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Abstract

Significance: Nonenzymatic glycation of collagen covalently attaches an addition of sugar mol-
ecules that initially were involved in a reversibly reaction with amino groups on the protein. Due
to the ultimate formation of stable irreversible advanced glycation end products, the process of
glycation leads to abnormal irreversible cross-linking, which ultimately accumulates with age
and/or diabetes in the extracellular matrix, altering its organization.

Aim: We report the use of dual-retarder Mueller polarimetry in conjunction with phase retard-
ance to differentiate collagen cross-linking in a normal collagen gel matrix from that in tissues
with nonenzymatic cross-linking.

Approach: A dual-liquid crystal-based Mueller polarimetry system that involves electronic
modulation of polarization state generators (PSGs) was employed to produce all types of polari-
zation states without moving any part and enable detection of the signal directly using a Stokes
polarimeter. The linear phase retardance response was obtained for the characterization of the
solution and gel forms of collagen using differential Mueller matrix analysis.

Results: We found that linear phase retardance measurements via differential Mueller matrix
polarimetry successfully differentiated collagen gel matrices with different degrees of cross-link-
ing formed by a nonenzymatic glycation process and demonstrated that this technology consti-
tutes a quick and simple modality.

Conclusions: This approach has high sensitivity for studying differences in fibrillar cross-link-
ing in glycated collagen. Further, our work suggests that this method of structural analysis has
potential clinical diagnostic value owing to its noninvasive and cost-efficient nature.
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1 Introduction

Collagen is the most abundant extracellular matrix (ECM) protein in the human body by weight
and is critical for various tissues, for it functions as both a structural component and a signaling
molecule operating via biomolecular interactions. Collagen constitutes 30% of ECM proteins
and interacts with a diverse range of biomolecules, including proteins, sugars, proteoglycans,
polyphenols, and drugs.1 A number of studies have investigated the influence of ECMmechanics
on several diseases, such as cancer, corneal diseases, osteoarthritis, connective tissue diseases,
autoimmune disorders, and cardiovascular diseases,2 showing fibrous changes occurring in the
microenvironment of tissues at the molecular level. Several studies have demonstrated that col-
lagen protein molecules can covalently add sugar molecules not only through a natural enzyme-
catalyzed reaction but also by a nonenzymatic reaction called glycation. Recent studies have
indicated that the nonenzymatic glycation of collagen occurs with the accumulation of collagen
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in the ECM, with age and/or diabetes, leading to alteration of tissue mechanics and cell function.
The end products of these reactions are known to be permanent. Therefore, the effects of non-
enzymatic cross-linking on collagen are important factors to be studied in modern biomaterial
science because they affect the properties of tissues or biologically derived scaffolds and play an
essential role in diseases. Effects of nonenzymatic cross-linking are also implicated in the path-
ology associated with diabetes, atherosclerosis, and Alzheimer’s disease.3–6 Yuen et al. reported
the effect of diabetes-induced glycation of the ECM on cell function by modeling the glycation
reaction based on collagen treated with methylglyoxal for elucidating the development of fib-
rosis in diabetes.7 Collagen glycation was thus shown to enhance intercellular adhesion forma-
tion and cell migration over collagen to generate myofibroblasts.

At the molecular level, the major mechanism of glycation involves the reversible formation of
Schiff bases that are reversibly transformed into Amadori adducts on collagen proteins, leading
to the ultimate irreversible formation of stable advanced glycation end products (AGEs), as
shown in Fig. 1. Recent cutting-edge research has established a variety of methods to evaluate
collagen protein glycation based on the detection of AGEs or collagen molecular changes.8–11

Some of these methods, such as antibody detection,12 fluorescence spectroscopy,9,13,14 Fourier
transform infrared (FTIR) spectroscopy,10 and multiphoton13,15 and confocal Raman micros-
copy,3,16,17 are only applicable directly to ex vivo or in vivo samples. Other methods for the
quantitative determination of intermolecular protein cross-linking, such as electrophoresis, mass
spectrometry, and high-performance liquid chromatography, have largely been limited to non-
routine specialized applications owing to the highly technical sample preparation required for
these methods.18

The above-mentioned study by Rancis-Sedlak et al. shows Col I gel exhibiting statistically
significant increases in autofluorescence, cross-linking, and resistance to proteolytic degradation
in proportion to increasing the concentration of a reducing sugar (glucose-6-phopshate) in the gel
for an incubation period of 5 days.8 They demonstrated that the increase in the reducing sugar
concentration was associated with changes in the mechanical properties of collagen gels. This

Fig. 1 Major mechanism of collagen glycation.
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phenomenon led to an increase in the protein volume fraction and the storage and loss moduli of
Col I gel, which, in turn, caused an increase in cross-linking in the intermolecular spacing of
collagen during glycation. Glycated collagen gels are seen to have similar morphology (fiber
density and orientation) when observed using confocal microscopy and intensity signals are seen
to decrease in glycated collagen gels compared with those of control gels when observed using
SHG microscopy, as demonstrated by Kim et al.15 Herein, the network morphology of the Col I
gel matrix is sensitive to the varying condition parameters during self-assembly into fibrils, such
as the concentration of collagen monomers, temperature, pH, and ionic strength. According to
early studies for quantitative molecular analysis, they found a decreased pore size and growing
turbidity with increasing collagen gel concentrations (0 to 5 mg/ml), which may result from
increasing the number, increasing the randomness distribution of fiber orientation, and/or
increasing the size of collagen fibrils.19–22

Collagen fibrils, being complex molecular structures, have intrinsic linear birefringence aris-
ing due to anisotropy at the molecular scale, as well as to the anisotropy of form, and the overall
linear birefringence is fundamentally determined by the anisotropic distribution of spatially elec-
trical charges. Previous studies have used polarized light to detect and analyze the anisotropic
properties of collagen using tissue samples. Boulesteix et al.23 used a polarimetric imaging sys-
tem to measure the Mueller matrices of stained collagen samples. In addition, the investigation of
the comparative study of Mueller and SHG imaging for uterine cervical cones and vaginal tissues
is reported by Schanne-Klein research group.24,25 The results indicated that Mueller’s approach
allowed for the reconstruction of collagen fiber orientation maps to expand their ability to
acquire microstructural information. Pham et al.26 also demonstrated the algorithm to extract
the effective parameters of anisotropic materials based on the decomposition formalism pro-
posed by Lu and Chipman.27 The problem of the strict sequential order of matrix components
required for the decomposition method was resolved by a differential Mueller matrix proposed
by Azzam et al. and Ortega-Quijano and Arce-Diego,28,29 and the determination of the aniso-
tropic parameters was enabled by an approach presented by Liao and Lo.30 Researchers have
increasingly been attempting to develop the novelty quantification approach to provide a better
understanding for biological samples, specifically for collagen-rich tissue. Dong et al.31 pro-
posed the backscattering Mueller matrix configuration setup using the efficient calculation
Mueller matrix transformation method and demonstrated that it is suitable for monitoring the
microstructural changes of skin tissues during UVR-induced photodamaging. In transmission
configuration using the logarithmic Mueller matrix decomposition (LMMD) algorithm, Lee
et al.32 found that total linear retardance of the dermal layer containing collagen and elastic fibers
depended linearly on thickness and that the increase of standard deviation of the retardance
values varied with tissue thickness because of the thickness fluctuations. Based on Beer–
Lambert law, some quantitative ratios of parameters, which are thickness invariant, were pro-
posed to provide the higher contrast mapping biological images to minimize the thickness fluc-
tuation effects. Furthermore, Li et al.33 used Mueller matrix microscopy data,32 the logarithmic
decomposition approach, and polarized Monte Carlo (MC) modeling for analyzing tissue micro-
structure in human skin equivalents. Recently, Lee et al.34 demonstrated that the images of polari-
zation and depolarization parameters with LMMD are available for collagen visualization of
cervical tissues using a liquid crystal-based Mueller polarimetric imaging system. The results
for the mice model of pregnancy indicated that this method has a good potential to become a
clinical tool for in vivo detection of the PTB risk. Therefore, Stokes–Mueller matrix polarimetry
is a label-free, direct, and nondestructive optical method that can measure molecular organiza-
tion in biological samples under their native conditions.

A better understanding of the characteristics of biomolecules at the level of microstructures is
necessary to clarify the effects of nonenzymatic cross-linking on tissues and biologically derived
scaffolds. To address the challenges posed in the understanding of the interactions involved in
collagen glycation, herein, we report the production of native, fibrillar, and nonpepsined type I
collagen glycated in vitro using ribose as a reducing sugar. Moreover, this study is the first to
demonstrate the use of the differential Mueller matrix polarimetry approach for the detection
and analysis of glycated fibrillar collagen. Our investigation shows that this method is a rela-
tively simple modality that could facilitate structural analyses of biological tissues at the
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macromolecular level for performing noninvasive collagen measurements for clinical diagnostic
applications.

2 Materials and Methods

2.1 Sample Preparation

The collagen (type I) solution, obtained from a rat tail (354249, Corning), was used to prepare
fiber samples grown in vitro. For the analysis of the collagen matrix, each series of comparisons
of collagen was performed with gels polymerized at the same time. Three experimental replicates
were used to determine the appropriate sample size. For all measurements, each gel had three
individual data to provide the average and standard deviation of the optical parameter. A collagen
solution having a working concentration of 1 to 2 mg/mL was prepared on ice and diluted with a
phosphate-buffered saline (PBS) solution to constitute the total gel volume. The pH of the col-
lagen solution was neutralized using sterilized sodium hydroxide (NaOH). The collagen solution
was slowly polymerized in an Ibidi μ-slide 8-well (Ibidi GmbH, Germany) culture chamber at 4°
C for 20 h. The gels, with thicknesses of 0.5 to 1.5 mm, were released from the bottom of the
sides of the dish and then fixed in 4% paraformaldehyde. Glycated collagen was obtained by
incubating collagen gels (2 mg/mL) at 37°C for 4 days with different concentrations of D-ribose
(R7500, Sigma) in 1× PBS and buffered to physiological pH at the same temperature.

2.2 Experimental Setup

Figure 2 shows the dynamic measurement system proposed in this study. The system consists of
a 532-nm green laser light source, a half-wave plate with a linear polarizer (LP) for tuning the
laser power, an LP with its principal axis adjusted to 45 deg with respect to reference axis, two
liquid crystal variable retarders (LCVRs) (Thorlabs) with their fast axis adjusted to 90 deg and
−45 deg, respectively, and a quarter-wave plate (QWP) with fast axis adjusted to 90 deg. Here,
we note that an LP in the PSG part is placed at the first optical component and defines an input
polarization state that would have minimum interference between the tuning laser power part and
the PSG part. According to this, we suggest that the principal axis of both LPs are set to the same
direction for modulating the maximum power tuning range. When the misalignment occurs, it
leads to becoming smaller power tuning range only. Finally, a commercial Stokes polarimeter
(PAX1000, Thorlabs) having an accuracy of�0.25%was used to measure the Stokes parameters

Fig. 2 Schematic of the dual-retarder Mueller polarimetry system. The blue dashed lines re-
present the PSG unit employing an LP, two LCVRs (LCVR1 and LCVR2), and a QWP.
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of the state of polarization (SOP) of the sample at the focusing plane with about 3-mm light spot.
For the PSG calibration, we used the Stokes polarimeter as a consistency reference coordinate to
probe the alignment performance during each device setting, which way reduce misalignment
effects. All types of polarization states could be generated by the different applied voltages, and
the lookup table was created for measurements. According to our configuration and the cali-
brated lookup table of both liquid crystals, the same polarization state of the recorded signal
by our commercial Stokes polarimeter is obtained under the condition without sample (air).
Therefore, the generated polarization states were identified in this way before measuring the
sample due to the reliable experimental data. As a result, four polarization states by modulating
voltage could be produced for the calculations of the experimental Mueller matrix. A program
designed in LabVIEW software (National Instruments) by our team was used to synchronously
control the instrument through interfaces that were constructed in house. The program was also
used to electronically control the two aforementioned liquid crystal devices, which could be used
to rapidly produce any polarization state and record the SOP of the transmission light after pass-
ing through the sample.

2.3 Stokes–Mueller Matrix Polarimetry Formalism

The polarization state of the light passing through the sample was described in terms of four
parameters of the Stokes vector (S), denoted as I;Q;U, and V (S0, S1, S2, and S3 with normal-
ized total intensity, It) in the Cartesian coordinate system. The Mueller matrix (M) of a particular
sample is a 4 × 4 matrix that provides a complete description of the polarizing and depolarizing
properties of the medium for any polarization of the input light. In addition, the Mueller–Stokes
formalism is defined by the linear relationship

EQ-TARGET;temp:intralink-;e001;116;447Sout ¼ MSin; (1)

where Sout and Sin are the Stokes vectors of the output and the incident light, respectively.
To yield all of the equations required to solve the sample matrix M, four polarization states
of the input light were used, and the Stokes vectors need to form a tetrahedron in polarization
space (on the Poincaré sphere) for the calculation condition,35 including three linear polarization
states (with the angle of the major axis at 0 deg, 45 deg, and 90 deg) and one right-hand circular
polarization state. The corresponding input Stokes vectors are given as Sin 0 deg ¼ ½1; 1; 0; 0�T,
Sin 45 deg ¼ ½1; 0; 1; 0�T, Sin 90 deg ¼ ½1;−1; 0; 0�T, and Sin_R ¼ ½1;0; 0;1�T, respectively. Here, we
note that the selection of four input polarization states in this study is not the optimal tetrahedral
for the set of input states. The configuration of the collimated transmission along the z direction
of the propagation of light is determined as the differential matrix m corresponding to a macro-
scopic Mueller matrix M of the sample. The relationship is expressed as

EQ-TARGET;temp:intralink-;e002;116;280m ¼
�
dM
dz

�
M−1: (2)

Because the light transmits through a finite length of sample, the matrix contains the infor-
mation by accumulated effects. In general, the optical path weighted differential matrix (m̄)
obtained from Eq. (2), as given in Ref. 29, is measured for the unknown path length of the
homogeneous medium (Δz), which is expressed as

EQ-TARGET;temp:intralink-;e003;116;187m̄ ¼ Δz �m: (3)

Based on the matrix of accumulated information, the parameters have a clear physical inter-
pretation, such as linear birefringence, linear dichroism, circular dichroism, circular birefrin-
gence, and so on. According to the anisotropic form of collagen material, the linear phase
retardation properties (β̄) from the linear birefringence with accumulated effects are obtained as
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EQ-TARGET;temp:intralink-;e004;116;735β̄ ¼ Δz � β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m̄42 − m̄24

2

�
þ
�
m̄34 − m̄43

2

�s
; (4)

where m̄ij are the elements of the optical path weighted differential Mueller matrix of the sample.

3 Results and Discussion

3.1 Collagen Solution and Gel Matrix with Different Optical Path Length

Based on the differential Mueller matrix method, linear phase retardation measurements for the
constant-concentration collagen solutions and gels are shown in Figs. 3(a) and 3(b), respectively.
For the different optical path length of collagen molecules solution, an average linear phase
retardation value was statistically calculated, yielding a value between 0.1205 and 0.1231.
For collagen gels, the variation in retardance values corresponding to the optical path length
(distinct thickness), as shown in Fig. 3(b), significantly increases from thin to thick paths, lead-
ing to the retardance values increasing from 0.1339 to 0.2009 (R2 ¼ 0.9848 for fitting). The
coefficients of variation for the solutions, 0.025% (0.5 mm), 0.055% (1.0 mm), and 0.086%
(1.5 mm), as shown in Fig. 3(a), are all observed to be lesser than those of the gels, 0.618%
(0.5 mm), 2.354% (1.0 mm), and 1.705% (1.5 mm), respectively, as shown in Fig. 3(b). It is
suspected that the fluctuation in retardance values is higher for thicker samples owing to the
random accumulation of the tissular scaled orientation distribution of collagen fibers/fibrils
in the gel matrix.

3.2 Collagen Solution and Gel Matrix of the Different Concentration

In this study, we analyzed the linear phase retardation for three concentrations of collagen: 1, 1.5,
and 2 mg/mL. An equal volume (200 μL) of collagen solution of each of the aforementioned
concentrations was prepared in microwells. Along with collagen solutions, collagen gels were
also prepared for measurement and analysis of the linear phase retardation, the results of which
are presented in Fig. 4. As shown in Fig. 4(a), the retardance remained unchanged with increas-
ing collagen concentration for collagen solutions and had an average value between 0.1260 and
0.1280. For collagen gels of different concentrations, averaged retardation values for 1, 1.5, and
2 mg/mL collagen gels were obtained as 0.1447� 0.009, 0.1472� 0.009, and 0.160� 0.0236,
respectively. The statistical results indicate that the increase in retardance was faster as the col-
lagen concentration increased. The standard deviation of the measured linear retardance values
of the 2 mg/mL collagen gel over four repeated tests was significantly high.

The results shown in Figs. 3 and 4 show the variation of retardance with differing thicknesses
and concentrations of samples. According to this, we found an increasing retardance fluctuation

Fig. 3 Linear retardance measurements for 2 mg/mL (a) collagen solution and (b) collagen gel.
Varying thicknesses of the samples resulting in different optical path lengths are represented on
the x axis. The error bars represent the standard deviation.
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with increasing self-assembly of collagen monomer concentrations into fibrils or thickness fluc-
tuations (optical path length), which is similar to previous findings.19–22,32

3.3 Glycation Reacting with Different Concentration

A further series of experiments was performed to investigate the protein glycation effect of colla-
gen by measuring the variation in the phase retardation of collagen gel with different concentra-
tions of D-ribose solutions after an incubation period of 4 days. Before nonenzymatic process, the
collagen gels initially were prepared at the same time and the same condition with equal concen-
tration of collagen (2 mg/mL) to exclude the impact of collagen gel thickness fluctuations. The gels
were incubated and were maintained at ∼37°C during glycation treatment. Figure 5 shows the
experimental results obtained for gels having D-ribose added at concentrations of 0, 25, 50, and
100 mM, yielding average phase retardations of 0.1560, 0.1568, 0.1995, and 0.2110, respectively.
Thus, the collagen gel with the highest concentration of D-ribose was observed to show a 35%
increase in linear retardance in comparison with that of the gel without D-ribose. In addition, the
results show that collagen gel reacts with higher concentrations of D-ribose in a manner that leads to
lesser variation in the retardance value. Overall, a statistically significant difference was induced by
the higher D-ribose concentration in phase retardation of the glycated collagen gel compared with
that of the PBS control group (0 mM concentration of D-ribose).

4 Discussion

In this study, Stokes–Mueller matrix polarimetry was implemented by electronically modulating
the polarization state generator (PSG) to produce all types of polarization states without moving
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Fig. 5 Linear retardance measurements for glycated collagen gel. Varying concentrations of
D-ribose after 4 days are represented on the x axis. The error bars represent the standard
deviation.

Fig. 4 Linear retardance measurements for samples of equal thickness of (a) collagen solution
and (b) collagen gel. Varying concentrations of collagen are represented on the x axis. The error
bars represent the standard deviation.
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any part and by detecting the signal directly using a Stokes polarimeter. The PSG can produce
any arbitrary SOP using two liquid crystal retarders and a QWP setup, which was proposed by
Morales et al..36 The details of this setup were elaborated on in our previous paper.37 The dual-
retarder setup is more compact, rapid, and easily accessible, which led us to use this method for
our experimentation. We obtained results based on performing measurements for linear phase
retardance to characterize solution and gel forms of collagen via differential Mueller matrix
analysis. Our approach can thus be applied as a nondestructive biophotonic probing technique
for studying native and glycated type I collagens. The values of the parameters in Eq. (4) are
accumulated along the optical path (Δz), and the resultant intrinsic birefringence is expressed in
radians. The index difference Δn ¼ ny − nz is often referred to as the birefringence of the
material, and the effective birefringence here is obtained from linear phase retardance (β) of
optical samples in a form described in Ref. 38:

EQ-TARGET;temp:intralink-;e005;116;592Δn ¼ β
λ

2πΔz
; (5)

where λ is the wavelength of light.
Tissue birefringence has been probed using various methods in previous studies, which sug-

gest that intrinsic birefringence occurs in regularly arranged fibrillary tissues, and the intrinsic
birefringence for native collagen from tendons was measured to be in a range from 2.8 × 10−3 to
3.7 × 10−3.39,40 Our results show an initial estimate of the effective birefringence (Δn) for a
collagen (Col I) gel with random fibers having ∼2% porosity to be 0.0178 × 10−3. This value
is lower than expected because the collagen matrix is hydrated, which reduces the mass fraction
and distorts the alignment, unlike native collagen tissue that has a high mass fraction and good
alignment. The porosity of the collagen gel was obtained by calculating the ratio of the apparent
collagen signal volume to the total volume using second-harmonic generation (SHG) micros-
copy, the details of which are elaborated on in our previous paper.

Our results in this paper are similar to those of other studies8,15 with regard to showing that
the effective birefringence (phase retardation) of collagen in the glycated condition increases due
to cross-linking among fibers or fibrils in the intermolecular space proportional to ribose con-
centration in the culture medium. This increase was not observed for controls and 25 mM gels.
Under similar incubation conditions, Roy et al. used attenuated total reflectance-FTIR spectros-
copy to demonstrate that the accumulation of fluorescent-AGEs showed direct linear proportion-
ality to the ribose concentration.10

To our knowledge, this is the first study to quantify the birefringence of type-I collagen gels
incubated with a reducing sugar. This indicates that our newly proposed approach is capable of
assessing a similar concentration-dependent dose response in the amount of bound collagen in
cross-linking reactions without having to detect AGE formation for nonenzymatic glycation
processes. Further, this method creates great potential for studying reversible/irreversible
cross-linking of collagen in tissue, as well as for developing methods to distinguish altered
organization of collagen among different stages of the glycation process, especially in diabetes.

In conclusion, we showed that the amount of collagen fibrillar/fiber network in a gel matrix
can be reliably determined from the measurement of the optical phase retardance (β̄), yielding an
effective linear birefringence obtained using a decoupled analytical technique based on the
Stokes–Mueller matrix differential method. Results obtained by analysis of the collagen gel
matrix in our experiments were consistent with those of previous studies and enabled the differ-
entiation of the fiber cross-linking state for a nonenzymatic glycation process. In particular, this
label-free and contact-free approach provides a quick and simple modality, which can have
important applications for further studies on glycated collagen in biological samples. Hence,
analysis facilitated by this method, which does not involve slicing and staining the tissue, rep-
resents a powerful tool that can provide new insights into early state clinical diagnostics in terms
of time and cost efficiency, as well as help to track the development of diabetes and similar
diseases.

Disclosures

The authors declare no conflicts of interest.

Lien, Chen, and Phan: Birefringence effect studies of collagen formed by nonenzymatic glycation. . .

Journal of Biomedical Optics 087001-8 August 2022 • Vol. 27(8)



Acknowledgments

We would like to acknowledge the support of the Ministry of Science and Technology,
Taiwan (MOST) for funding this research (MOST-109-2221-E-239-013-, MOST-110-2221-
E-239-016-).

References

1. B. An, Y. S. Lin, and B. Brodsky, “Collagen interactions: drug design and delivery,” Adv.
Drug Deliv. Rev. 97, 69–84 (2016).

2. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases
diagnostics,” Anal. Chem. 83, 3224–3231 (2011).

3. P. Shi et al., “Label-free nonenzymatic glycation monitoring of collagen scaffolds in type 2
diabetic mice by confocal Raman microspectroscopy,” J. Biomed. Opt. 20(2), 027002 (2015)

4. J. Hadley, N. Malik, and K. Meek, “Collagen as a model system to investigate the use of
aspirin as an inhibitor of protein glycation and crosslinking,” Micron 32(3), 307–315
(2001).

5. N. Sakata et al., “Nonenzymatic glycation and extractability of collagen in human athero-
sclerotic plaques,” Atherosclerosis 116(1), 63–75 (1995).

6. A. Rahmadi, N. Steiner, and G. Münch, “Advanced glycation endproducts as gerontotoxins
and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease,” Clin.
Chem. Lab. Med. 49(3), 385–391 (2011).

7. A. Yuen et al., “Methylglyoxal-modified collagen promotes myofibroblast differentiation,”
Matrix Biol. 29, 537–548 (2010).

8. M. E. Rrancis-Sedlak et al., “Characterization of type I collagen gels modified by glyca-
tion,” Biomaterials 30(9), 1851–1856 (2009).

9. R. Usha et al., “Aggregation and self assembly of non-enzymatic glycation of collagen in the
presence of amino guanidine and aspirin: an in vitro study,” Int. J. Biol. Macromol. 47(3),
402–409 (2010).

10. R. Roy, A. Boskey, and L. J. Bonassar, “Processing of type I collagen gels using nonen-
zymatic glycation,” J. Biomed. Mater. Res. A 93, 843–851 (2010).

11. S. Fukushima et al., “Decrease in fluorescence lifetime by glycation of collagen and its
application in determining advanced glycation end-products in human dentin,” Biomed.
Opt. Express 6, 1844–1856 (2015).

12. M. Bendayan, “Immunocytochemical detection of advanced glycated end products in rat
renal tissue as a function of age and diabetes,” Kidney Int. 54, 438–447 (1998).

13. Y. Hwang, J. Granelli, and J. G. Lyubovitsky, “Multiphoton optical image guided spectros-
copy method for characterization of collagen-based materials modified by glycation,” Anal.
Chem. 83(1), 200–206 (2011).

14. R. Muir et al., “Collagen glycation detected by its intrinsic fluorescence,” J. Phys. Chem. B
125(39), 11058–11066 (2021)

15. B. M. Kim et al., “Collagen structure and nonlinear susceptibility: effects of heat, glycation,
and enzymatic cleavage on second harmonic signal intensity,” Lasers Surg. Med. 27(4),
329–335 (2000).

16. N. Mainreck et al., “Rapid characterization of glycosaminoglycans using a combined
approach by infrared and Raman microspectroscopies,” J. Pharm. Sci. 100, 441–450 (2011).

17. M. Guilbert et al., “Probing non-enzymatic glycation of type I collagen: a novel approach
using Raman and infrared biophotonic methods,” Biochim. Biophys. Acta 1830(6),
3525–3531 (2013).

18. K. Mikulíková et al., “Study of posttranslational non-enzymatic modifications of collagen
using capillary electrophoresis/mass spectrometry and high performance liquid chromatog-
raphy/mass spectrometry,” J. Chromatogr. A 1155, 125–133 (2007).

19. Y. Yang, L. M. Leone, and L. J. Kaufman, “Elastic moduli of collagen gels can be predicted
from two-dimensional confocal microscopy,” Biophys. J. 97, 2051–2060 (2009).

20. J. Zhu and L. J. Kaufman, “Collagen I self-assembly: revealing the developing structures
that generate turbidity,” Biophys. J. 106, 1822–1831 (2014).

Lien, Chen, and Phan: Birefringence effect studies of collagen formed by nonenzymatic glycation. . .

Journal of Biomedical Optics 087001-9 August 2022 • Vol. 27(8)

https://doi.org/10.1016/j.addr.2015.11.013
https://doi.org/10.1016/j.addr.2015.11.013
https://doi.org/10.1021/ac1032325
https://doi.org/10.1117/1.JBO.20.2.027002
https://doi.org/10.1016/S0968-4328(00)00032-9
https://doi.org/10.1016/0021-9150(95)05526-3
https://doi.org/10.1515/CCLM.2011.079
https://doi.org/10.1515/CCLM.2011.079
https://doi.org/10.1016/j.matbio.2010.04.004
https://doi.org/10.1016/j.biomaterials.2008.12.014
https://doi.org/10.1016/j.ijbiomac.2010.06.009
https://doi.org/10.1002/jbm.a.32231
https://doi.org/10.1364/BOE.6.001844
https://doi.org/10.1364/BOE.6.001844
https://doi.org/10.1046/j.1523-1755.1998.00030.x
https://doi.org/10.1021/ac102235g
https://doi.org/10.1021/ac102235g
https://doi.org/10.1021/acs.jpcb.1c05001
https://doi.org/10.1002/1096-9101(2000)27:4%3C329::AID-LSM5%3E3.0.CO;2-C
https://doi.org/10.1002/jps.22288
https://doi.org/10.1016/j.bbagen.2013.01.016
https://doi.org/10.1016/j.chroma.2007.01.020
https://doi.org/10.1016/j.bpj.2009.07.035
https://doi.org/10.1016/j.bpj.2014.03.011


21. E. J. Mah et al., “Collagen density modulates triple-negative breast cancer cell metabolism
through adhesion-mediated contractility,” Sci. Rep. 8, 17094 (2018).

22. S. P. Reese et al., “Nanoscale imaging of collagen gels with focused ion beam milling and
scanning electron microscopy,” Biophys. J. 111, 1797–1804 (2016).

23. B. L. Boulesteix et al., “Mueller polarimetric imaging system with liquid crystals,” Appl.
Opt. 43, 2824–2832 (2004).

24. S. Bancelin et al., “Determination of collagen fiber orientation in histological slides using
Mueller microscopy and validation by second harmonic generation imaging,” Opt. Express
22(19), 22561–22574 (2014).

25. A. Nazac et al., “Optimization of Picrosirius red staining protocol to determine collagen
fiber orientations in vaginal and uterine cervical tissues by Mueller polarized microscopy,”
Microsc. Res. Tech. 78(8), 723–730 (2015).

26. T. H. H. Pham et al., “Optical parameters of human blood plasma, collagen, and calfskin
based on the Stokes Mueller technique” Appl. Opt. 57, 4353–4358 (2018).

27. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decom-
position,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).

28. R. M. Azzam, “Propagation of partially polarized light through anisotropic media with or
without depolarization: a differential 4 x 4 matrix calculus,” J. Opt. Soc. Am. 68, 1756–1767
(1978).

29. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition for
direction reversal: application to samples measured in reflection and backscattering,”
Opt. Express 19, 14348–14353 (2011).

30. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid
model comprising differential and decomposition-based Mueller matrices,”Opt. Express 21,
16831–16853 (2013).

31. Y. Dong et al., “A quantitative and non-contact technique to characterise microstructural
variations of skin tissues during photo-damaging process based on Mueller matrix polar-
imetry,” Sci. Rep. 7, 14702 (2017).

32. H. R. Lee et al., “Digital histology with Mueller microscopy: how to mitigate an impact of
tissue cut thickness fluctuations,” J. Biomed. Opt. 24(7), 076004 (2019).

33. P. Li et al., “Analysis of tissue microstructure with Mueller microscopy: logarithmic decom-
position and Monte Carlo modeling,” J. Biomed. Opt. 25(1), 015002 (2020).

34. H. R. Lee et al., “Mueller matrix imaging for collagen scoring in mice model of pregnancy,”
Sci. Rep. 11(1), 15621 (2021).

35. D. Layden, M. F. G. Wood, and A. Vitkin, “Optimum selection of input polarization states in
determining the sample Mueller matrix: a dual photoelastic polarimeter approach,” Opt.
Express 20(18), 20466–20481 (2012).

36. G. L. Morales, M. D. M. Sánchez-López, and I. Moreno, “Liquid-crystal polarization state
generator,” Proc. SPIE 11351, 113511P (2020).

37. C. H. Chen et al., “Dual-LC PSHG microscopy for imaging collagen type I and type II gels
with pixel-resolution analysis,” Biomed. Opt. Express 12, 3050–3065 (2021).

38. V. V. Tuchin, “Polarized light interaction with tissues,” J. Biomed. Opt. 21(7), 071114
(2016).

39. J. F. de Boer et al., “Two-dimensional birefringence imaging in biological tissue by polari-
zation-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).

40. D. J. Maitland and J. T. Walsh, “Quantitative measurements of linear birefringence during
the heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).

Chi-Hsiang Lien is an assistant professor of mechanical engineering in the National United
University. He received his PhD in engineering science from the National Cheng Kung
University in 2014. He is the author of more than 20 journal papers and has written about
Mueller polarimetry, temporal focusing microscopy, and polarization SHG analysis techniques
for collagen. His current research interests include nonlinear optics in biological microscopy and
polarization optics for biomedical applications. He is a member of SPIE.

Biographies of the other authors are not available.

Lien, Chen, and Phan: Birefringence effect studies of collagen formed by nonenzymatic glycation. . .

Journal of Biomedical Optics 087001-10 August 2022 • Vol. 27(8)

https://doi.org/10.1038/s41598-018-35381-9
https://doi.org/10.1016/j.bpj.2016.08.039
https://doi.org/10.1364/AO.43.002824
https://doi.org/10.1364/AO.43.002824
https://doi.org/10.1364/OE.22.022561
https://doi.org/10.1002/jemt.22530
https://doi.org/10.1364/AO.57.004353
https://doi.org/10.1364/JOSAA.13.001106
https://doi.org/10.1364/JOSA.68.001756
https://doi.org/10.1364/OE.19.014348
https://doi.org/10.1364/OE.21.016831
https://doi.org/10.1038/s41598-017-14804-z
https://doi.org/10.1117/1.JBO.24.7.076004
https://doi.org/10.1117/1.JBO.25.1.015002
https://doi.org/10.1038/s41598-021-95020-8
https://doi.org/10.1364/OE.20.020466
https://doi.org/10.1364/OE.20.020466
https://doi.org/10.1117/12.2555697
https://doi.org/10.1364/BOE.416193
https://doi.org/10.1117/1.JBO.21.7.071114
https://doi.org/10.1364/OL.22.000934
https://doi.org/10.1002/(SICI)1096-9101(1997)20:3%3C310::AID-LSM10%3E3.0.CO;2-H

