞ is updated to aiþ1

ðaxþ1; ay; azÞ for the transmission direction, as shown in Fig. 5. Then, when the photon packet
hits the boundary again, the same operations are repeated until Eq. (5) becomes negative. If a
photon packet escapes from the tissue model, its position, vector, and weight are preserved.

The optical properties of the biological tissue models are listed in Table 3. The range of
optical properties was determined by referring to literature values, assuming measurements with
ballistic light at a wavelength of 850 nm. μa and μs of the soft tissue were determined using the
measurements of Simpson et al.36 with uniform random numbers. The optical properties of
the dermis measured by the authors included those of blacks and whites, and they assumed that
the dermis and epidermis were combined. μs of the bone was derived from the equation of
Ugryumova et al.16 Because mBMD is the wet density in Ugryumova’s equation, μs was calcu-
lated after converting mBMD to wet density from the data of Williams et al.38 Thus, the con-
version equation between mBMD and μs is

EQ-TARGET;temp:intralink-;e009;116;315μs ¼ 17.77mBMD − 0.74: (9)

Fig. 5 Transfer of photon packets between voxels.
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Most of the bone marrow in the radius is composed of adipose cells after the age of 20 to 30
years.39 Therefore, the optical properties of the bone marrow are the same as those of the sub-
cutaneous tissue, which is mainly composed of adipocytes.

2.3 Machine Learning

ML techniques were used to predict the aBMD from diffuse light simulated by the VMC. An
overview of the system is presented in Fig. 6. In this section, we describe the four-step calcu-
lation procedure for predicting aBMD and the module that infers the function that relates simu-
lated diffuse light to aBMD.

2.3.1 Prediction of bone density

In the first step, VMC was used to simulate light transport in a biological tissue model.
Calculations were performed with a total photon count N of 107. VMC was applied to 1211
tissue models with different structural and optical properties. In each model, the structural and
optical properties were randomly combined in the ranges listed in Tables 1 and 3. Photon packets
that escaped from the tissue model were categorized as backward, forward, or lateral to the
direction of the packets launched. For the lateral direction, only the positive direction of the
x-axis was considered. Photon packets escaping in three directions were defined as backscattered
light (B), forward scattered light (F), and lateral scattered light (L).

In the second step, the physical quantity of packets escaping in the three directions was
scored. For B and F, the sum of photon weights w was calculated for each radial distance r

Fig. 6 Procedure for predicting BMD using an ML model with data simulated by the Monte Carlo
method.

Table 3 Optical properties of biological tissue models.

μa (mm−1) μs (mm−1) g n Ref.

Dermis 0.0063 to 0.0856 14.20 to 25.06 0.9 1.4 Simpson et al.36

Subcutaneous 0.0049 to 0.0124 8.30 to 13.96 0.9 1.4 Simpson et al.36

Bone 0.0237 20.58 0.9 1.55 μa and μs , Ugryumova et al.16;
n, Ascenzi and Fabry37

μa, absorption coefficient; μs , scattering coefficient; g, anisotropy coefficient; n, refractive index.
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from the photon packet launched coordinate with a range of Δr, as shown in Fig. 6. Here, r is
represented by the array r ¼ ½0;Δr; 2Δr; 3Δr; : : : ; nΔr], and the sum of w is calculated from the
range between ri and riþ1. The scored light intensity arrays Br and Fr were

EQ-TARGET;temp:intralink-;e010;116;699Br ¼
IB

NΔAr
; (10)

EQ-TARGET;temp:intralink-;e011;116;644Fr ¼
IF

NΔAr
; (11)

where IB and IF are the arrays that represent the sum of w per ri with respect to B and F,
respectively, and ΔAr denotes the area of the annular ring, which is calculated as follows:

EQ-TARGET;temp:intralink-;e012;116;598ΔAr ¼ 2π

�
iþ 1

2

�
Δr2: (12)

Br and Fr were derived up to r ¼ 10 mm with Δr ¼ 0.4 mm. For Br, the initial position r0 was
set to 0.5 mm because the light intensity at r ¼ 0 was considered to be difficult to measure
accurately when assuming actual measurements. For L, the sum of photon weights w was cal-
culated for each positive distance along the z-axis from the photon packet irradiation coordinate
with a range Δz, as shown in Fig. 6 (i.e., z is represented by the array z ¼ ½0;Δz; 2Δz; 3Δz;
: : : ; nΔz�, and the sum of w is calculated from the range bounded by zi and ziþ1). Here, the
effective width of the y-axis is �Δy. The scored light intensity array Lz in the z-axis direction is

EQ-TARGET;temp:intralink-;e013;116;469Lz ¼
IL

NΔAz
; (13)

where IL is an array that represents the sum of w per zi with respect to L and ΔAz indicates the
area of the square, which is calculated as follows:

EQ-TARGET;temp:intralink-;e014;116;402ΔAz ¼ 2ΔyΔz: (14)

Lz was derived up to z ¼ 20 mm with Δz ¼ 0.1 mm and Δy ¼ 5 mm.
In the third step, the obtained Br, Fr, and Lz were processed to generate the feature vectors.

The feature vectors Bf, Ff, and Lf are

EQ-TARGET;temp:intralink-;e015;116;334Bf ¼ ½Br; ln mBr; ln vBr�; (15)

EQ-TARGET;temp:intralink-;e016;116;290Ff ¼ ½ln mFr; ln vFr�; (16)

EQ-TARGET;temp:intralink-;e017;116;267Lf ¼ ½ln Lz; ln mLz; ln vLz�; (17)

where mBr, mFr, and mLr are the mean and vBr, vFr, and vLr are the variances of Br, Fr, and
Lr, respectively. Fr was not used in Ff because Fr did not form a valid distribution. For the Lz

signal, moving averages were calculated at 1 mm intervals. Then, to reduce the length of the Lz

array, averages of 2 mm intervals were adopted, that is, the length of array Lz was 10. The
elements of each feature vector were normalized to a mean of 0 and standard deviation
(SD) of 1 for the dataset as follows:40

EQ-TARGET;temp:intralink-;e018;116;183

Bfi − μbi
σbi

→ Bfi; i ¼ 1;2; 3; : : : ; nb; (18)

EQ-TARGET;temp:intralink-;e019;116;128

Ffi − μfi
σfi

→ Ffi; i ¼ 1;2; (19)

EQ-TARGET;temp:intralink-;e020;116;92

Lfi − μl
σli

→ Lfi; i ¼ 1;2; 3; : : : ; nl; (20)
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where μ and σ are the mean and SD of the dataset in each element of the feature vector and n is
the total number of elements.

In the fourth step, aBMD was predicted using the ML model from Bf, Ff, and Lf. The
calculations with VMC, feature vector generation, and aBMD prediction using ML models were
performed in Python 3.8.

2.3.2 Machine learning module

In this section, we describe the module that infers from labeled examples a function that relates
the feature vectors (Bf, Ff, and Lf) and aBMD.

Four different ML techniques were tested: ridge regression (RR), support vector machine
(SVM), random forest (RF), and gradient tree boosting (GTB). The criteria for selecting ML
techniques were that they should be sufficiently stable and flexible for the particularities of the
data, as well as have a strategy to control overgeneralization. RR solves a regression model in
which the loss function is a linear least-squares function, and the regularization is given by the l2-
norm.41,42 The coefficients of the regularization term were varied and tested in the range of 10−5

to 10−1. SVM is less sensitive to noise using ε-insensitive loss functions and can construct non-
linear functions using kernel tricks.43 A radial basis function (RBF) kernel was selected and
tested with the kernel coefficient γ varying in the range of 10−4 to 1. The soft margin C and
tube ε were also adjusted. RF is one of the decision tree-based ensemble methods in which the
output is an aggregation of the outputs of a set of classification and regression trees.44 In RF,
three parameters were adjusted: the number of decision trees, the minimum number of samples
for a node to be considered a leaf, and the number of features to consider when calculating the
optimal node split.45 GTB is one of the decision-tree-based ensemble methods and is a gener-
alization of boosting for arbitrary differentiable loss functions.46,47 In GTB, six parameters were
adjusted: the number of decision trees, the degeneracy of the step size used in the update to
prevent overfitting, the maximum depth of the tree, the total minimum instance weights required
for the children, the subsample ratio of the training instances, and the subsample ratio of the
columns in building each tree.45 For RR, SVM, and RF, we used the modules included in scikit-
learn 0.24.2, and for GTB, we used XGboost 1.4.2.

To select the best structure and parameters for each ML module, 80% of the total data were
used as a training and validation dataset (trDataset). The remaining 20% of the dataset (tsDataset)
were used for testing and comparison purposes. The structure and parameter set of each algo-
rithm were modified, and the best performing one was selected after a 10-fold cross-validation
with grid search in trDataset. In 10-fold cross-validation, 90% of the dataset was randomly
selected and used for training, and the remainder was used for validation. This was performed
10 times by rotating the dataset. The stability of the ML techniques was also verified by cross-
validation. After obtaining the best configuration, tsDataset was used to evaluate the perfor-
mance. The coefficient of determination (r2) was used as the metric for performance evaluation.

3 Results

The criterion for selecting the ML algorithm was the value of the coefficient of determination r2

on tsDataset. tsDataset is a random selection of 20% (242) of the original dataset. The trDataset,
which contains the remaining 80% (969), was used to train the algorithms. The ML algorithm
was tuned in trDataset to achieve the best performance with 10-fold cross-validation. Once the
best set of parameters and structures were found, the ML algorithms were retrained with the
trDataset, and the performance was tested using tsDataset. Figure 7 shows a comparison of the
coefficients of determination for each algorithm. The SVM regression exhibited the best per-
formance (r2 ¼ 0.757). The coefficients of determination for the other ML algorithms were r2 ¼
0.572 for RR, r2 ¼ 0.451 for GTB, and r2 ¼ 0.252 for RF. To determine the stability of the
algorithm for unknown data, the SD of r2 between the 10-fold cross-validation at trDataset was
computed. The SD of r2 in the cross-validation of SVMwas 0.056, which is an acceptable value.

For the prediction of aBMD using SVM, the coefficient of determination r2 on tsDataset was
computed for all combinations of Bf, Lf, and Ff (Fig. 8). The purpose of this study was to
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investigate the extent to which feature vectors and their combinations are related to aBMD. The
parameters were tuned for all feature vector combinations with 10-fold cross-validation in
trDataset. The prediction combining all of the feature vectors showed a coefficient of determi-
nation. Conversely, the prediction of aBMD from Bf, Lf, and Ff alone exhibited lower perfor-
mance (r2 ≤ 0.302). These results suggest that it is difficult to predict aBMD with one feature
vector, but combining feature vectors allows for highly accurate predictions.

As the final test, the performance of the system was tested on all 1211 data cases using the
SVM method. SVM was selected because it gave the highest r2 value for the aBMD prediction.
The performance was assessed using 10-fold cross-validation on the entire dataset. The relation-
ship between the predicted and reference values of aBMD is shown in Fig. 9. A linear regression
of predicted and reference aBMD yielded an r2 value of 0.760, indicating reasonable agreement.
The Bland–Altman (BA) plot is shown in Fig. 10. The BA plot is a method used to check the
agreement and systematic errors between two measurement methods.48 The BA plot indicates a
moderate correlation coefficient r of 0.22, with a slight proportional bias. This proportional bias

Fig. 8 Differences in the coefficient of determination (r 2) of SVM regression by combinations of
feature vectors. Bf , feature vector from backscattered light; Lf , feature vector from lateral scattered
light; F f , feature vector from forward scattered light.

Fig. 7 Comparison of aBMD prediction performance by different ML algorithms. SVM, support
vector machine; RR, ridge regressor; GTB, gradient tree boosting; RF, random forest.
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may not be a problem in practice. The mean difference between the predicted and reference
values was 0.00, with no fixed bias. The limit of agreement for the predicted values was
�0.124 g∕cm2. These results suggest that BMD can be predicted with high accuracy using this
method, even if there is variance in the thickness and optical properties of the soft tissue.

4 Discussion

The purpose of this study was to develop an optical bone densitometry method that is insensitive
to individual differences in the structural and optical properties of soft tissues and to verify its
feasibility. In the proposed method, spatially resolved diffuse light was obtained in three direc-
tions (backward, forward, and lateral to the direction of light irradiation) simulated by the Monte
Carlo method, and BMD was predicted using ML techniques from these data. The cross-
validation demonstrated that the proposed method can predict BMD with high accuracy and
low error in the simulation. The results suggest that the proposed method can be applied to
optical bone densitometry, which is robust to variations in soft tissue.

Fig. 9 Relationship between predicted and reference aBMD.

Fig. 10 Bland–Altman plot for predicted and reference aBMD.
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Because the biological tissue model synthesized in this study is randomly constructed based
on the range that a living organism can exhibit, the data obtained by the Monte Carlo simulation
are considered to reflect a population with sufficient variance. The range of soft tissue properties
was determined randomly based on measurements. In particular, the optical properties of the
dermis cover a wide range of people, from colored individuals to Caucasians.36 In bone tissue,
a trabecular pattern was generated by the reaction-diffusion model because it is difficult to assign
the trabecular bone a single scattering coefficient representative of a BMD value. The equation of
Ugryumova et al.16 yields negative scattering coefficients for a range of trabecular bone BMDs.
In addition, Pifferi et al. found no age-related changes in the scattering coefficient in calcaneal
measurements using TSR.19 Overall, the unique and irregular shape of the trabecular pattern may
lead to a different light scattering process compared with a homogeneous medium. The trabecu-
lar patterns generated in this study were similar to those of real bone in terms of appearance,
BV/TV, and quantitative geometric structure. In addition, BMD was randomly adjusted from
severe osteoporosis to the range of normal subjects. Moreover, the Monte Carlo method is the
gold standard for modeling light transport in tissues.49 Therefore, we consider that the diffuse
light simulated in this study represents the structural and optical properties of the biological
tissue for a population of sufficient variance.

The results shown in Fig. 7 seemingly contradict those reported by Chung et al.14 Those
authors demonstrated that the transmitted light intensity and aBMD are strongly correlated
in the measurement of the ultradistal radius using an 850 nm wavelength light. However, in
our results, the aBMD estimated only from transmitted light does not show a high coefficient
of determination. This inconsistency seems to be due to the dispersion of the population. Chung
et al. focused on a limited sample size of (10 participants). BMD measurements using only
transmitted light are probably limited to populations with small variations in soft tissue com-
position. Nevertheless, Ff, when combined with R, Rf, and Lf, clearly increased the coefficient
of determination. This result suggests that the combination of light measured in different direc-
tions reduces the error from soft tissue with individual differences.

There is a possible nonlinear relationship between BMD and spatially resolved diffuse light
observed in several directions. As shown in Fig. 8, SVM showed a higher prediction perfor-
mance than RR. The RR is an algorithm based on linear multiple regression,41,42 whereas
SVM is an algorithm that can be applied to nonlinear data by mapping using nonlinear kernel
functions, such as RBF.43 In other words, the difference in the coefficient of determination
between RR and SVM predictions of aBMD is probably due to the difference in the ability
to support nonlinearity. GTB and RF are also nonlinear algorithms, but because they are deci-
sion-tree-based algorithms, they are probably not suitable for application to diffuse light, which
shows continuous variation with distance from the light source. Therefore, when predicting
BMD from our data, an algorithm for nonlinear data, such as SVM, is considered necessary.

The aBMD predicted using SVM from the Monte Carlo simulated data had a high coefficient
of determination and lower error (Figs. 9 and 10). Thus, it has been demonstrated that our
method can evaluate BMD with high prediction performance even when the bone is surrounded
by soft tissue with individual differences in thickness and optical properties.

We acknowledge that there are several limitations to this study. First, the simulation was only
a theoretical test. However, the simulations provide theoretical and clear insights into the differ-
ent tissues that affect diffuse light. In addition, we believe that the combination of Monte Carlo
simulation and ML techniques has several implications for the development of noninvasive
medical measurements using the light diffusion theory that are beyond theoretical verification.
An ML model built with sufficient variance and a large amount of data has excellent generali-
zation performance; however, in the field of medical measurement, there are often ethical barriers
and difficulties in data acquisition, such as a limited number of cases and invasive measurements.
The simulation, which can generate almost unlimited data if computational resources are avail-
able, could offer a promising solution to such problems. Second, the VMC has boundaries in only
six directions, which is an obvious limitation when compared with mesh-based methods49–52 that
can represent more free boundaries. However, inside a light-scattering medium, such as a bio-
logical tissue with a complex structure, light is averaged by scattering. Therefore, an overly accu-
rate representation of the curvature of the trabecular structure is probably not practical. Third, a
simple rectangular biological tissue model was adopted in this study. This model did not consider
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the heterogeneity in soft tissues, blood vessels, and complex bone structures; however, this infor-
mation could be implemented in the model using CTand MRI techniques. However, the potential
importance of this model is that it allows for a simple and targeted discussion of random changes
in soft tissue thickness and optical properties in the validation of optical bone densitometry. This
model might provide useful information about the interaction between the bone and soft tissue in
measurements using diffuse light. All of the limitations mentioned here are attributed to the fact
that it is unclear how much of the actual biological tissue should be assumed in the model to
represent the light diffusion phenomenon and its output in vivo. It is also possible that simpler
models represent substantial physical phenomena. Therefore, it is necessary to verify this by
model experiments using phantoms and clinical trials.

5 Conclusion

In this study, we developed optical bone densitometry using Monte Carlo simulation and ML
techniques and validated this method by cross-validation. From the results obtained, we con-
cluded that the aBMD predicted from spatially resolved steady-state diffuse light data acquired
in the backward, forward, and lateral planes of the biological tissue model was robust to
differences in soft tissue layers thickness and optical properties.
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