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Abstract. With the enactment of supportive government policies and the increasing maturity of
solar photovoltaic (PV) technologies, solar PV energy has become the most cost-effective new
energy resource worldwide. Geospatial information on existing solar PV power systems is
necessary to manage and optimize the deployment of new PV facilities. In this study, we propose
a new deep-learning network, named the enhanced U-Net (E-UNET), to detect PV facilities from
Sentinel-2 multi-spectral remote sensing data. Our E-UNET features an enhanced encoder–
decoder structure that can efficiently extract spectral and spatial features simultaneously by
combining a multi-spectral three-dimensional convolution path and a multi-scale pooling block.
We compare the performance of the E-UNET with other semantic segmentation deep-learning
networks and a pixel-based random forest classifier. The experimental results show that the
E-UNET performs better than the other methods. It achieves an overall accuracy, Matthews
correlation coefficient, F1, kappa coefficient, and recall of 0.989, 0.862, 0.869, 0.934, and
0.875, respectively. The experimental results also indicate that the E-UNET accurately detects
PV facilities from various complex environments with high accuracy in terms of PV integrity and
details. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International
License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JRS.17.014516]
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1 Introduction

The International Energy Agency’s State Policies Scenario predicts that global solar photovoltaic
(PV) capacity will grow at an average rate of 12% per annum, reaching a capacity of 2764 TWh
in 2030.1 The ability to efficiently census geospatial information on solar PV energy systems
is highly important for countries to formulate strategies in accordance with their commitment
to achieving carbon neutrality by 2050, as well as for system operators and market analysts to
quantify and optimize the efficiency of PV facility deployments.

In recent years, a substantial amount of work has been undertaken to detect the spatial dis-
tribution of PV facilities from satellite remote sensing data by means of computer vision. Using
computer vision techniques can overcome the incomplete, time-consuming, and labor-intensive
problems associated with manual counting and mapping of PV facilities. In 2015, Malof et al.2

first proposed using a support vector machine approach to locate PV facilities from satellite and
aerial images. The feature extraction process of Malof et al.2 has some limitations requiring
manual adjustment of the image feature descriptors. With the development of convolutional
neural network (CNN), many researchers begin to apply CNN to detecting PV facilities from
satellite images.3,4 The CNN approaches enable automatic representation learning and have the
advantage of examining more complex spatial patterns that cannot be captured by shallow
classifiers.5 Therefore, they can significantly improve the accuracy of location and contour detec-
tion of PV facilities. In 2018, Hou et al.6 proposed the SolarNet deep-learning framework, which
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combined a full convolutional network (FCN) and an expectation-maximization attention mod-
ule to locate and estimate the surface area of solar PV facilities in China. Yu et al.7 applied a
semi-supervised object localization and segmentation method to generate class activation maps
based on the Inception-v3 framework and built a database of PV facilities in the United States.

Although the above studies have achieved remarkable accuracy in detecting PV facilities,
they were carried out only on red, green, blue (RGB) satellite images. Numerous multi-spectral
images have become available with the rapid development of remote sensing technologies.8

For cases in which PV facilities and backgrounds are visually similar or the scene is blurred,
using multi-spectral information instead of only RGB information can further improve the
detection accuracy.9 In 2019, Kruitwagen et al.10 used multi-spectral remote sensing images
from Sentinel-211 (12 bands) and SPOT-6/7 (4 bands) to conduct a global survey of utility-scale
(installed capacity larger than 10 kW) solar PV facilities by a double-branch machine learning
pipeline method.

For PV detection with segmentation methods, accurate segmentation of multi-spectral sat-
ellite remote sensing images using end-to-end deep learning methods remains a challenge. The
classical semantic segmentation model U-Net12 has proven to be advantageous in multi-spectral
satellite image segmentation and has been widely used in applications, such as road segmen-
tation,13 burned area mapping,14,15 and cloud masking.16 In this study, we propose the E-UNET
network structure enhanced from the classical U-Net12 structure to detect PV facilities from
Sentinel-211 multi-spectral remote sensing images. The E-UNET is based on an encoder–
decoder structure that extracts spatial-spectral features through a multi-spectral three-dimen-
sional (3D) convolution (MSD) path. Its multi-scale pooling (MSP) block encodes contextual
information from multiple scales. Therefore, the E-UNET effectively extracts and integrate
spectral and spatial features at different scales to achieve fine-grained and better overall seg-
mentation accuracy than the classical U-Net.12 We use experiments to demonstrate and analyze
the effectiveness of our E-UNET in detecting PV facilities from Sentinel-211 multi-spectral
images. Furthermore, we experimentally compare the E-UNET approach with several state-
of-the-art methods, and the experimental results show that the E-UNET achieves the best
PV detection performance.

The remainder of the manuscript is organized as follows: Sec. 2 introduces the multi-spectral
images used in this study, Sec. 3 describes the proposed E-UNET in detail, Sec. 4 describes
the experimental setup, Sec. 5 presents the experimental results and discussion, and finally,
the conclusions are given in Sec. 6.

2 Data

In this study, we use Sentinel-211 satellite remote sensing images to detect PV facilities.
The Sentinel-2 mission comprises twin polar-orbiting satellites launched in 2015 and 2017,
respectively.11 Both the Sentinel-2 satellites carry a multi-spectral payload capable of acquiring
observations in 13 spectral bands with spatial resolutions of 10, 20, and 60 m.11

As shown in Fig. 1, we collect 41 Sentinel-2 Level-2A17 multi-spectral scenes containing
large-scale, non-residential PV facilities. These scenes cover deserts, mountains, lakes, and coastal
areas with different seasons, latitudes, longitudes, and topographies, representing different envi-
ronmental disturbances to the PV detection task.

Because the smallest downloadable scenes of Sentinel-2 Level-2A products cover
100 × 100 km2 and PV facilities typically occupy only a small portion of the scene, we visually
crop 137 images (see Fig. 2) containing PV facilities from the 41 downloaded scenes using
ENVI version 5.3 software. These cropped images range in size from 260 × 260 pixels to
1500 × 1500 pixels.

In addition, we use the Sen2Res18 tool provided by the sentinel application platform to fuse
the 20- and 60-m resolution bands of the cropped multi-spectral images with the corresponding
10-m resolution band. The Sen2Res18 uses a super-resolution method to fuse a low-resolution
band into a high-resolution band while keeping its reflectance value unchanged.18–20 The super-
resolution method explores geometric detail information among adjacent pixel contents shared
between the low- and high-resolution bands to keep the local reflectance consistency of adjacent
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pixels in the low-resolution band unchanged, as well as to keep the geometric details of sub-pixel
components in the low-resolution band consistent with those in the high-resolution
band.18–20 Band 10 in the cropped images is discarded because it is generally used to detect
cirrus clouds.21

3 E-UNET Method

As shown in Fig. 3, the E-UNET has an end-to-end CNN architecture modified from the classical
U-Net12 to improve the segmentation performance of multi-spectral remote sensing satellite

Fig. 2 Multi-spectral images containing PV facilities visually cropped from Sentinel-2 level 2A
scenes.

Fig. 1 RGB images synthesized from Sentinel-2 multi-spectral data.
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images. It consists of three key components: the feature encoder-decoder module, the MSP
block, and the MSD path module.

3.1 Feature Encoder–Decoder Module

The feature encoder and decoder form a symmetrical U-shaped structure, which is the backbone
of the E-UNET. The spatial feature encoder is divided into three layers, each layer contains two
convolution filters, the second convolution filter is followed by a max-pooling kernel for down-
sampling operations. As shown by the gray dashed arrows in Fig. 3, the output of each encoder
layer and each MSD path is connected to the corresponding decoder input via a skip connection.
During the feature decoding process, three cascade up-sampling operations are carried out to
restore the size of the merged spatial and spectral feature maps to the same size as the input
image. At the bottom of the U-shaped structure, an MSP block is embedded to improve the
segmentation performance by including global context information.

3.2 Multi-spectral 3D Convolution Path Module

Although the classical U-Net12 can also handle multi-spectral images, its two-dimensional (2D)
convolution filters can only use features extracted from the spatial dimensions of each band.22

Therefore, we add an MSD path module to capture the nonlinear relationships of adjacent pixels
between different spectral bands, which are neglected by the 2D convolution filters in the
classical U-Net.12 Table 1 shows the size and number of filters in the 3D convolution layers
(from C1 to R3-C6 in Fig. 3) and in the max-pooling layers (from P1 to P2 in Fig. 3), as well
as the output size of each MSD path. The size of the 3D convolution filters is 5 × 5 × 5. The
max-pooling kernels down-sample the output spectral features of each 3D convolution filter,
so the spectral feature maps are aligned in the cross-sectional direction with the spatial feature
maps extracted by the encoder layers in the U-shaped structure. The spectral feature maps of
each size are then sent to the corresponding decoders in the U-shaped structure through the skip
connections.

To balance the weights between the spectral and spatial features and prevent the network
from giving too much weight to the spectral features, a 1 × 1 sized convolution filter is added
after each MSD path to reduce the dimensionality and computational cost of the spectral features.
With the help of the MSD path module, the E-UNET automatically extracts the spectral features
from adjacent pixels by the 3D convolution filters and combines them with the spatial features

Fig. 3 E-UNET architecture. (C, P, and R stand for convolution, max-pooling, and reshaping
filters, respectively.)
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extracted by the U-shaped encoder–decoder module through the skip connections. Thus,
E-UNET effectively improves the accuracy of multi-spectral image segmentation.

3.3 Multi-scale Pooling Block

In the PV semantic segmentation task, it is a big challenge to cope with the substantial variation
in sizes of different PV facilities. In the Sentinel-2 multi-spectral images with the finest reso-
lution of 10 m used in this study, the typical width of the total outline of large and continuously
aligned PV facilities is about 100 to 200 pixels. Meanwhile, the outline of small and scattered
PV facilities or the gap between PV panels is only a few to tens of pixels wide. In the classical
U-Net12 deep network, the maximum pooling uses only one fixed-size pooling kernel. Therefore,
the classical U-Net12 only perceives the context within a fixed-size receptive field and does not
fully integrate important multi-scale spatial information.

Inspired by the pyramid pooling structure,23 we add an MSP block at the bottom of the
U-shaped structure, i.e., below the third encoder layer. As shown in Fig. 4, the MSP block uses

Fig. 4 Diagram of the MSP block.

Table 1 Details of the MSD path module of E-UNET. (C, P, and R stand
for convolution, max-pooling, and reshaping filters, respectively).

Layer Filter size, number Output shape Connected to

C1 ð5 × 5 × 5; 32Þ ð256 × 256 × 12Þ × 32 Input

R1 — 256 × 256 × 384 C1

C2 ð1 × 1;16Þ 256 × 256 × 16 R1

P1 2 × 2 × 2 ð128 × 128 × 6Þ × 32 C1

C3 ð5 × 5 × 5; 64Þ ð128 × 128 × 6Þ × 64 P1

R2 — 128 × 128 × 384 C3

C4 ð1 × 1;32Þ 128 × 128 × 32 R2

P2 2 × 2 × 2 ð64 × 64 × 3Þ × 64 C3

C5 ð5 × 5 × 5; 128Þ ð64 × 64 × 3Þ × 128 P2

R3 — 64 × 64 × 384 C5

C6 ð1 × 1;64Þ 64 × 64 × 64 R3
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four sizes of pooling kernels, namely, 32 × 32, 16 × 16, 8 × 8, and 4 × 4, to divide the spatial
feature map into sub-regions of different sizes to perceive contextual relationships and informa-
tion at different spatial scales.24 To balance the number of features from different pooling kernels
and reduce the computational cost, we add a 1 × 1 sized convolution filter after each pooling
kernel to reduce the dimensionality of the spatial features extracted by each pooling kernel to
1∕N of its original dimensionality. We then use up-sampling operations to map the spatial
features at different sub-region scales back to the same size as the original spatial features.
Finally, the spatial features at different sub-regional scales are cascaded to form a feature
pyramid of the MSP block, as shown in Fig. 4.

4 Experimental Setup

4.1 Dataset

We use sliding cropping to cut the 137 images containing PV facilities into patches with a rep-
etition rate of 0.01. To meet the E-UNET’s requirements for input data, the size of each patch is
set to 256 × 256 pixels. In addition, we perform data augmentation by flipping the patches
vertically and horizontally to expand the dataset and prevent over-fitting of the training model.
Then, we divide the entire dataset into training, validation, and test sets in a ratio of roughly
8:1:1. Therefore, we use 1746, 262, and 230 patches to train, validate, and test our E-UNET,
respectively.

4.2 Experimental Environment

Keras 2.2.0 with a Tensorflow-gpu 1.7.0 backend is used as the deep learning framework in the
experiments. The experiments are conducted on a server with two Intel(R) Xeon(R) Gold 5218R
CPUs @ 2.10 GHz with a total of 40 cores, 125 GB RAM, and an NVIDIA Tesla T4 graphics
card. The server’s operating system is Ubuntu 18.04.5 LTS.

4.3 Experimental Design

The experiments are divided into two types: architecture ablation experiments and performance
comparison experiments. We first optimize the architecture and parameters of the E-UNET
through the architecture ablation experiments; we then analyze and evaluate the performance
of the E-UNET in PV semantic segmentation task through the comparative experiments.

4.3.1 Design of the architecture ablation experiments

We modify the classical U-Net model to make it capable of processing 12-band Sentinel-2
multi-spectral images, which is referred to as U-Net+. To analyze the contribution of the
MSP and MSD modules to the model segmentation performance and the rationality of MSD
module parameter selection, we use the U-Net+ as the baseline model and conduct experiments
to compare the segmentation performance of different model architectures and parameter
selections.

The experiment of only adding the MSP module to the U-Net+ architecture is referred to as
U-Net-MSP. The experiments of only adding the MSD module with 3D convolution filters of
size 1 × 1 × 5 and 5 × 5 × 5 to the U-Net+ architecture are referred to as U-Net-MSD-k1 and
U-Net-MSD-k5, respectively. The experiments of adding both the MSP module and the MSD
module with 3D convolution filters of size 1 × 1 × 5 and 5 × 5 × 5 to the U-Net+ architecture are
referred to as U-Net-MSP-MSD-k1 and U-Net-MSP-MSD-k5, respectively.

We use the Adam optimization algorithm25 to train these models with an initial learning rate =
0.001, default hyperparameters β1 ¼ 0.9 and β2 ¼ 0.999, and batch size = 2. We use the
validation set to evaluate the training process and adjust the learning rate values. The learning
rate is reduced by a factor of 0.5 if the validation loss does not improve within three epochs.
When the validation loss does not improve within 20 epochs, the model training is stopped to
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prevent overfitting,26 and the model with the least validation loss during the training is selected
as the training result.

4.3.2 Design of the comparative experiments

We select the model architecture and parameters with the best segmentation performance in the
architecture ablation experiments as the E-UNET model. In the comparative experiments, we first
compare the E-UNET with the U-Net+ and U-Net (only using the RGB bands of the Sentinel-2
data) to illustrate the necessity of using multi-spectral images in the PV detection and the effec-
tiveness of the E-UNET in improving PV detection performance. We then use the RGB bands of
the Sentinel-2 data to analyze the segmentation capability of the E-UNET by comparing it with
other semantic segmentation networks such as SegNet,27 FCN,28 HRNet,29 and PSPNet.23

In addition, we also compare the E-UNETwith a pixel-based random forest (RF) classifier,30

which is widely used in PV detection tasks.31,32 To balance the computational cost and detection
performance of the RF method, we set the number of trees in the forest to 100 and the maximum
depth of the forest to 20. According to the conventional setting of RF,30 the size of the feature
subset extracted from each tree node is set to

ffiffiffiffi
N

p
, where N is the dimensionality of the feature.

4.4 Evaluation Metrics

We use five metrics, namely, overall accuracy (OA), recall rate, F1, Matthews correlation coef-
ficient (MCC),33 and kappa coefficient,34 defined by Eqs. (2)–(6), to evaluate the PV detection
performance of each model. These evaluation metrics are calculated from a confusion matrix
constructed from the number of pixels that are false negative (FN), false positive (FP), true
positive (TP), and true negative (TN).

EQ-TARGET;temp:intralink-;e001;116;434Precision ¼ TP

TPþ FP
; (1)

EQ-TARGET;temp:intralink-;e002;116;380OA ¼ TPþ TN

TPþ TNþ FPþ FN
; (2)

EQ-TARGET;temp:intralink-;e003;116;347Recall ¼ TP

TPþ FN
; (3)

EQ-TARGET;temp:intralink-;e004;116;314F1 ¼ 2 ×
Precision × Recall

Precisonþ Recall
; (4)

EQ-TARGET;temp:intralink-;e005;116;281MCC ¼ TP × TN − FP × FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ; (5)

EQ-TARGET;temp:intralink-;e006;116;244Kappa coefficient ¼ NðTPþ TNÞ − ½ðTPþ FPÞðTPþ FNÞ þ ðFNþ TNÞðFPþ TNÞ�
N2 − ½ðTPþ FPÞðTPþ FNÞ þ ðFNþ TNÞðFPþ TNÞ� : (6)

4.5 Uncertainty Analysis

We randomly generate five image sets for training, validation, and test from the entire image
dataset in a ratio of roughly 8:1:1. We use each of these five image sets to train and evaluate the
PV detection performance of all models. Following the strategy of Gu et al.,24 we use the mean
and variance of the PV detection performance of each model on these five image sets to analyze
the uncertainty of the models.
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5 Results

5.1 Results of the Architecture Ablation Experiments

Table 2 lists the PV detection performance and uncertainty of the six models in the architecture
ablation experiments. Experimental results show that the U-Net-MSP-MSD-k5 model architec-
ture formed by adding the MSP module and the MSP module with 3D convolution filters of size
5 × 5 × 5 to the U-Net+ structure has the best PV detection performance.

The comparison of experimental results of the U-Net+ and the U-Net-MSP confirms that
adding the MSP module capable of aggregating spatial information at different scales to the
U-Net+ structure improves the PV detection performance.

The comparison of experimental results of the U-Net+, the U-Net-MSD-k1, and the U-Net-
MSD-k5 confirms that adding the MSD module capable of extracting spectral features from multi-
spectral images to the U-Net+ structure improves the PV detection performance. The comparison
also shows that the U-Net-MSD-k5 model, which extracts spectral features from five adjacent
spectral bands of each pixel, improves the PV detection performance more than the U-Net-
MSD-k1 model, which only extracts spectral features from a single spectral band of each pixel.

As shown in Fig. 5, for images with similar spectral features in PV and background areas, a
good PV detection performance cannot be achieved by adding only the MSD module or only the
MSP module to the U-Net+ structure. The red and blue boxes in Fig. 5(a) indicate the area with
PV panels installed and the background area without PV panels, respectively. The average spec-
tral values of the pixels in the red and blue boxes are shown in Fig. 5(g). The average spectral
values of these two regions are very similar. Figure 5(b) shows the manual labeling results of the
PV pixels in Fig. 5(a), which are used as the true values to evaluate the PV detection performance
of the models.

Figures 5(c)–5(f) show the PV detection results of the four models, namely, U-Net-MSP-
MSD-k5, U-Net-MSD-k5, U-Net-MSP, and U-Net+, respectively. Compared with the true val-
ues in Fig. 5(b), it is obvious that the U-Net-MSD-k5, the U-Net-MSP, and the U-Net+ do not
fully and accurately detect the PV panels in and around the area indicated by the red box in
Fig. 5(a). The U-Net+ misses a large area of PV panels as indicated by the green box in Fig. 5(f).
Because the U-Net-MSD-k5 and the U-Net-MSP add the MSD module for sensing spectral fea-
tures and the MSP module for sensing spatial features at different scales to the U-Net+ structure,
respectively, their PV detection results for the same area are much better than that of the U-Net+.
As shown in Fig. 5(c), only the U-Net-MSP-MSD-k5, which is formed by adding both the MSD
and the MSP modules to the U-Net+ structure, nearly completely detects the PV panels in the
area indicated by the green box.

The experimental results shown in Fig. 5 confirm that the simultaneous use of spectral and
spatial features extracted at different scales effectively improves the accuracy of PV detection
from multi-spectral images. Therefore, we select the U-Net-MSP-MSD-k5 as the final E-UNET
model.

Table 2 PV detection performance and uncertainty of each model in the architecture ablation
experiments. The best-performing model and its metrics are highlighted in bold.

Model OA MCC F1
Kappa

coefficient Recall
Training
time

U-Net+ 0.987 ± 0.001 0.847 ± 0.024 0.855 ± 0.024 0.919 ± 0.009 0.856 ± 0.023 3 h

U-Net-MSP 0.988 ± 0.000 0.857 ± 0.021 0.865 ± 0.022 0.928 ± 0.004 0.869 ± 0.023 3 h

U-Net-MSD-k1 0.987 ± 0.001 0.851 ± 0.022 0.859 ± 0.023 0.919 ± 0.011 0.862 ± 0.028 4 h

U-Net-MSD-k5 0.988 ± 0.000 0.859 ± 0.022 0.866 ± 0.022 0.931 ± 0.004 0.872 ± 0.021 4 h

U-Net-MSP-MSD-k1 0.988 ± 0.000 0.859 ± 0.021 0.866 ± 0.021 0.930 ± 0.007 0.869 ± 0.021 9 h

U-Net-MSP-MSD-k5 0.989 ± 0.000 0.862 ± 0.022 0.869 ± 0.022 0.934 ± 0.008 0.875 ± 0.023 9 h
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5.2 Results of the Comparative Experiments

5.2.1 E-UNET versus other deep learning models

Table 3 lists the PV detection performance and uncertainty of the E-UNET, U-Net+, U-Net,12

and four state-of-the-art deep-learning models, namely SegNet,27 FCN,28 HRNet,29 and
PSPNet,23 in the comparative experiments.

The experimental results show that the E-UNET achieves the highest values in all five detec-
tion performance evaluation metrics. Compared with the U-Net+, which has the second-best
detection performance, the E-UNET’s OA, MCC, F1, kappa coefficient, and recall metrics
improve by 0.2%, 1.5%, 1.4%, 1.5%, and 1.9%, respectively.

Figure 6 shows boxplots of the recall rate of all seven models in the five uncertainty
experiments with different sets of training, validation, and test images. The E-UNET has the
highest median recall rate and the smallest boxplot height, indicating that the E-UNET achieves
the best PV detection performance with the least performance fluctuations in the experiments.

Figure 7 shows the PV detection results of the seven models for images containing dark
backgrounds, roads, and vegetation with texture features similar to PV facilities.

Fig. 5 PV detection results of an image containing PV areas and background areas with
similar spectral features: (a) RGB image synthesized from Sentinel-2 multi-spectral image;
(b) Manual labeling results of PV panels in (a); (c) U-Net-MSP-MSD-k5; (d) U-Net-MSD-k5;
(e) U-Net-MSP; and (f) U-Net+; and (g) average spectral values of the pixels in the red and blue
boxes of (a).
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The SegNet27 and the PSPNet23 have many incorrect detections for images containing veg-
etation or dark backgrounds. In the detection results of FCN,28 there are many irregular burrs of
different sizes at the edges of the PV panels. Both the U-Net12 and the HRNet29 obtain relatively
good PV detection results for the images in Figs. 7(a)–7(c), but for the image containing dark
backgrounds in Fig. 7(d), they both mis-detect a large area of the background as PV panels.

The U-Net+ obtains relatively complete PV detection results, but the PV panel edges and
the gaps between PV panels in its detection results are more blurred than those in the detection
results of the E-UNET. It also does not detect the PV panels within the area marked by the red
box in Fig. 7(d), whereas the E-UNET accurately detects them.

The experimental results also indicate that the E-UNET outperforms other networks in
detecting the overall contour and edge details of PV panels from multi-spectral images.
The multiple connections and the complementary spatial-spectral information at different scales
between the encoder, the decoder, the MSD path module, and the MSP block in the E-UNET
prevent the problem of irregular PV contours when the decoder recovers the image size from
partial features that have lost some detailed information in the multiple down-sampling

Fig. 6 Boxplots of the recall rate of E-UNET, U-Net+, U-Net, SegNet, FCN, PSPNet, and HRNet
on five sets of test images. The outliers are indicated by +. The solid lines within the boxes re-
present the median value. The lower and upper whiskers represent the minimum and maximum
values, respectively. The lower and upper edges of the boxes represent the first (Q1) and third
quartiles (Q3), respectively.

Table 3 PV detection performance and uncertainty of the seven models in the comparative
experiments. The best-performing model and its metrics are highlighted in bold.

Model OA MCC F1
Kappa

coefficient Recall
Training
time

E-UNET 0.989 ± 0.000 0.862 ± 0.022 0.869 ± 0.022 0.934 ± 0.008 0.875 ± 0.023 9 h

U-Net+ 0.987 ± 0.001 0.847 ± 0.024 0.855 ± 0.024 0.919 ± 0.009 0.856 ± 0.023 3 h

U-Net 0.982 ± 0.001 0.822 ± 0.026 0.830 ± 0.027 0.870 ± 0.016 0.839 ± 0.024 2.5 h

SegNet 0.973 ± 0.001 0.788 ± 0.022 0.803 ± 0.023 0.845 ± 0.009 0.811 ± 0.030 2 h

FCN 0.976 ± 0.001 0.801 ± 0.025 0.815 ± 0.026 0.860 ± 0.011 0.822 ± 0.026 5 h

PSPNet 0.981 ± 0.001 0.831 ± 0.022 0.843 ± 0.024 0.896 ± 0.008 0.845 ± 0.023 5.5 h

HRNet 0.986 ± 0.001 0.842 ± 0.023 0.850 ± 0.023 0.910 ± 0.008 0.848 ± 0.024 4 h
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operations. In addition, the MSP module in the E-UNET utilizes multi-scale spatial features
captured by multiple receptive fields at different scales to enable the detection of super-large
PV facilities and achieve more stable and reliable PV segmentation results.

5.2.2 E-UNET versus the pixel-based RF classifier

Table 4 lists the PV detection performance and uncertainty of the E-UNET and the pixel-based
RF classifier30 in the comparative experiments. The experimental results indicate that the
E-UNET performs better than the pixel-based RF classifier.30 Some examples of the PV detec-
tion results of these two models are shown in Fig. 8.

Although the pixel-based RF classifier30 may be more accurate in detecting some small-scale
details of PV panels, it does not take advantage of the information provided by neighboring
pixels, which is usually strongly correlated, resulting in a lot of scattered and fragmented
PV panels and backgrounds in its detection results, as shown in Figs. 8(a), 8(c), and 8(d).

Table 4 PV detection performance and uncertainty of the E-UNET and the pixel-based RF
classifier in the comparative experiments. The best-performing model and its metrics are high-
lighted in bold.

Model OA MCC F1
Kappa

coefficient Recall
Training
time

E-UNET 0.989 ± 0.000 0.862 ± 0.022 0.869 ± 0.022 0.934 ± 0.008 0.875 ± 0.023 9 h

RF 0.981 ± 0.001 0.827 ± 0.025 0.834 ± 0.026 0.879 ± 0.019 0.822 ± 0.026 4 h

Fig. 8 Four examples of the PV detection results of the E-UNET and the pixel-based RF classifier.
(a) Containing vegetation; (b) Dark backgrounds; (c)–(d) Photovoltaic array with many texture
details.

Fig. 7 Four examples of the PV detection results of E-UNET, U-Net +, U-Net, SegNet, PSPNet,
FCN, and HRNet. (a) Containing roads; (b) containing vegetation; and (c) and (d) dark
backgrounds.
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Furthermore, as shown in Fig. 8(b), for images in which the backgrounds and PV panels
have similar spectral or spatial texture features, the pixel-based RF classifier30 is more likely
to mis-detect PV panels as backgrounds than the E-UNET.

6 Conclusion

In this study, we proposed an end-to-end deep learning framework named the E-UNET to detect
PV facilities from Sentinel-2 multi-spectral observation data. The E-UNET was improved from
the classical U-Net12 model by adding a multi-spectral 3D convolution (MSD) path and an MSP
block to its U-shaped encoder-decoder structure. Therefore, the E-UNET effectively extracts and
integrates spectral and spatial features at different scales to achieve fine-grained and better
overall segmentation accuracy. We experimentally compared the PV detection performance of
the E-UNET with the pixel-based RF classifier30 and other deep-learning models of U-Net+,
U-Net,12 SegNet,27 FCN,28 HRNet,29 and PSPNet.23 The experimental results indicate that the
E-UNET achieved the best results in all five performance evaluation metrics, i.e., OA, recall,
F1, MCC,33 and kappa coefficient.34 The experimental results also confirmed that the E-UNET
obtained good PV detection performance for images with different topographies and back-
grounds. Our future work will involve using the E-UNET to survey larger PV facilities around
the world from Sentinel-2 multi-spectral observation data.

7 Appendix A

For convenience, acronyms and abbreviations are given in Table 5.
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