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Introduction

Abstract. Ultrasound (US) has been increasingly used during interventions, such as cardiac catheterization.
To accurately identify the catheter inside US images, extra training for physicians and sonographers is needed.
As a consequence, automated segmentation of the catheter in US images and optimized presentation viewing
to the physician can be beneficial to accelerate the efficiency and safety of interventions and improve their
outcome. For cardiac catheterization, a three-dimensional (3-D) US image is potentially attractive because
of no radiation modality and richer spatial information. However, due to a limited spatial resolution of 3-D cardiac
US and complex anatomical structures inside the heart, image-based catheter segmentation is challenging.
We propose a cardiac catheter segmentation method in 3-D US data through image processing techniques.
Our method first applies a voxel-based classification through newly designed multiscale and multidefinition
features, which provide a robust catheter voxel segmentation in 3-D US. Second, a modified catheter model
fitting is applied to segment the curved catheter in 3-D US images. The proposed method is validated with exten-
sive experiments, using different in-vitro, ex-vivo, and in-vivo datasets. The proposed method can segment
the catheter within an average tip-point error that is smaller than the catheter diameter (1.9 mm) in the volumetric
images. Based on automated catheter segmentation and combined with optimal viewing, physicians do not
have to interpret US images and can focus on the procedure itself to improve the quality of cardiac intervention.
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI1.6.1.015001]

Keywords: catheter segmentation; three-dimensional ultrasound; intervention guidance; feature fusion; model fitting.

Paper 18153RR received Jul. 17, 2018; accepted for publication Dec. 14, 2018; published online Jan. 14, 2019.

than finding the instruments, automatic catheter segmentation in

Intervention therapy, also called interventional cardiology, is
a type of cardiology based on catheter treatment for structural
heart diseases or electrophysiology, which has been widely used
during the past decades due to its minimized incision and shorter
recovery time. Many cardiology procedures are performed by
catheterization, which involves insertion of a catheter into the
heart through a femoral artery or any large vein. During the
intervention without open surgery, the obstructed tools and
organs have to be visualized through imaging modalities, such
as x-ray and ultrasound (US). However, using x-ray has draw-
backs such as radiation dose and harmful contrast agents make
many researchers focus on US-based catheterization. Applying
US has many benefits, including mobility, lower cost, and the
absence of radiation, for both surgeon and patient. Recently,
three-dimensional (3-D) US imaging has achieved fast and
real-time performance, which offers great potential for image-
guided interventions and therapies, offering more spatial infor-
mation derived from direct 3-D sensing.

Despite its advantages, 3-D US suffers drawbacks such as
low signal-to-noise ratio in the images, lower resolution than
two-dimensional (2-D) US images and degraded instrument
visibility. Consequently, the target area is hard to recognize
in images, requiring surgeons with sufficient navigation skills,
while consuming extra effort during the operation. Figure 1
demonstrates an example of the 3-D US image quality for car-
diac catheterization. To improve the quality of the intervention
and to help the clinician to focus on the procedure itself rather
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3-D US images becomes beneficial, because it makes it easier to
better identify the catheter in the correct heart chamber in the US
images. Many researchers have concentrated on catheter iden-
tification in US imaging with the aid of robots,! or by adding
active sensors inside the catheter.” Although these approaches
have achieved attractive results, the high cost of equipment
and complicated system set up in the operation room have
hampered their broad acceptance.

In this work, we focus on cardiac catheter segmentation in
3-D US images for image-guided cardiac intervention therapy.
With the segmented catheter in the 3-D US volumetric data,
a better visualization, and perception can be provided to physi-
cians that they can interpret the instrument with less effort.
Figure 1 shows an example of the application of US-guided
intervention therapy. The US image with a catheter is acquired
from a catheterization experiment. As can be observed, the cath-
eter is hardly recognized in the low-resolution 3-D US image,
because the surrounding anatomical structures may resemble
a catheter. Since segmenting the catheter in 3-D cardiac US
is challenging, a more in-depth study on discriminative catheter
features is required for supervised learning. Also, a better cath-
eter model should be defined for an improved segmentation
accuracy.

1.1 Related Work

Many studies have recently focused on image-based medical
instrument segmentation or identification in the 3-D US, but
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Fig. 1 (a) Example of cardiac intervention therapy with catheters in
the heart. The black bar is the US probe; (b) 2-D slice from a 3-D
image, where the RF-ablation catheter is marked in yellow circle.

their approaches are not suitable for catheter segmentation in
cardiac imaging. Methods such as principle component analysis
(PCA)?, Hough transformation,* and parallel integral projection
transformation® were proposed to detect straight electrodes in
3-D images. However, these transformation-based methods
are not stable when the background includes high-intensity val-
ues, as is the case with instruments. This instability results from
the fact that image transformation cannot extract the discrimi-
nant shape information of tools to distinguish them from bright
tissues or noise. Cao et al.’ proposed a template matching
method to segment a catheter with a-priori knowledge of direc-
tion and diameter. Nevertheless, this method is limited by the
a-priori knowledge of the shape and orientation of the catheter.
In addition, the carefully designed template is not only unstable
to catheter appearance variations but also lacking discriminating
information. Alternatively, Uher&ik et al.”® applied Frangi et al.’
vesselness features to classify instrument’s voxels using super-
vised learning algorithms. The model-fitting based on RANdom
SAmple Consensus (RANSAC) was applied to determine
straight tubular-like instruments. Meanwhile, Zhao et al.'’ used
a similar method to track the needle on an ROI-based Kalman
filter. Although the ROI-based algorithm decreases computation
complexity, there are still some limitations. First, the ROI-based
algorithm requires a fixed view of images, which introduces
the extra consideration of avoiding ultrasound transducer move-
ment during operation. Furthermore, both Uher¢ik et al®
and Zhao et al.'” only considered a predefined Frangi feature
as discriminating information, which is not only less robust
to diameter variation but also considers a small amount of infor-
mation only, i.e., information in ultrasound volume is not fully
used for discriminating classification. Recently, Pourtaherian
et al.''"!* have intensively studied needle detection algorithms
based on the 3-D US. Their method segments the candidate
needle-like voxels by incorporating the Gabor-based feature.
This feature introduces more discriminating information on
local orientation distribution, which is similar to the histogram
of gradient. After the voxel-based classification, the two-point
RANSAC algorithm is applied to estimate the axis of the needle.
However, their proposed method is specifically designed for
a thin needle with a large length versus diameter ratio in
a high quality US image, which is not the case in cardiac cath-
eter segmentation. Although they did an experiment on catheter
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segmentation in an in-vitro dataset, their results showed that
further studies on segmenting the catheter on ex-vivo or in-vivo
dataset are necessary.

Although the methods discussed above have shown success-
ful results in 3-D ultrasound-based instrument segmentation,
there are still many challenges concerning cardiac intervention.
First of all, the spatial resolution of the transducer in cardiac
intervention is far lower than the standard one used in the anes-
thesia (response frequency from 5 to 13 MHz in anesthesia
probe® to 2 to 7 MHz in the cardiac probe). This low spatial
resolution leads to lower image contrast and fewer details at
instrument boundaries. Second, the transducer, e.g., phase-
array transducer, is optimized designed for cardiac tissue visu-
alization that the plastic catheter (not like a metal needle) cannot
be perfectly visualized in the 3-D US. This phenomenon makes
catheter deformed in shape and diameter. Third, in the 3-D vol-
ume, the cardiac tissue occupies a larger space than the catheter,
which contains anatomical structures that make it more chal-
lenging to segment the catheter from complex anatomical struc-
tures using traditional methods. As a result, the methods above
may not be suitable for catheter segmentation in 3-D US images
to facilitate cardiac intervention therapy.

1.2 Our Work

In this paper, we present an extensive study on various features
for catheter segmentation in the 3-D US data. With the obser-
vation that catheters and tissues have different responses under
different scale window, we extend the Frangi filter to multiscale
operation.'* This approach can better handle the diameter varia-
tion than filtering with a predefined scale.®!* In addition, instead
of only describing the tubular structure as the traditional Frangi
filter, a multidimensional objectness feature is derived.”
Considering the information loss in objectness features and
inspired by the circular shifting in the existing methods,'® we
propose Hessian-based features to fully describe the 3-D
information. Next to this, log-Gabor filters are considered to
add more orientation information. Last, statistical features are
defined to further extract local information about the voxels.
Using the state-of-the-art classifiers,' these features are com-
pared on multiple datasets for the catheter-like voxel classifica-
tion. Our experiments show that the best voxel classification can
be achieved by fusing these features. Based on catheter-like
voxel classification, we present a modified spares-plus-dense
(SPD) RANSAC model fitting for catheter segmentation,
which employs cubic spline fitting to identify the curvilinear
catheter inside the 3-D US images. With successful catheter
segmentation in the volumetric US data, physicians would have
less effort to identify the instrument in the images and easier to
interpret the images for operation.

Our contributions are summarized as follows. First, we
present an extensive study on various features extracted from
the 3-D US for catheter-like voxel classification, where it will
be shown that the best voxel classification is achieved by fusing
these features. Second, a modified model fitting algorithm
is introduced for catheter segmentation in the noisy voxel-
classification output data. Third, we have collected multiple
datasets (in-vitro, ex-vivo, and in-vivo), which are used to
extensively validate our method on these datasets.

The paper is structured in the following way. Section 2
describes the proposed method in detail, including the various
features for voxel classification and the modified SPD-
RANSAC model-fitting algorithm. The collected datasets and
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Fig. 2 Block diagram of the proposed system for catheter segmenta-
tion method.

experimental results are discussed in Sec. 3. Finally, Sec. 4 con-
cludes the paper and presents some discussions on possible
refinements.

2 Methodology

Figure 2 shows the block diagram of our catheter segmentation
system. In the first step, the 3-D volumetric image is processed
to extract features from each voxel. The voxels are then classi-
fied by supervised learning methods into catheter-like voxels
and noncatheter voxels. In the second step, in the noisy output
of voxel classification, the modified SPD-RANSAC model fit-
ting is applied to segment the catheter. We describe each step in
the following sections.

2.1 Catheter-Like Voxel Classification

The procedure of catheter-like voxel classification consists of
two steps. First, 3-D discriminating features are extracted
from each voxel in the 3-D US image and then the supervised
learning classifier is applied to classify the voxels. The discrimi-
nating features employed for voxel classification are described
in the following paragraphs.

2.1.1 Objectness feature

Multidimensional objectness was first introduced by Antiga,'®
who extended the traditional definition of vesselness filter into
the different shape descriptions for multidimensional images,
see Fig. 3 as an example. For a 3-D image, the Hessian matrix
is defined below, where the f° is a Gaussian-filtered image
with the standard deviation o, while f,,,...,f,, represents
the second-order derivative in the x-, y-, or z-directions. This
leads to Eq. (1), specifying the matrix as

A1,2,3

1A= 14,1 < 14l

Fig. 3 Objectness descriptors based on Eigenvalues of the Hessian
matrix, showing different structures.
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The Eigenvalues of Eq. (1) are ranked by |4;| < ... < |4;].
Using Eigenvalues, the M-dimensional (M < 3) shape structures
are described by Eq. (3) based on the parameters from Eq. (2)
(M = 0 for blob, M =1 for vessel, and M =2 for plate in
shapes, i.e., the Frangi vesselness filter equals to M = 1).
Parameters R, and Rz have two special cases. When M = 2,
parameter R4, = oo, and when M = 0, parameter Rp is set to
zero:

yvasy|
Ry = 11 a1
3 1/(3-M-1
Hi:M+2 a1t !
— [
Rp =175 AR (2)
i=m+1 1

— 3 2
S=y2j=14

Similar to Frangi’s vesselness feature,” when ;<0 for

M < j < 3, the objectness measurement is defined as
oM =(1- e—Ri/2a2> . e~ R3/2P . (1- 6—52/272)' 3)

For the other cases of j, the value of O¥ = 0. The parameters
a, B, and y are empirically determined, which defines the
sensitivity of the response.'*

From the original definition, both Antiga and Frangi select
the maximum response per pixel among a range of spatial scale,
e.g., the maximum value among the scale range with ¢ €
[1,...,5]. However, this maximizing step loses scale-distribution
information. As a result, we propose to exploit all the scale
responses as features. Meanwhile, we calculate three different
shape measurements, i.e., M = 0,1, 2, instead of the tube descrip-
tor used for needle detection in Ref. 8. Based on the definitions
above, for each voxel v in 3-D volume V, the final feature vector
is O(v) = [0¥(0), 0¥ (v). O¥2(v)..... 0¥ (v)....] in
the multiscale approach, where o represents a standard deviation
of a Gaussian filter and M is the type of objectness feature ranging
from 1 to 3.

2.1.2 Hessian features

Essentially, the Eigenvalue analysis in the objectness feature
space is to extract the direction information of edge distributions
through the Hessian matrix and to remove the noise. However,
the predefined descriptors in objectness may lose some informa-
tion because of the low signal-to-noise ratio and due to the
projection of nine features into three Eigenvalues. To preserve
more information from a low-contrast image, we consider the
elements of the Hessian matrix, as given in Eq. (1). Due to
the symmetric structure of the Hessian matrix and to preserve
the orientation response, we use six elements from the upper
right of the Hessian matrix, and the shift the maximum
response to the first position via circular shifting. As a result,
the feature vector length is six for a specific scale. The Hessian
feature is noted as H(v) = [H(v,0 = 1),..., H(v,0 =3),...]
in the multiscale case with shifted elements of Eq. (4) in each
scale:

H(v,0) = [ [ [ f3 f 2 5] “)
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2.1.3 Log-Gabor filter

Pourtaherian et al."'~'? introduced Gabor features as an attractive

discriminative feature for needle detection. The conventional
Gabor-based features can be influenced by the DC components
of the images.!” To stabilize the performance for varying DC
components and related image gray-value variations in different
US images, we adopt 3-D log-Gabor features.!” The 3-D log-
Gabor filter in the frequency domain is defined as

log % al¢p. 0)?
ﬁ(w, P, 9) = exp % X exp [— %} , ®))

where B is the bandwidth of the filter in polar coordinates, and
wy is the filter’s central response frequency. The term B/w is
set to a constant value to keep constant shape ratio filters. The
direction of the filter is defined by azimuth angle ¢ and elevation
angle 6. The position vector a(¢, 8) at frequency f is defined as
a(¢p,0) = ar cos[(f - d)/|f|], where the unit direction vector
is d = (cos ¢ cos 0, cos ¢ sin 0, sin ¢). The bandwidth of
angular direction is defined by o,. Discriminative features are
extracted using the real parts of the response in the spatial domain,
due to their symmetric response. The circular operation is per-
formed to shift the maximum response to the center and is denoted
by L(v,w) at specific frequency w. The log-Gabor feature is
denoted by L(v) = [L(v,w =27x),...,L(v,0 = 67),...] for
multiple frequencies with unit 2z. We have chosen both angle
parameters, i.e., ¢ and 6, to {15 deg, 65 deg, 115 deg,
165 deg} after several experiments.

2.1.4 Statistical features

To extract more local information in 3-D cube, we propose to
introduce a feature type, i.e., local statistical features. For a
voxel v at the center point, we extract a 3-D cube with specific
sizes, such as 3 X3 X 3 voxels. The statistical features are
obtained by calculating the mean, standard deviation, maxi-
mum, minimum, and local entropy of this cube. The statistical
feature S(v) in the multiscale case is denoted as

S(v) = [I(v), mean,_3(v), std,_3(v), max,_3(v), ming_3(v),
eny_3(v),...], (6)

where the s is the size of cubes expressed in voxels using v as
center point.
Table 1 summarizes our proposed 3-D features with their
symbols, scale variables, and feature lengths for each scale.
To enhance the performance of voxel classification, we apply
a feature fusion strategy, which combines four different types of

Table 1 Summary of 3-D features for catheter voxel classification.

Name Symbol Scale Length
Objectness o0 c 3/scale
Hessian H c 6/scale
log-Gabor L ® 16/scale
Statistic S s 1+5/scale
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features in a multiscale approach. The fused feature C(v) is
defined as C(v) = [O(v), H(v), L(v),S(v)], in which each
component is in multiscale.

2.2 Supervised Classifiers for Voxel Classification

To achieve the best performance of the proposed features, we
perform the classification under linear discriminant analysis
(LDA), linear support vector machine (LSVM), random forest
(RF), and adaptive boosting (AdaBoost). Typically, the kernel-
based SVM performs better than LSVM, but fine-tuning of
kernel parameters requires a large computation cost and its per-
formance is no better than RF and AdaBoost from empirical
experience.'® As a consequence, we consider only LSVM as
the SVM classifier, which has box constraint equal to unity.
The RF is set to generate 50 trees. For the AdaBoost, the
weak learner is set to be decision stump with 50 learning cycles.
During the training stage, due to an imbalanced class ratio, we
randomly resample the noncatheter voxels to have the same size
as the catheter voxels. For testing, the whole volume of imbal-
anced classes is processed to generate the classified volume.
Because of the class imbalance in the testing image, we use
precision (P), recall (R), specificity (SP), and F'| score as evalu-
ation metrics for classification performance after the supervised
classification on each 3-D US image. The definitions are shown
in Eq. (7). The TP, TN, FP, and FN represent true positive,
true negative, false positive, and false negative, respectively.
Specifically, the positive voxels are defined as voxels from
the catheter, while the negative voxels represent the remaining
voxels in the whole image, which typically involves an amount
of voxels that is thousands times larger than the amount of
catheter voxels:

TP TP
P=——— R=———,
TP + FP TP+ FN
TN P-R
SP=——" | F =2-—". 7
TN + FP P+R

2.3 Catheter Model Fitting

Misclassified voxels commonly occur, due to the complex local
information from anatomical structures inside the heart and
nonperfect description of 3-D features. As a result, after the
voxel classification, there are many outlier blobs inside the US
volumes. Figure 4 shows example results from AdaBoost.

To correctly segment the catheter in the noisy 3-D image, we
apply catheter model fitting based on the a-priori knowledge
that the shape of the catheter is a curved cylinder. The medical
instrument model is conventionally reconstructed by fitting its
skeleton together with instrument body voxels surrounding
it.”'3 However, this method is not stable and inaccurate when
assuming a straight-line model in our challenging and noisy
classified images. To segment the curved catheter in 3-D
US, we first modified the sparse-plus-dense-RANSAC (SPD-
RANSAC)'® from the high-contrast x-ray image into our 3-D
US to reduce the complexity of segmentation. Meanwhile,
we also modify the instrument model into a three-point curva-
ture line to improve the segmentation accuracy. In the following
paragraphs, we first describe the generation of a sparse volume,
which reduces the complexity of the RANSAC algorithm. After
this, a more complex catheter model is introduced to improve
the segmentation accuracy, based on modified SPD-RANSAC.
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Yang et al.: Catheter segmentation in three-dimensional ultrasound images by feature fusion. ..

(b)

Fig. 4 Examples of classified volumes. The classified catheter voxels are highlighted in the images by
high intensity. (a) A classified volume from in-vivo dataset and (b) a classified volume from ex-vivo

dataset.

2.3.1 Sparse volume generation for 3-D US

After the voxel-level classification, the resulting binary image is
called dense volume V ;. We then apply a connectivity analysis
to cluster the voxels, which are assumed to be part of catheter or
tissue with the catheter-like shape. The voxels from the same
cluster are considered to belong to the same model. This
means that the RANSAC algorithm includes many redundant
processes, if it is applied directly to dense data.'® As a result,
the centerline along the skeleton in each cluster is extracted
to construct the sparse volume V, which reduces the model-
fitting iterations. The centerlines in original SPD-RANSAC are
generated directly by filtering the x-ray image, which is the
benefit from using the high-contrast imaging. However, the
centerlines are hard to extract directly in a coarsely classified
3-D US image. As a result, we propose a new method to extract
the centerline for each classified cluster in 3-D US. The steps of
centerline extraction are described in Algorithm 1, see Fig. 5 as
a result example.

Algorithm 1 Sparse volume generation from a dense volume.

Input: dense volume V, and empty V¢
find connected clusters in V4
for each cluster in V, do

PCA analysis is applied to find dominant axis among lat., az.,
and ax.

for each 2-D slice along dominant axis do
find connected 2-D areas in the slice
for each 2-D area in the slice do
find center point of the area
project center point to V
end for
end for
end for

Output: sparse volume Vg
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2.3.2 Model fitting based on sparse and dense volumes

In our method, the catheter is modeled as a curved cylinder,
which relies on centerline fitting of the catheter.” Since we
are looking for the catheter skeleton, the curved skeleton &
can be modified as

k={rewvry€vte€R hyh €R:r
=TI + tho + tzhl}, (8)

where the v is the voxel group from the 3-D images,  is the real
number, and hy and h; are vectors in 3-D space. For catheter
segmentation in 3-D US, the model is fitted by a cubic spline
interpolation, which is controlled by three control points.'® For
each RANSAC iteration, three control points are randomly
selected from V, which are ranked by PCA analysis to define
the interpolation order and to model the skeleton. The skeleton
with the highest number of inliers in V; is chosen to be catheter
skeleton. The outliers are determined by computing its
Euclidean distance to the skeleton. Finally, the inliers together
with the skeleton in V; are regarded as the segmented catheter.
With a-priori knowledge that the RF-ablation catheter cannot be
heavily curved inside the blood chamber, we constrain the cur-
vature by controlling the distance between the middle point to
the straight line constructed from the endpoints. The maximum
distance is selected as 10 voxels in this paper.

2.3.3 Accuracy of the segmentation

Our method starts with finding the voxels and identifying the
catheter inside those voxels. The following major step is the
previously discussed model fitting to the classified voxels. The
accuracy of the method can be defined as absolute accuracy or
a relative accuracy. The definition of absolute accuracy would
require a completely calibrated physical setup with predefined
phantoms or tissues and reference catheters. In our case, we will
define the accuracy as the deviation of the visual ground truth,
where the catheter is manually annotated within the image.
All the annotations are made by clinical experts.

In order to define the deviation as a distance, we define the
skeleton of the catheter in the form of the center line of the cath-
eter. The deviation is then the distance between the annotated
center line and the model-fitted catheter. From the model, we
obtain a limited set of key points, so that a spline function is
used to construct a smooth curve going through the key points.

Jan-Mar 2019 « Vol. 6(1)
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<+—> tip-point error

<— tail-point error

<+—> skeleton-point error

Fig. 6 Example of three errors: tip-point error, tail-point error, and
skeleton-point error. The red curve is ground-truth skeleton and
green curve is the segmented catheter skeleton.

This approach makes the model-fitted catheter well defined
between the end points.

In our case, we define three types of errors: skeleton-point
error, and two errors concerning the beginning and ending of
the model, i.e., tip-point error and end-point error (the average
of tip-point error and tail-point error). These errors are visual-
ized in Fig. 6. The latter two errors are defined as the distance
between the detected point with the corresponding ground-truth
point, either at the tip or at the tail of the catheter. The skeleton-
point error is the distance between the sampled points from the
segmented catheter to the ground truth skeleton. All errors are
measured visually in the images and are initially expressed in
voxels, which can be translated to distance using the voxel res-
olution. Further details and outcomes can be found in the experi-
ments in Sec. 3.3.

3 Experimental Results

For the experiments, we start with the different datasets from
Sec. 3.1. The results on the voxel classification using different
features and classifiers are reported in Sec. 3.2. Section 3.3
shows the performance on catheter segmentation using the
modified SPD-RANSAC.

3.1 Datasets

To validate the stability of our system, we have collected 3-D US
datasets under different recording conditions and performed the
experiments. As for the in-vitro dataset, a polyvinyl alcohol
(PVA) rubber heart was placed into a water tank. The images
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(b)

Fig. 5 (a) Example of a catheter in a 3-D image and (b) resulting dense cluster and sparse centerline.

were captured by a 3-D transesophageal echocardiography
probe (TEE) while an RF-ablation catheter is inserted into it.
Due to the less complex structure inside the rubber heart and
the absence of anatomical material from a real heart, a clear con-
trast between catheter and background or phantom wall is
shown. For the ex-vivo datasets, porcine hearts were placed in
several water tanks and images were captured through TEE (HT-
CX-TEE and HT-EP-TEE) or a transthoracic echocardiogram
probe (TTE, HT-EP-TTE). During the recording, the catheters
were inserted into the ventricle or atrium. As for TEE-based
images, although they were obtained from a different US sys-
tem, we obtained a similar US quality due to using the same US
probe. However, the HT-EP-TTE was collected by employing
a TTE probe, which has lower response frequency leading to
a noisy image with low-contrast appearance. Finally, we also
collected an in-vivo (LH-EP-TTE) dataset on a live porcine.
During the recording, the TEE probe was placed next to the
beating heart through the open chest, while the RF-ablation
catheter was inserted through the vein to approach the heart.
Because of challenging recording conditions and an unstable
environment, the in-vivo dataset has the worst image quality.
More detailed meta-data about our datasets are presented in
Table 2. All the datasets are manually annotated for catheter
locations and confirmed by both medical and technical experts
as the groundtruth. In the following experiment, to fully make
use of limited datasets, the leave-one-out-cross-validation
(LOOCYV) is performed on each dataset. Some 2-D slices from
different datasets are shown in Fig. 7.

3.2 Voxel-Based Classification

For the voxel classification, both feature and classifier can
influence the performance of candidate voxels segmentation.
To evaluate the discriminative power of the proposed features,
we exploit their performance applying both a single-scale
approach and a multiscale approach. Conventional methods,
e.g., needle segmentation in 3-D US,*!* only considered a pre-
defined scale size, i.e., single-scale and denoted this by SS-N for
a predefined single-scale size N, based on a-priori knowledge
of the instrument diameter. However, these predefined scales
only extract discriminating information of tools while ignoring
the information from the anatomical background, such as
a heart wall or microvalve inside the heart. To extract more
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Table 2 Characterization of 3-D ultrasound volumes for experiments.

Voxel size
Recording Catheter ~ Number of Transducer type and per Volume size
Dataset condition diameter  acquisitions  system frequency range dimension (lat. x az. x ax.)
PVA-EP-TEE (in-vitro) Rubber 2.3 mm? 20 EPIQ7 3-D phase array 2 to 7 MHz 0.4 mm 141 x 168 x 101 to
(PVA) heart 145 x 185 x 101
phantom
HT-CX-TEE (ex-vivo)  Porcine heart 2.3 mm? 10 CX50  3-D phase array 2 to 7 MHz 0.4 mm 179x175x 92
TH-EP-TEE (ex-vivo)  Porcine heart 2.3 mmP 10 EPIQ 7 3-D phase array 2 to 7 MHz 0.6 mm 120 x 69 x 92 to
193 x 284 x 190
TH-EP-TTE (ex-vivo) Porcine heart 2.3 mm° 12 EPIQ7 3-D phase array 1 to 5 MHz 0.7 mm 137 x 130 x 122
LH-EP-TTE (in-vivo) Live porcine 2.3 mm° 8 EPIQ 7 3-D phase array 2 to 7 MHz 0.4 mm 146 x 76 x 153 to

172 x 88 x 178

aAvailable from Chilli II.
PAvailable from Biosense.
CAvailable from OSYPKA.

(b)

Fig. 7 Examples of 2-D slices from different datasets, the catheter locations are indicated by yellow
arrows. (a) PVA-EP-TEE, (b) HT-CX-TEE, (c) HT-EP-TEE, (d) HT-EP-TTE, and (e) LH-EP-TEE.

discriminative information for a better and stable classification,
we also employ the multiscale approach which involves differ-
ent scales simultaneously, e.g., the scale ranges from 1 to N,
denoted as MS-N. In the following section, all comparisons
are based on AdaBoost classification, due to its optimized per-
formance which is shown in Fig. 12.

3.2.1 Single-scale versus multiscale

Using the features objectness (O) and Hessian (), we have per-
formed experiments with ¢ ranging from 3 to 15 and step size 4.
To measure the scale influence on the features in a simple way,
we only employ the precision as a metric, while fixing recall at
75% in each volume. The experimental results are shown in

Figs. 8 and 9 separately. These experiments lead to the following
conclusions. (1) The multiscale approach in objectness achieves
a higher performance, due to different shape information is con-
tained within the different scale sizes. When considering more
scales, the features become more discriminating. (2) When com-
paring Frangi and objectness features with Hessian features, the
latter one has better performance, due to preserving more spatial
information without PCA analysis. However, in the PVA-EP-
TEE, the objectness gives a higher precision, which can be
explained by the high-contrast image quality when compared
with real tissue. Meanwhile, in all cases, the Frangi feature
achieves a lower precision than objectness.'*

For features S and £, similar results are obtained, i.e., when
multiscale range is increasing, the classification performance

Comparison between single scale and multiscale in objectness

80 T

Precision

PVA-EP-TEE

HT-CX-TEE

T
lss-3 Ms-3 [[]ss-7 llMs-7 [ss-11 [ms-11 [llss-15 -MS-15‘

HT-EP-TEE

HT-EP-TTE LH-EP-TEE

Fig. 8 Average precision of single-scale (SS) and multiscale (MS) objectness.
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PVA-EP-TEE
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Fig. 9 Average precision of Frangi, objectness, and Hessian features in MS mode.

Performance of statistic in different scale

60 : : . ; .
Ilss-4
Elvs-4
50 [lsss ||
Elms-8
40 [ss-12 |
s ms12|| §
§ 30 3
o o
o o
20
10

PVA-EP-TEE HT-CX-TEE HT-EP-TEE HT-EP-TTE LH-EP-TEE

(@)

Fig. 10 Average precision of (a) statistic feature and (b) log-Gabor features.

improves and the multiscale approach achieves a higher perfor-
mance than single-scale operation. We have performed the
experiments with S as scale ranging from 4 to 12 with step
size 4 and the experiments with £ as scale ranging from 4 to
10 with step size 3. Experimental results are shown in Fig. 10.
From the experiments, we conclude that the single-scale
approach of the Gabor feature in needle detection does not
offer sufficient performance for our catheter segmentation in
tissue-based images.'?

Based on the comparison between single scale and multiscale
in different feature types, we fixed scale range as MS-15 for

60 Performance of log-Gabor in different Scale

50

40

[ms-10
30

20

10

0
PVA-EP-TEE HT-CX-TEE HT-EP-TEE HT-EP-TTE LH-EP-TEE

(b)

objectness and Hessian feature, MS-12 for statistic feature,
and MS-10 for log-Gabor feature in the following section.

3.2.2 Feature comparison and fusion

Based on multiscale approach in different features, their individ-
ual and fusion performances in each dataset are shown in
Fig. 11. The results are demonstrated under AdaBoost, due
to it achieved the best performance when compared with
other classifiers (under C and shown in Fig. 12). All the results
are obtained by LOOCYV and thresholds are tuned to achieve

Average F-1score in different features
100 T T T
Il Objectness
[ Hessian
80 [log-Gabor |
[l Statistic
| [ZCombination
60 - — -
40 1
20 - n
L1 L1
PVA-EP-TEE HT-CX-TEE HT-EP-TEE HT-EP-TTE LH-EP-TEE

Fig. 11 Optimizing the F-1 scores when tuning the thresholds. The combination is the best choice.

Corresponding to Table 3.
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Boxplot of F-1 score under different classifiers
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+ ELDA [ ILSVMEERF [ JAdaBoost
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Fig. 12 Distributions of F-1 score for different classifiers (LDA, LSVM, RF, and AdaBoost).

the best F-1 score on average. More detailed performance infor- to achieve a promising result with a-priori-defined descriptors.
mation can be referred to Table 3. For ex-vivo datasets using different recording probes and US

From the performances in the table and figures, some obser- machines, the complex anatomical structure which has a similar
vations can be made. For the phantom dataset, having less com- appearance as catheters makes it difficult for the objectness
plexity and higher image contrast, the objectness feature is able feature to describe the 3-D space information. Moreover, when

Table 3 Average classification performance under best F-1 score achieved. Numbers are mean and (standard deviation).

Adaptive boosting

Dataset o H C S I
PVA-EP-TEE (in-vitro) Recall 80.06 (11.70) 71.05(24.94) 66.82(29.79) 73.16(22.78) 89.77(12.51)
Precision 75.70 (19.39) 74.25(12.51) 66.90(13.64) 63.48(15.89) 81.58(16.10)
F-1 score 75.44 (12.54) 68.78(15.39) 63.35(21.30) 64.07(14.44) 83.70(11.85)
Specificity 99.98 (3.3e-4) 99.98(1.6e-4) 99.98(1.5e-4) 99.96(2.7e-4) 99.98(2.0e-4)
HT-CX-TEE (ex-vivo) Recall 50.31(25.73) 56.40(24.91) 58.46(25.30) 66.36(18.43) 64.12(25.17)
Precision 48.55(18.92) 51.01(11.77) 53.18 (9.15) 50.22(11.16) 53.76(16.28)
F-1 score 43.80(14.34) 48.87(11.01) 51.84(11.84) 54.80(7.45) 55.24(14.82)
Specificity 99.93(6.5e-4) 99.94(5.2e-4) 99.95(4.04-4) 99.93(4.4e-4) 99.94(4.3e-4)
HT-EP-TEE (ex-vivo) Recall 48.97 (9.87) 55.15(16.27) 58.79 (8.84) 60.53(10.62) 70.62(11.70)
Precision 51.35(15.75) 52.87(14.92) 50.47(12.72) 51.91(9.22) 57.96(11.34)
F-1 score 48.66(10.03) 52.72(13.39) 53.75(10.24) 55.38 (7.75) 62.45 (7.55)
Specificity 99.91(9.1e-4) 99.94(2.1e-4) 99.92(3.5e-4) 99.92(3.7e-4) 99.93(3.2e-4)
HT-EP-TTE (ex-vivo) Recall 47.65(11.05) 71.58(19.07) 69.59(19.67) 66.35(11.63) 75.59(17.75)
Precision 38.27(5.59) 51.14(8.88) 56.49(7.83) 40.75(6.78) 63.79(7.77)
F-1 score 41.99(6.93) 58.78(12.34) 60.47(12.40) 49.72(5.71) 66.95(9.48)
Specificity 99.95(1.2e-4) 99.96(1.3e-4) 99.97(1.5e-4) 99.94(2.0e-4) 99.97(1.2e-4)
LH-EP-TTE (in-vivo) Recall 37.67(19.21) 51.22(17.96) 43.25(13.63) 43.82(16.21) 60.64(23.76)
Precision 43.24(23.54) 47.43(11.44) 41.99(13.43) 32.84(14.32) 52.86(9.42)
F-1 score 38.52(17.96) 48.32(14.72) 41.91(11.92) 37.27(14.77) 52.93(10.65)
Specificity 99.95(4.0e-4) 99.95(1.4e-4) 99.94(3.7¢-4) 99.92(2.3¢-4) 99.94(3.6e-4)

Note: Bold characters represent the best performance on average.
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Table 4 Average performance of catheter segmentation error mean =+ std. (mm). TE, tip-point error; EE, end-point error; SE, skeleton-point error;

R-2, two-point RANSAC; R-3, three-point RANSAC; SR-3, three-point SPD-RANSAC.

R-2 R-3 SR-3

Dataset TE EE SE TE EE SE TE EE SE

PVA-EP-TEE 40426 39+19 30+15 18+06 21+05 18+04 14+08 14+06 15405
HT-CX-TEE 40+1.8 48+09  3.1+07 19+04 25+13  21+141 12+03 1.7+1.0 15+06
HT-EP-TEE 9.6+6.0 10.7 £ 6.1 67+64 33+13 35+16 31+14 30+16 33+18 30+18
HT-EP-TTE 40+13 43+12 29406 21+04 22+03 20+0.1 21+05 1.9+ 0.4 1.840.2
LH-EP-TTE 39+28 54+12 37+06 20+09 20405 17+03 24+28 24+14 1.9+0.8
Average error 5.0+ 3.7 55+36  37+22 21+09 244+10 21409 19+14  20+12 19+1.0

Note: Bold characters represent the best performance on average.

PCA is introduced, more spatial details are lost. Both Hessian
features and log-Gabor features perform similarly in ex-vivo
datasets, which may be explained by exploiting orientation
and scale-sensitive features to describe the spatial information.
For the statistic feature, although it can extract 3-D local inten-
sity distribution information, the performance has less stability
when compared with Hessian/log-Gabor features. For the
in-vivo dataset, due to challenging recording conditions and
low-contrast image quality from real blood in the blood pool,
the performances of all features are decreased. Although the
log-Gabor feature introduces more orientation information,
due to the low image contrast and the blurry boundary of the
catheter, the orientation information cannot improve the classi-
fication performance. In all datasets, the feature combination is
able to further improve the classification performance and
appears to be the best choice.

3.3 Catheter Segmentation by Model Fitting

After voxel-based classification, the SPD-RANSAC is applied
to the binary images to segment the catheter in the noisy seg-
mented images. The RANSAC algorithm generates the end
points and the skeleton of the catheter, which is used to analyze
the segmentation error when compared to the ground truth.
To evaluate the segmentation accuracy, we consider three types
of errors: tip-point error (TE), end-point error (the average of
tip-point error and tail-point error, EE), and skeleton-point
error (SE). Like commonly considered, we regard the farthest
point from the image border between the two end-points of

the catheter as the tip.?’ The skeleton error is the average
distance of five equally sampled points (except the endpoints)
on the identified skeleton to the annotated skeleton. For each
sampled point, its distance to the ground truth is measured.
An example of the three different error types is shown in Fig. 6

The segmentation performances from Table 4 are expressed
in millimeter (mm) and involve three different model-fitting
methods: (1) RANSAC with the two-point catheter model
(R-2), (2) RANSAC with the three-point model (R-3), and
(3) SPD-RANSAC with the three-point model (SR-3). Several
of slices from tissue images are visualized in Fig. 13. The
segmented catheters are overlaid with colored annotations.
To directly visualize in a 3-D volume, the corresponding 3-D
images are shown in Fig. 14. Furthermore, Fig. 15 shows
an example of comparing our three-point SPD-RANSAC with
a two-point RANSAC model fitting.”!>

As shown in Table 4, the three-point model (R-3 and SR-3) is
able to segment the catheters accurately when compared with
the two-point methods (R-2). This is evident because almost
every catheter is curved in the image, even a slightly curvature
occurs when compared with the needle segmentation in the
image. Meanwhile, the SPD-RANSAC is able to improve the
segmentation accuracy when compared with R-3, which directly
applied the model fitting to the classified volume. As a result,
our three-point SPD-RANSAC can achieve a higher segmenta-
tion performance giving an average segmentation tip-point error
of only 1.9 mm.

From the results in classification performance, multiscale
together with feature fusion is robust to classify the catheter

Fig. 13 Slices (cropped) from real heart volumes, red represents annotation, and green represents fitted
catheter. (a) HT-CX-TEE, (b) HT-EP-TEE, (c) HT-EP-TTE, and (d) LH-EP-TTE.
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Fig. 14 Classification results in tissue volumes, prediction (red) versus annotation (white). (a) HT-CX-
TEE, (b) HT-EP-TEE, (c) HT-EP-TTE, and (d) LH-EP-TTE.

(a) (b)

(c) (d)

Fig. 15 Comparison between SPD-RANSAC and a simple model-based RANSAC. (a) Original image,
(b) annotation, (c) SPD-RANSAC, and (d) two-points RANSAC.

voxels using AdaBoost classifiers. Although the classified
volumes include some false positive (as shown in Fig. 14),
a-priori knowledge of the catheter shape leads to a correct
segmentation result. When an optimized 3-D view generation
would be implemented and added to our algorithms or alterna-
tively, a 2-D view on slices would be created, the catheter can be
easily found and annotated for surgeons such that the cardiac
intervention becomes easier and obtains a higher safety.

4 Conclusion and Discussion

In this paper, we have jointly studied different features in-depth
and combined them with different classifiers. Based on a model-
fitting method, our quantitative analysis on accuracy shows
that the catheter segmentation errors are smaller than the
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catheter diameter. With the proposed method, it is possible to
automatically segment the catheter in a 3-D US image and dem-
onstrate the optimal viewing of the catheter for surgeons during
an intervention.

It was found that all features are interesting but capture only
a part of the catheter’s discriminating information, due to the
challenging imaging conditions, noise, and anatomical struc-
tures. Therefore, the combination of the proposed features yields
a highest performance in finding the catheter when using the
AdaBoost classifier. With model fitting, three-point SPD-
RANSAC achieves an average segmentation error of three to
four voxels at the voxel-level. Moreover, the total execution time
of the whole processing chain is ranging from 2 to 30 min
(around nine minutes on the average), based on the volume
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size. The experiments were performed on a Xeon CPU running
at 3.6 GHz without any code optimization or acceleration.

Based on the accurate segmentation of the catheter in the 3-D
US image, there are several ways to exploit this catheter seg-
mentation method for enhancing and facilitating the operation
during cardiac interventions.

First, the advantage of having a 3-D US image available can
provide a richer spatial information than conventional 2-D x-ray.
As a result, an accurate catheter segmentation enables to
enhance the clinical procedures requiring more spatial informa-
tion. For example, for percutaneous aortic valve replacement
(so-called TAVI), it is difficult for surgeons to insert the
guide wires to pass through the aortic valve under the guidance
of x-ray images. Alternatively, if the catheter would be accu-
rately segmented in 3-D US and could be reconstructed into
a 3-D heart model, the richer and more accurate spatial infor-
mation between instrument and tissue would help the physicians
to better understand the procedure. Such an approach would
definitely enhance the intervention navigation.

Second, there may be new solutions to visualize surgery in
the future using US, such as constructing a real-time heart model
with a catheter inside it. With accurate catheter segmentation,
the segmented catheter with tips can be reconstructed into the
model, which can enhance the doctors’ understanding of the
operation.

Moreover, the catheter segmentation in 3-D US can be
also beneficial to 2-D US visualization. The 2-D slices are
commonly used during the procedure to guide the catheter.
However, it would enforce sonographers to spend too much
time of tuning the slice to visualize the instrument. With an
accurate catheter segmentation in 3-D US, which can provide
accurate positioning information in the 3-D image, an automated
slicing technique can be performed to extract the slices
containing the catheter. As a result, sonographers can easily
perceive these slices with the catheter inside. The 3D image
may have lower spatial resolution and more noise than the
2-D image, so that automatic slicing and visualization into
2-D slices would increase the visual perception and benefit to
surgeons.

Further improvements are possible for higher segmentation
performance and creating a real-time application. For example,
tuning the US system to address varying recording conditions,
e.g., adapting image gain or focal depth of the US array, may
lead to better segmentation performance and higher robustness.
Moreover, for different US resolution and catheter appearance,
the multiscale with feature fusion (e.g., more features®')
approach may be simplified or extended to achieve a better
and robust segmentation accuracy. With respect to the real-
time application, the main challenge is coming from complex
feature extraction during the voxel-level classification, which
takes more than 85% of whole processing time. Some possible
solutions for enhancing the processing speed are (1) embedding
the feature extraction steps in a parallel manner on a GPU,
which accelerates the computation efficiency, (2) classification
at voxel level can be accelerated by a coarse-to-fine strategy to
reduce the calculation complexity, and (3) a 3-D US video
stream using a high US frame rate system enables to combine
the catheter segmentation algorithm with frame skipping for
reducing the computational complexity.

In future work, more datasets especially images from human
bodies are required for a robust evaluation for a possible clinical
application. With more datasets, developed deep learning might
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be combined with an ensemble classification scheme to enhance
the classification accuracy.??
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