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ABSTRACT. Generalized zero-shot learning (GZSL) is the most popular approach for developing
ZSL, which involves both seen and unseen classes in the classification process.
Many of the existing GZSL approaches for scene classification in remote sensing
images use word embeddings that do not effectively describe unseen categories.
We explore word embedding to describe the classes of remote sensing scenes
to improve the classification accuracy of unseen categories. The proposed method
uses a data2vec embedding based on self-supervised learning to obtain a continu-
ous and contextualized latent representation. This representation leverages two
advantages of the standard transformer architecture. First, targets are not prede-
fined as visual tokens. Second, latent representations preserve contextual informa-
tion. We conducted experiments on three benchmark scene classification datasets
of remote sensing images. The proposed approach demonstrates its efficacy over
the existing GZSL approaches.
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1 Introduction

The advancements in remote sensing platforms focus on the acquisition of high-resolution
imagery and provide challenges in understanding the abundant volumes semantically. Scene
classification is a preliminary task that is helpful in analyzing such volumes of remote sensing
images at the coarser level. It aims to assign a label to a given scene from a set of predefined
categories based on its content. Most of the works'™ address the problem of scene classification
using supervised learning by exploring convolutional neural networks (CNNs). With the large
coverage of remote sensing satellite images, the tedious annotation process for all categories of
scenes becomes not possible practically. With its innate capability in accommodating the new
unseen/undiscovered classes, zero-shot learning (ZSL) would benefit many existing categoriza-
tion applications*® of remote sensing imagery.

ZSL is one such task that helps in understanding the scenes only with the description of the
classes without involving any sample of new class during training. Hence, in ZSL, training and
testing sets are disjointed. ZSL could be accomplished by sharing the semantic information from
seen to unseen class samples. Here, semantic information is a high-level description of the
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classes; how it can be obtained and transferred to unseen classes is discussed in Sec. 2. ZSL
approaches can be divided into two categories: conventional ZSL (CZSL) and generalized
ZSL (GZSL). The objective of CZSL is to predict only unseen classes, whereas GZSL predicts
both seen and unseen classes of samples.® These techniques are illustrated in Fig. 1. GZSL is
more challenging than CZSL as many unseen classes are prone to being misclassified into one of
the seen classes at the testing phase.

Mainly, the GZSL-based approaches focus on realistic images and solve the issues of
mapping from visual features to semantic embeddings™'’ and seen-unseen bias.!"!?
Nevertheless, numerous CZSL techniques have been explored in classifying remote sensing
(RS) images, whereas GZSL is hardly explored in remote sensing images. To the best of our
knowledge, we are the first to explore GZSL for scene classification tasks in remote sensing
images. GZSL aims to categorize the RS samples for both seen and unseen classes by establish-
ing a mapping relation between the feature and semantic spaces. With overhead imaging, the
semantics of an image may ignore other modalities, such as the elevation of objects from
the ground, which are described by digital elevation models."* To incorporate information
from other modalities, word embeddings become an alternative in describing other modalities
rather than utilizing them explicitly in deriving the semantics. Generally, both seen and unseen
classes are represented as semantic vectors in terms of word/sentence embeddings'* and attrib-
ute vectors'* in the embedding space. For feature extraction, we use the models (e.g., AlexNet,
VGG,'® GoogLeNet,'” and ResNet'®) pre-trained on ImageNet,'” which ignore the cross-dataset
bias®® between the ImageNet dataset and remote sensing benchmark datasets. Often, the cross-
dataset bias results in low-standard visual features for GZSL in remote sensing scene classi-
fication (RSSC), which would affect the classification accuracy on both seen and novel scene
classes.

In general, the methods used to extract visual features of remote sensing images are poor due
to cross-dataset bias? as they rely on ImageNet pre-trained models.'” Also, feature vectors
obtained from word2vec representation are limited by fixed representation irrespective of the
context. Hence, they are not effective in achieving appropriate semantics. By alleviating these
issues, extracted visual and semantic features can be enhanced to improve GZSL-RSSC clas-
sification performance. Thus, we propose a method called “GZSL for RSSC using data2vec
representations,” termed GZSL-RSD2V. The proposed method GZSL-RSD2V uses a feature
enhancement (FE)?! module to obtain discriminative features, which can effectively enhance the
visual features. Also, the proposed method uses a data2vec model based on a standard trans-
former architecture to obtain continuous and contextualized hidden features. The representation
of the data2vec model has two benefits: (i) targets are not fixed as visual tokens, and (ii) latent
representations preserve contextual information. We conducted experiments using GZSL-RSD2V
for scene classification in remote-sensing images.
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Fig. 1 lllustration of CZSL and GZSL. (a) Training stage, (b) test stage of CZSL, and (c) test stage
of GZSL.
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The main contributions of this paper are summarized as follows.

* We propose feature - variational autoencoder generative adversial networks (f-VAEGAN)
to learn a mapping of semantics to the visual domain for visual feature generation.

* A practical embedding approach based on a standard transformer architecture is developed
to represent semantic features of remote sensing images.

¢ We introduce an FE module to refine both seen and unseen class visual features.

* Our representation demonstrates the compactness of within-class similarity and separabil-
ity of inter-class variations.

The remainder of this paper is organized as follows. Section 2 presents various methods for
scene classification using ZSL and embedding approaches for encoding semantic information. In
Sec. 3, we explain the proposed GZSL-RSD2V. The experimental results and the analysis of the
proposed approach over the existing GZSL approaches are discussed in Sec. 4. The conclusion of
this paper is provided in Sec. 5.

2 Related Work

This section presents the existing ZSL approaches and some important methods explored for
encoding semantic information.

2.1 Zero-Shot Learning
ZSL-based scene classification in remote sensing images is divided into two categories, as
explained in the following subsections.

2.1.1 Embedding-based methods

These methods aim to map seen class samples and their class semantic vectors into embedding
space, and then a nearest neighbour search in the embedding space is used to classify unseen
class samples with their class semantic vectors. In the domain of remote sensing images, a
method based on label propagation is proposed for ZSL.?> The label propagation mechanism
helps construct a semantic-directed graph to share the semantic information from seen to unseen
classes, thereby classifying the test image into one of the unseen classes.

Quan et al.”® employed the Shannon embedding method to implement ZSL for scene clas-
sification in remote sensing images. This method alters the features in the semantic space with the
respective features in the visual space for maintaining the class structure consistency between
visual and semantic space. Another work?* proposes a semantic auto-encoder-based method to
impose conditions on the distance to align the visual and semantic spaces for ZSL in remote
sensing images. Further, a technique® is used to map semantic space from visual space by train-
ing a projection network to perform ZSL tasks in remote sensing images. With the learned map-
ping function, semantic knowledge is perhaps transferred during the inference of unseen classes.
However, embedding-based methods cannot perform well in GZSL settings considering unseen
classes are essentially biased®®*’ to seen classes during the testing process. This motivates us to
explore generative-based methods for ZSL in remote sensing images.

2.1.2 Generative methods for zero-shot learning

Initially, we train a generative model to generate unseen class image features for data augmen-
tation. Later, we learn a classifier (CLS) to classify seen features and generate novel class
features to perform the ZSL task. To implement the ZSL task, we utilize the latest works
on generative models, such as variational autoencoders (VAEs),?*?%?* GANs,'**3! and gen-
erative flows.’? Xian et al.'! were the first to use generative adversarial networks (GAN $)* to
map semantic to visual features, giving a state-of-the-art proposal for ZSL. Li et al.** first
implemented the ZSL task in remote sensing images using GANs by achieving within-class
similarity and outside-class discrimination.
The description of the semantic information is as follows.
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2.2 Semantic Information

In ZSL, only seen class images are available during training. Semantic vectors of remote sensing
scene categories are a bridge between both seen and unseen class images to classify unseen
classes. These semantics enable us to perform ZSL. Semantic information can be extracted from
semantic attributes or word vectors.

2.2.1 Semantic attributes

Semantic or manually defined attributes are high-level descriptions of objects, such as objects’
color or shape. Unseen classes can be recognized based on semantic attributes, but human anno-
tation is required. As an example of natural image analysis, the “CUB dataset” was annotated
with 312 semantic attributes corresponding to 200 different bird classes.>> However, the remote
sensing benchmark datasets’ semantic attributes have not yet been explored.

2.2.2 Word embeddings

In general, natural language processing models such as word2vec,*® glove,”’ fastText,*® which
are trained over a corpus of one trillion words often results in very high dimensional vector
representation. They do not require human annotation. However, they have some limitations.
In the word2vec model, each word has a fixed representation irrespective of its importance
in the context, so the vector representation does not provide the promised performance.
Also, they contain intense noise, which compromises the model’s performance. To overcome
the above limitations of the word2vec model, we explore representation from the data2vec
model*” as word embedding in ZSL. The data2vec tries to predict a contextualized latent rep-
resentation based on the limited view of the input sample. The representation of data2vec has two
benefits. First, targets are not fixed as visual tokens. Second, hidden representations preserve
contextual information.

3 Generalized Zero-Shot Learning for Remote Sensing Scene
Classification Using Data2vec Representations

The block diagram of the proposed GZSL-RSD2V for GZSL is shown in Fig. 2. It comprises f-
VAEGAN,* an FE module’! and a CLS. In Fig. 2(a), f-VAEGAN aims to synthesize visual
features during the training process from the semantics vector of data2vec embedding “d.”
Here, we introduce the FE module to determine discriminative seen visual features in conjunction
with f-VAEGAN. Specifically, the FE module is optimized to learn discriminative features using
joint center-triplet (JCT) loss and iterative semantic consistency (ISC) loss.”' In Fig. 2(b),
we enhance the visual features for both seen and unseen class samples with the help of trained
FE. Then, we train both enhanced seen and unseen class features using a CLS for classification
purposes. Finally, we classify the enhanced unseen features using the trained CLS at the test-
ing phase.

3.1 Formulation

Let L® and L" indicate the sets of seen and unseen class samples, respectively. We indicate seen
class samples as S = {f;, [;})|, where f; represents the visual feature; /; is a respective class
label € L*; and N is the total number of seen samples. The relationship between seen and unseen
sets is defined as L* N L* = ¢, and L = L* U L". We denote a set of semantic vectors for every
seen and unseen class as dj € D, V j € L, which helps to share semantic information from the
seen to unseen class samples.

3.2 Data2vec Embedding

The data2vec model is “a general framework for self-supervised learning””” that works over
several methods, such as vision, speech, and language. But, here, we use only data2vec for the
vision model. The model data2vec obtains continuous and contextualized hidden features of
input data. The main idea of data2vec is to regress contextualized hidden representations based
on a masked view of the input. It has a teacher and student network trained on a standard
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Fig. 2 Block diagram for the proposed method GZSL-RSD2V. (a) The GZSL-RSD2V comprises
three modules: f-VAEGAN, an FE module, and a CLS. The f-VAEGAN module aims to synthesize
visual features during the training process from the semantics vector of data2vec embedding “d,”
whereas the FE module determines discriminative seen visual features in conjunction with
f-VAEGAN. We enhance the visual features for both seen and unseen class samples with the
help of trained FE. Then, we train to classify both enhanced seen and unseen class features using
a CLS. (b) FE module architecture. FE is optimized to learn discriminative features using JCT loss
and ISC loss; its discriminative features from different layers are then concatenated to obtain
enhanced features.

transformer architecture.*! The teacher network generates contextualized representations of the
full input data. The student network tries to predict full data representations based on the “block-
wise masking view** of the input sample. Despite that, data2vec uses a mask for 60% of the
patches instead of 40%. The weights of the teacher network are updated based on the exponen-
tially decaying average*** of the student. Then, the target is made using the transformer’s top K
blocks, which are continual and contextualized. Prior methods predict targets lacking contex-
tualized information. On the other hand, the data2vec model predicts contextualized latent target
representations by embodying related features from the total image contrary to targets that
accommodate information solitary to the present patch, such as visual tokens or pixels.

3.3 Feature Generating Models

We use f-VAEGAN® as a baseline for generating synthetic CNN features to map from semantic
vectors to visual features conditioned on the data2vec embedding d. The f-VAEGAN uses feature
generating VAE (f-VAE)* and feature generating wasserstein GAN (f-WGAN)'' to improve
the feature generator. f-VAE comprises an encoder E(f, d) and a decoder Dec(h, d). Here, the
encoder converts input f to hidden features %, and a decoder Dec(4, d) rebuilds input f from A.
The loss function for f-VAE is as follows:

Lyae = KL(q(hlf. d)||p(hld)) = Eqr.a)llog p(flh.d)]. Q)

where the conditional distribution g(h|f, d) is modeled as E(f, d), p(h|d)) is considered to be
N(0,1), KL is the Kullback-Leibler divergence, and p(f |k, d) is equal to Dec(h, d). In f-WGAN,
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generator G(h, d) generates a synthetic CNN feature ]A‘ from random input noise 4. In contrast,
the discriminator D(f, d) tries to discriminate the real and synthetic features. f-WGAN returns
a real value between 0 and 1, optimizing the following:

Lwcax = E[D(f.d)] + E[D(f,d)] = nE[(|V ; D(f". )|, - 1)?], @)

where f = G(h,d) is the synthetic feature, f' = pf + (1 — pf) with p ~U(0,1), and 7 is the
penalty multiplier. The parameters of the decoder Dec(h, d) and generator G(h, d) are shared
to improve the feature generator.

3.4 Feature Enhancement Module
The cross-dataset bias is alleviated by processing the visual features of remote-sensing images
through an FE module. Here, the FE module is constrained to JCT loss and ISC loss.

3.4.1 Joint center-triplet loss

This loss is introduced to learn discriminative features. These features are obtained by encour-
aging the features of the same class label to stay together and features of different class labels to
be away from each other; this is defined as the compactness of within-class similarity and the
separability of inter-class variations, respectively. This could be achieved with the help of class
label information, center loss, and triplet loss. JCT loss is formally defined as follows:

Lier(d. 1,1') = max(0,T + wl|w = c1[3 = (1 =)o = cy[13), ©)

where c; is the I’th class center, ¢ is the [”’th class center, I" denotes the margin that controls the
separability of intra-class pairs from inter-class pairs, @ represents the encoded features in FE,
and y € [0,1] denotes the balancing factor to indicate the compactness of within class similarity
and separability of inter-class variations.

3.4.2 [terative semantic consistency loss

This loss is introduced at the last layer of the FE module to learn semantic features. ISC loss

generates the semantic features d from f or ]A” using the “reparameterization trick.”* To learn
effective semantic features, ISC loss is applied to synthetic semantic features to ensure that syn-
thesized semantic features are mapped from the original semantic vectors. This loss is achieved
using the /; reconstruction loss and is formally defined as follows:

Ly 4= El|drea = d||1] + E[||dgyn = . @)

where ereal represents semantic features synthesized from f with the help of FE and Eisyn rep-
resents semantic features synthesized from ]A‘ Note that d = Elreal U Eisyn and d represents the

semantic features for the given visual features f or f.

3.4.3 Extracting enhanced features
In this stage, we take out enhanced features }s and j‘u from the trained FE. Using the residual
connection,'® we combine visual features f, respective latent vector z, € Z, and semantic embed-
ding Zis €D as fs. Similarly, we combine visual features ]A‘, respective latent vector z,, and
semantic embedding d, as f,. Figure 2(b) illustrates the fully enhanced features f; and f,,
formally defined as follows:
fs = fOz,0d,, )
fu= 102,04, ©)

where © denotes the concatentation operation and fs and fu € F. Hence, visual features }s and

]‘u are enhanced as discriminative features that are class- and semantically appropriate to avoid
ambiguities within feature samples of the distinct classes.
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Finally, our model GZSL-RSD2V is trained with the following overall objective function:
Liotas = Lvak + Lwoan + AicrLicr + Ar_alr a @)

where Ajcr and Ag ;4 are hyperparameters of the JCT loss and ISC loss multipliers, respectively.

4 Experimental Results and Analysis

This section provides the results and analysis of the proposed approach for GZSL for scene
classification in remote sensing images. We demonstrated the efficacy of the proposed approach
on three benchmark datasets of scene classification: UCMercedLandUse (UCM21),*
WHU-RS19 (RS19),*” and aerial image dataset (AID30).*®

4.1 Details of Scene Classification Datasets

UCM21 is the 21-class land use RSSC benchmark dataset manually extracted from large images
from the US Geological Survey. The RS19 dataset contains 19 scene classes extracted from
Google Earth with various high-resolutions. AID30 is a 30-class scene classification in the
RSI. Table 1 provides details of these datasets.

4.2 Implementation

Our proposed method employs an encoder, generator, and discriminator, which are basically
multilayer perceptrons. Each perceptron accommodates a 4096-node hidden layer with
LeakyReLU activation. The FE module is also a multilayer perceptron. It holds two hidden layers

with 4096 nodes and 2 X |21| nodes with LeakyReLU, followed by an encoding layer that uses
two feature vectors of size |d| to constitute the second hidden layer. Its final layer |d| corresponds

to the semantic vector of the word embedding method (e.g., |Zl| = 768 for the data2vec). We
used the Adam optimizer*” with 1 = 0.5 and 52 = 0.999. The penalty multiplier # is set to 10.
In this study, hyper parameters of the JCT loss multiplier (4;cr), ISC loss multiplier (g ,),
and gamma (y) are set to 0.999.

4.3 Extraction of Visual and Semantic Features

Deep learning-based, fine-tuned features of 2048 in size from remote sensing image scenes are
extracted from the ResNet-101'® model pre-trained on ImageNet.'* Semantic prototypes are
extracted from the data2vec model. Here, the data2vec model predicts contextualized hidden
features of the entire input image based on a masked version of the input sample in a self-refined
setup using a standard transformer architecture.*’ We used word2vec word embeddings pre-
trained on the Google News Corpus®® for a fair comparison. The details of word embedding
dimensions are shown in Table 2.

4.4 Quantitative Analysis

We used the unified evaluation protocol”" for fair comparison to evaluate our proposed approach.
We assess the top-1 accuracy for seen and unseen class samples (indicated by S and U,
respectively). The harmonic mean (indicated by H) of S and U is also estimated using
H=02xSxU)/(S+U).

lll

Table 1 Details of three benchmark datasets for scene classification in remote sensing images.

Characteristic ucm21 RS19 AID30
Number of classes 21 19 30
Images per class 100 50 220 to 420
Number of images 2100 950 10,000
Dimension of each image 256 x 256 600 x 600 600 x 600
Seen/unseen split ratio 16/5 15/4 25/5
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Table 2 Details of semantic vectors extracted from different embeddings over
three datasets.

Method-size |d| ucMm21 RS19 AID30
word2vec - dim 300 300 300
data2vec - dim 768 768 768

All of the zero-shot RSSC experiments are reiterated 25 times, accompanied by a random
seen/unseen split, and average classification accuracies are noted. Tables 3—5 show the top-1
classification accuracies of the word2vec and data2vec methods over the UCM21, RS19, and
AID30 datasets, respectively. It can be observed from the results that our approach with data2vec
embedding performs better in comparison with word2vec embedding on three benchmark data-
sets. To the best of our knowledge, we are the first to implement GZSL for scene classification
tasks in remote sensing images.

4.4.1 Analysis on UCM21 dataset

We evaluated our proposed GZSL-RSD2V method by considering the word2vec and data2vec
embedding approaches over the four standard splits** of the UCM21 dataset with seen/unseen
classes of 16/5, 13/8, 10/11, and 7/14. It is observed from Table 3 that data2vec shows an
improvement of 4.5%, 7.4%, 0.3%, and 2.8% in seen class accuracy and 5.3%, 2.7%, 4.2%,

Table 3 Seen, unseen, and harmonic mean scene classification accuracies with standard
seen/unseen splits on the UCM21 dataset.

16/5 13/8 10/11 714
Method SUH SUH SUH SUH
word2vec 94.1 52.6 67.0 91.7 37.5 52.6 98.2 26.5 41.3 96.0 21.8 35.4
data2vec 98.6 57.9 72.7 99.1 40.2 57.0 98.5 30.7 46.8 98.8 24.9 39.8

Table 4 Seen, unseen, and harmonic mean scene classification accuracies with different
seen/unseen splits on the RS19 dataset.

15/4 12/7 9/10 6/13
Method SUH SUH SUH SUH
word2vec 95.458.271.9 95.2 35.6 51.4 97.8 26.8 41.9 95.7 23.3 37.1
data2vec 97.570.7 81.8 97.6 46.2 62.6 98.5 33.2 49.5 97.527.4 427

Table 5 Seen, unseen, and harmonic mean scene classification accuracies with standard
seen/unseen splits on the AID30 dataset.

25/5 20/10 15/15 10/20
Method SUH SUH SUH SUH
word2vec 98.4 34.3 50.5 98.9 29.2 445 98.4 129 22.7 98.3 10.4 18.8
data2vec 97.257.371.9 97.4 32.4 48.5 97.9 22.5 36.6 97.6 17.1 29.0
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and 3.1% in unseen class accuracy on the standard splits, respectively. Also, the efficacy of
our proposed method with data2vec embedding is demonstrated in terms of the harmonic mean
with an improvement of 5.7%, 4.4%, 5.5%, and 4.4% under the same seen/unseen splits (e.g.,
16/5, 13/8, 10/11, and 7/14, respectively). Our proposed method with the data2vec embedding
approach exhibits better classification in comparison with word2vec. This may be due to data2-
vec having self-supervised word embedding, making it capable of learning semantic features
from unseen classes.

4.4.2 Analysis on RS19 dataset

We considered the word2vec and data2vec embedding approaches to evaluate our proposed
method using the four standard splits** of the RS19 dataset with seen/unseen classes of 15/4,
12/7, 9/10, and 6/13. It is observed from Table 4 that data2vec achieved an improvement of
2.1%,2.4%, 0.7%, and 1.8% in seen class accuracy and 12.5%, 10.6%, 6.4% and 4.1% in unseen
class accuracy on the same standard splits. Also, the efficacy of our proposed method with
data2vec embedding is demonstrated in terms of the harmonic mean with an improvement of
9.9%, 11.2%, 7.6%, and 5.6% under the same seen/unseen splits. Our proposed method with
the data2vec embedding approach exhibits better classification in comparison with word2vec.
This may be due to data2vec having self-supervised word embedding, making it able to learn
semantic features of unseen classes.

4.4.3 Analysis on AID30 dataset

Our proposed GZSL-RSD2YV is evaluated by considering the word2vec and data2vec embedding
approaches over the four standard splits>> of the AID30 dataset with seen/unseen classes of 25/5,
20/10, 15/15, and 10/20. Table 5 shows a rise in the classification accuracy of 23.0%, 3.2%,
9.6%, and 6.7% in unseen classes under these seen/unseen splits with the data2vec approach,
though a marginal drop in the performance of seen class accuracy around 1% is observed with
data2vec in comparison with word2vec. Our proposed method also exhibits the effectiveness of
data2vec embedding in terms of the harmonic mean with an improvement of 21.4%, 4.0%,
13.9%, and 10.2% under the same seen/unseen splits. It is observed from the experiments that
the data2vec provides better semantic features on unseen classes compared with seen classes.

Upon evaluation of our proposed GZSL-RSD2V method over three challenging scene clas-
sification benchmark datasets, we noticed that data2vec embedding shows consistent improve-
ment in classifying the scenes of unseen classes. However, data2vec embedding does not show
improvement in classifying the scenes of seen classes from the AID30 dataset in comparison with
the UCM21 and RS19 datasets, though the classification accuracy drop is relatively very small.

4.5 Qualitative Analysis

This section provides the qualitative results and their analysis of our proposed method. We used
the uniform manifold approximation and projection (UMAP)® to visualize real unseen class
visual features and the synthesized visual features through our proposed method with word2vec
and data2vec embeddings. Figures 3-5 denote the UMAP visualization of the UCM21, RS19,
and AID30 datasets, respectively. It is observed from Figs. 3-5 that the synthesized visual
features through our proposed method with data2vec exhibit better separability in comparison
with synthesized visual features with the word2vec method. It is evident from the visualization
that our proposed method with data2vec embedding is able to capture meaningful semantics
relevant to unseen classes.

5 Conclusion

This paper proposed a self-supervised embedding to represent semantics useful for GZSL for scene
classification in remote sensing images. A learning mechanism was devised to map the semantics to
the corresponding visual domain during the visual feature generation. A feature refinement module
was employed to improve the visual features of both seen and unseen classes of remote-sensing
images. To the best of our knowledge, we were the first to explore a GZSL approach in the remote
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Fig. 3 UMAP visualizations for the features of five unseen class samples from the UCM21 dataset.
(a) The real unseen class features. (b) The separability of the synthesized features of our proposed
method with word2vec embedding. (c) The separability of the synthesized features of our proposed
method with data2vec embedding.

(a) » (b) @

Fig. 4 UMAP visualizations for the features of four unseen class samples from the RS19 dataset.
(a) The real unseen class features, (b) the synthesized features of our proposed method with
word2vec embedding, and (c) the synthesized features of our proposed method with data2vec
embedding.

sensing domain. Our proposed approach was evaluated using both data2vec and word2vec embed-
dings. It is observed from the experiments that our proposed method with data2vec embedding was
able to capture meaningful semantics relevant to unseen classes. In the future, we will explore
weighted embeddings for representing the semantics of remote-sensing images.
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() o (b) S

Fig. 5 UMAP visualizations for the features of five unseen class samples from the AID30 dataset.
(a) The real unseen class features, (b) the synthesized features of our proposed method with
word2vec embedding, and (c) the synthesized features of our proposed method with data2vec
embedding.

Code, Data, and Materials Availability

The code cannot be made publicly available due to its proprietary nature. The data presented in
this article are publicly available at Refs. 46-48.
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