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Abstract. The presence of clouds is the biggest obstacle in the investigation of land cover, and
many techniques have been developed to detect clouds. However, few indicators have been pro-
posed for the detection of cloud-free conditions. To address this, we propose two indicators for use
in compositing 8-day cloud-free images: the B1∕7 ratio is the ratio of the band 1 reflectance to the
band 7 reflectance of Terra surface reflectance images (MOD09GA), and saturation refers to the
color saturation of these images. Here, we describe the principles underlying these two indicators
and analyze their characteristics for vegetation, water, urban, and nonvegetation pixels under cloud-
free, cloud shadow, and cloudy conditions usingMOD09GA fromOctober 16 to 23, 2007, in North
China (sample A) and using data published by the U.S. Geological Survey (USGS). We found that
theB1∕7 ratio and saturation are suitable for extracting cloud-free pixels over land and water, respec-
tively; therefore, we combined these two indicators to develop a single-unified model. In particular,
our results demonstrate that the pixels exhibiting the lowest B1∕7 ratios should be adopted as cloud-
free pixels over land when the value of B1∕7 for land surfaces is between 0 and 1, and the surface
reflectance of Moderate Resolution Imaging Spectroradiometer band 1 is less than 0.3. Otherwise,
the pixels exhibiting the greatest saturation values should be adopted. We used our model to
composite cloud-free images for two additional regions in China: the Tarim basin (sample B)
from October 2 to 9, 2012, and the coastal areas of southeastern China (sample C) from April
15 to 23, 2013. We compared the cloud-free images of these regions with the 8-day surface reflec-
tance product (MOD09A1) with respect to clouds, cloud shadow, and cirrus clouds, and we found
that our proposed cloud-free image compositing approach can accurately eliminate both clouds
and cirrus clouds. Specifically, the percentage of residual cloud pixels in sample C was found
to be less than that in MOD09A1. Moreover, in the cloud-free images obtained using our newly
developed method, cloud-free pixels are typically associated with greater sensor zenith angles and
smaller scatter angles than those in MOD09A1. However, our method retains some limitations.
In particular, 9.68, 33.22, and 33.00% of cloud-shadow pixels remain in the cloud-free images
for samples A, B, and C, respectively. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073486]
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1 Introduction

Clouds play an important role in determining weather, climate, and other short-term
environmental change, and more than 50% of the Earth’s daily surface area is covered by
clouds.1,2 Moreover, these clouds hamper observation of the land surface by the Moderate
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Resolution Imaging Spectroradiometer (MODIS); therefore, accurate cloud detection is
considered to be a crucial component in eliminating the impact of clouds on remote-sensing
products.3,4

Three types of information can be used to detect clouds: spectral, texture, and multitemporal
information. Spectral information was first utilized to distinguish clouds from the Earth surface
using classification methods,5–8 in which thresholds in the value of one band or the difference
between two bands were considered.3,4,9 Subsequently, texture information was used to distin-
guish clouds from the surface based on thresholds in heteroscedasticity. Such identification is
possible because the reflectance of cloud is greater than that of the land surface, which results in
greater variance along cloud edges, particularly over the oceans.10–12 With increases in the avail-
ability of remote-sensing data, researchers have started to use multitemporal information to dis-
tinguish clouds from the Earth surface based on the differences between appropriate benchmarks
and series of daily images; such methods are based on the assumption that the reflectance of
the Earth surface is more stable than that of cloud-affected pixels, which exhibit frequent
variations.13–16 Many satellite-based instruments, ranging from the Advanced Very High
Resolution Radiometer (AVHRR) to MODIS, employ these methods. For instance, the
International Satellite Cloud Climatology Project (ISCCP)17,18 and the AVHRR Processing
Scheme Over Cloud Land and Ocean (APOLLO) cloud detection algorithm19,20 employ only
spectral information, and the Cloud Advanced Very High Resolution Radiometer (CLAVR)
employs a series of spectral and spatial variability tests to detect clouds.1,21–23 Some
researchers have also considered the use of temporal information for cloud detection.4,9,24–26

However, the computational power required for such methods increases with the complexity
of the cloud detection algorithms adopted. Ultimately, obtaining composite cloud-free images
based on the results of cloud detection has become a time-consuming process. This is evidenced
particularly by the case of MOD09A1 published by the United States Geological Survey
(USGS), in which only the pixels with the highest quality are considered; in this instance,
cloud-cover pixels, cloud-shadow pixels, high-angle pixels, and high-aerosol pixels have
been removed.27

Obtaining data relating to land surface characteristics is one of the primary challenges in land
cover research. To address this, some algorithms have been proposed, in which cloud-free pixels
are selected based on quantitative physical indexes such as the maximum normalized difference
vegetation index (NDVI)28 and the lowest MODIS band 3 surface reflectance obtained during
a specific time period.29 Maximum NDVI has been used previously as an indicator in gridded
vegetation indices (MOD13) for vegetation monitoring. However, the use of this index typically
leads to the selection of the pixel with the greatest sensor angle. Conversely, the minimum reflec-
tance value for MODIS band 3, which represents the blue band, tends to consider shadow pixels
as cloud-free pixels. Ma et al. used min½tan−1ðB1∕ðB2 − B1Þ� (where B1 and B2 are the bands 1
and 2 references of MODIS, respectively) to select cloud-free pixels.4 However, this model was
shown to be ineffective in distinguishing between clouds, nonvegetated land, and shadows on
vegetated land. The Canada Centre for Remote Sensing (CCRS) developed a new compositing
technology that employs six criteria to obtain pixels of six different classes, in addition to mixed
pixels. The CCRS researchers also compared max(NDVI),minðB1Þ, andmax½maxðB2; B6Þ∕B3�
with their own multicriteria scheme and reported some details regarding the effects of the bidi-
rectional reflectance distribution function (BRDF);9 however, many criteria and classification
steps are required for the CCRS compositing technology, and this method is associated with
considerable uncertainty.

The present study aims to obtain highly accurate composite cloud-free images by employing
the fewest criteria possible. According to Kaufman et al.30 and Levy et al.,31 the reference ratio
B1∕7 between reflectances of 0.66 and 2.1 μm (corresponding to bands 1 and 7 of MODIS,
respectively) is a good indicator of cloud cover for land areas. Moreover, as clouds are typically
white or gray color, their saturation is lower than that of water pixels in a hue–saturation–inten-
sity (HSI) model, making saturation a good indicator of cloud-free regions for water areas.
Therefore, in the present study, we propose B1∕7 ratio and saturation as appropriate indicators
for the selection of cloud-free pixels on land and water, respectively, and present a set of algo-
rithms for compositing cloud-free images for China.
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2 Methods

2.1 Underlying Principles of the B1∕7 Ratio

Previous studies have shown that 2.1-μm-wavelength images are not affected considerably by
atmospheric scattering;30 thus, this wavelength can pass through all types of aerosol except dust.
Moreover, for vegetated areas, the apparent reflectance at 2.1 μm is twice that at 0.66 μm when
a given region is cloud free. Accordingly, the apparent reflectance at 2.1 μm is often used to
estimate the surface reflectance at 0.66 μm.30 These wavelengths (i.e., 0.66 and 2.1 μm) are the
central wavelengths of MODIS bands 1 and 7, respectively, and are typically expressed as B1 and
B7. The reflectance ratio of these bands, B1∕7, for a given land surface has been shown to be
positively correlated with scattering angle and the vegetation index derived from the MODIS
near- and short-wave infrared bands.31

B1∕7 ¼ BNDVISWIR

1∕7 þ 0.002Θ − 0.27; (1)

whereΘ is the scattering angle and defined as in Eq. (2). BNDVISWIR

1∕7 is a piecewise function related
to the vegetation index for shortwave infrared radiation [Eq. (3)], andNDVISWIR is the vegetation
index derived from MODIS near- and short-wave infrared bands [see Eq. (4)].

Θ ¼ cos−1½− cos θ0 cos θ þ sin θ0 sin θ cosðφ − φ0Þ�: (2)

In Eq. (2), θ0, θ, φ0, and φ are the solar zenith angle, the sensor zenith angle, the azimuth of
the sun, and the azimuth of the sensor, respectively.

8>><
>>:

BNDVISWIR

1∕7 ¼ 0.48

BNDVISWIR

1∕7 ¼ 0.58

BNDVISWIR

1∕7 ¼ 0.48þ 0.2ðNDVISWIR − 0.25Þ
for

NDVISWIR < 0.25

NDVISWIR > 0.75

0.25 ≤ NDVISWIR ≤ 0.75

(3)

NDVISWIR ¼ ðρ5 − ρ7Þ∕ðρ5 þ ρ7Þ: (4)

In Eq. (4), ρ5 and ρ7 are the apparent reflectance of MODIS bands 5 and 7, respectively.
It is clear from Eq. (3) that BNDVISWIR

1∕7 ranges from 0.48 to 0.58 and is correlated positively
with NDVISWIR. Moreover, according to a previously described geometric optics model,32

NDVISWIR is proportional to the sensor zenith angle (i.e., NDVISWIR increases with increasing
sensor zenith angle for a given vegetation pixel), and B1∕7 increases with NDVISWIR.

As the Terra satellite is sun synchronous, θ0 and φ0 can be considered constants, such that θ
and φ are the primary factors determining Θ. Observations collected by the Terra satellite can be
separated into two groups based on (φ − φ0): the backward hemisphere with (φ − φ0) ∈ 0 to
90 deg or 270 to 360 deg and the forward hemisphere with (φ − φ0) ∈ 90 to 270 deg. Values of
both Θ and B1∕7 are typically smaller for the forward hemisphere observations than for the back-
ward hemisphere; therefore, the pixels of the forward hemisphere observations are typically selected
first. To sum up, selecting the pixel with the smallest B1∕7 for a given period to represent a cloud-
free pixel is equivalent to choosing the pixel in which the sum of NDVISWIR and Θ is the smallest.

2.2 Underlying Principles of Saturation

The HSI model scales color in hue, saturation, and intensity spaces. Hue characterizes the
main color received by the observer. Conversely, saturation represents the degree to which
the solid color is diluted by white, and intensity is a measure of the brightness of the color.
Thus, saturation decreases as the amount of white in the mix increases33 and can be defined
by a saturation equation as follows:

S ¼ 1 −
3

ðRþ BþGÞ ½minðR;G; BÞ�; (5)
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where S represents saturation, and R, G, and B represent red, green, and blue rays, respectively;
all variables lie between 0 and 1. The minðR;G; BÞ function finds the variable with the
lowest value.

Pixels can be classified as cloud-free, cloud shadow, or cloud pixels depending on the
locations of the sensor, sun, and clouds (Fig. 1). The saturation of cloud-free, cloud shadow,
and cloud pixels can be expressed as shown in Eqs. (6), (7), and (8), respectively.

Sa ¼ 1 −
3

ðrR þ rG þ rBÞ
½minðrR; rG; rBÞ�; (6)

where Sa is the saturation of a cloud-free pixel, and rR, rG, and rB are the reflectances of MODIS
bands 1, 4, and 3, respectively.

Sb ¼ 1 −
3

ðtR � rR þ tG � rG þ tB � rBÞ
½minðtR � rR; tG � rG; tB � rBÞ�; (7)

where Sb represents the saturation of a cloud-shadow pixel, t is the transmissivity of the
cloud, and tR, tG, and tB are the transmissivity values of cloud for MODIS bands 1, 4, and
3, respectively.

Sc ¼ 1 −
3 � ½minðtR � rR þ ρR; tB � rB þ ρR; tG � rG þ ρGÞ�
ðtR � rR þ tG � rG þ tB � rBÞ þ ρR þ ρG þ ρB

(8)

ρ ¼ 1 − t; (9)

In Eq. (8), Sc is the saturation of a cloud pixel, ρ is the reflectance of cloud, and ρR, ρG, and
ρB are the reflectance of the cloud for MODIS bands 1, 4 and 3, respectively.

The diameters of droplets and dust in clouds and fog in the atmosphere are typically in the
range 5 to 100 μm, which is much greater than the wavelength range of visible light. Therefore,
random scattering occurs when visible light passes through these particles.34 The scattering
coefficients are the same for the red, green, and blue bands; therefore, Eqs. (7) and (8) can
be simplified to produce Eqs. (10) and (11), respectively.

Fig. 1 A model map of cloud-free, cloud shadow, and cloud pixels.
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S 0
b ¼ 1 −

3

t � ðrR þ rG þ rBÞ
½t �minðrR; rG; rBÞ� (10)

S 0
c ¼ 1 −

3 � t � ½minðrR; rB; rGÞ� þ ρ

t � ðrR þ rG þ rBÞ þ ρ
: (11)

When the cloud is so thick that t approaches 0, S 0
b also approaches 0; in such cases, the true

value of S 0
b is 0 and S

0
c tends to 0, which is in accordance with our knowledge that clouds and fog

are typically white or gray. Moreover, when thinner clouds or fewer aerosols are present in the
atmosphere, more visible light will reach the Earth’s surface; in such cases, S 0

b will be equal to
Sa, and S 0

c will be smaller than Sa according to Eqs. (10) and (11).

2.3 Algorithm for Integrated Cloud-Free Image Synthesis

We developed a combined algorithm for cloud-free image compositing by combining B1∕7 with
saturation. Our model adopts the land surface reflectance images for a specific period as the
candidate dataset (MOD09GA) and calculates B1∕7 from the surface reflectance data of
bands 1 and 7 and pixel saturation S from the surface reflectance data of bands 1, 4, and 3.
Assuming a land surface mask (LSM) of 1, which means it is land pixel, B1∕7 of (0, 1], and
B1 < 0.3, the pixel exhibiting the lowest value of B1∕7 is selected as a cloud-free pixel; otherwise,
the pixel exhibiting the greatest saturation is selected as a cloud-free pixel. The LSM is a land/
water flag and can be extracted from the 1-km State QA Descriptions (16-bit) layer in
MOD09GA. Our newly developed model can be used to extract an index image, HC_time,
in which the value of each pixel corresponds to the date of the image least contaminated by
cloud, selected from a set of multitemporal remote-sensing images obtained within a certain
period. Then, cloud-free images for the surface reflectance (LSREF_clear) can be built
based on this index image. The compositing workflow is presented in Fig. 2.

3 Data Processing and Analysis

3.1 Data Processing

We employed three samples in the present study, hereafter referred to as samples A, B, and C
(Fig. 3). We used sample A to assess the feasibility of distinguishing cloud-free pixels
for different land cover types, considering a particular region in northern China (34°53′ to
43°26′ N, 113°49′ to 122°41′ E) that includes Hebei Province, Beijing, Tianjin, Shandong
Province, and Bohai Bay. Sample A includes nine land cover classes, divided according to
the Land Cover Type Yearly L3 Global 500-m product (MCD12Q1) (Fig. 4).

Fig. 2 A flow chart illustrating the application of the integrated compositing algorithm.
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We used samples B and C to validate the algorithm for deserts, snowy regions, and tropical
areas often covered by clouds. The region considered for sample B is located to the south of the
Tarim basin and the north of the Tianshan Mountains; 74% and 10% of this sample can be
considered deserts and snowy areas, respectively. Conversely, the study region for sample C
is located in southern China, adjacent to the South China Sea, in an area often covered by
cloud; thus, it was difficult to obtain cloud-free images for this region.

We employed three separate MODIS products, all of which can be downloaded freely using
the Warehouse Inventory Search Tool (WIST): the Surface Reflectance 8-Day L3 Global 500 m
(MOD09A1), the Surface Reflectance Daily L2G Global 1 km and 500 m (MOD09GA), and the
MODIS Land Cover Type Yearly L3 Global 1 km SIN Grid product (MCD12Q1). MO09A1
provides bands 1 to 7 at a resolution of 500 m in an 8-day gridded level-3 product in sinusoidal
projection. Each MOD09A1 pixel contains the best possible level-2 gridded (L2G) observation
for a given 8-day period, selected based on high-observation coverage, low-view angle, the
absence of clouds or cloud shadow, and aerosol loading. MOD09GA provides bands 1 to 7
in a daily-gridded L2G product in sinusoidal projection including 500-m reflectance values
and 1-km observation and geolocation statistics. MCD12Q1 incorporates five different land
cover classification schemes, derived using a supervised decision-tree classification method.
We used land cover type 4 of the MODIS-derived net primary production (NPP) scheme
and type 5. Further details of the data used are presented in Table 1.

All preprocessing of these data was performed using the MODIS Reprojection Tool (MRT).
Sample A was used to conduct geographic transformations and to mosaic the four parts of the
data. Finally, spatial subsets of the images were obtained using a 500 × 500 mmask for the study
area. Samples B and C were transformed from the hierarchical data format (HDF) to the tagged
image file format (TIFF) for which the projection was sinusoidal and the resolution was
463.31 × 463.31 m.

3.2 Analysis of B1∕7 Ratio

To estimate the ability of B1∕7 to identify cloud-free pixels according to the MODIS land cover
type 4 for NPP, we reclassified the land cover into four groups: water, vegetation (including all

Fig. 3 A map of the study area. The BaseMap is from ArcGIS Online.
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Fig. 4 The land-cover types for sample A.

Table 1 MODIS data list.

Study area Product name Date (YYYY-MM-DD) Count

A H26–27, V04–05 MO09A1 2007-10-16 to 23 1 × 4

MOD09GA 2007-10-16 to 23 8 × 4

MCD12Q1 2007 1 × 4

B H24V05 MO09A1 2012-12-2 to 9 1 × 1

MOD09GA 2012-12-2 to 9 8 × 1

MCD12Q1 2012 1 × 1

C H28V06 MO09A1 2013-04-15 to 22 1 × 1

MOD09GA 2013-04-15 to 22 8 × 1

MCD12Q1 2012 1 × 1

H and V are horizontal and vertical, respectively, in sinusoidal projection. Counts are given as n ×m, where n
and m represent the numbers of phases and images, respectively.
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vegetation cover classes), nonvegetation, and urban. We selected the samples according to the
1-km State QA Descriptions in MOD09GA (https://lpdaac.usgs.gov/products/modis_products_
table/mod09ga), which includes several features including cloud state and a cloud shadow mask.
The scatter maps of B1 and B7 for these samples for different land cover types under cloud-free,
cloud, and cloud-shadow conditions are illustrated in Fig. 5.

Some fundamental conclusions can be deduced from the comparison of Figs. 5(a) and 5(b).
B1∕7 was found to be greater than 1 for cloud pixels and very high (i.e., greater than that under
cloud-free conditions) for water areas under cloudy conditions. For urban and vegetation areas
under cloud-free conditions, B1∕7 was found to be less than and greater than 1, respectively.
Conversely, under cloudy conditions, we found B1∕7 to be around 1 and greater than the
value under cloud-free conditions. Comparison of Figs. 5(c) and 5(d) demonstrates that B1∕7
of shadow pixels for land areas is around 1 and is higher than B1∕7 under cloud-free conditions.
However, for water areas, we found B1∕7 to be less than 0 (primarily because B1 is less than 0),
except under cloud-free conditions. In summary, our results demonstrate that B1∕7 is typically
higher for cloud pixels than for cloud-free pixels (Table 2).

Fig. 5 A scatter map for B1 and B7: (a) cloud-free pixels used for cloud comparison, (b) cloud
pixels, (c) cloud-free pixels used for shadow comparison, and (d) cloud-shadow pixels. C, S,
CFC, and CFS represent cloud, shadow, cloud free for the cloud-comparison pixel, and cloud
free for the shadow-comparison pixel, respectively. The samples for (a) and (b) and for (c)
and (d) were obtained from different daily images of the same pixels.

Table 2 Slopes of the regression equation (intercept ¼ 0) for different land cover types under
different cloud cover conditions.

Land cover Cloud-free_shadow Shadow Cloud-free_cloud Cloud

Vegetation 0.574 0.731 0.574 1.029

Water 0.735 — 2.565 4.135

Urban 0.604 0.708 0.719 1.679

Nonvegetation 0.599 0.742 0.642 0.701

Cloud — — 0.549 1.611

Note: For water pixels under cloud shadow conditions, we found Bi to be −0.01; therefore, we did not calculate
the slope for this relationship. We also omitted the calculation of the slope for cloud pixels in cloud shadow.
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To investigate our results further, we plotted B1∕7 values for cloud-free, cloud shadow, and
cloud conditions for the different land cover types (Fig. 6) using the data presented in Table 2.
We found B1∕7 to be in the range 0 to 1 for land areas under cloud-free conditions; moreover, our
results suggest that B1∕7 is always lower under cloud-free conditions than under cloudy con-
ditions. Comparison of shadow and cloud-free pixels demonstrates the existence of several pix-
els, in which B1∕7 is lower for shadow pixels than for cloud-free pixels. However, no such pixels
were observed over water areas. Therefore, in cases where a given pixel could be considered to
be cloud-free, cloud shadow, or cloud depending on the observation time, we selected the period
with the minimum value of B1∕7 to represent the period with clear conditions.

3.3 Analysis of Saturation

To investigate whether the pixel exhibiting the maximum saturation can be considered a cloud-
free pixel, we calculated saturation from MODIS land surface reflectance using Eq. (5) (Fig. 7).
In particular, we calculated R,G, and B from bands 1, 4, and 3, respectively. In general, we found
that the saturation of cloud pixels to be lower than that of cloud-free pixels for all types of land
cover, although the saturation for cloud shadow pixels for water and nonvegetation areas was
found to be lower than that for cloud-free pixels. Moreover, our results suggest that the saturation
of shadow pixels increases with increasing percentage of vegetation cover [Figs. 7(a), 7(c), and
7(d)]. For land cover classes including vegetation, urban, and nonvegetation, the saturation of
cloud-free pixels is typically greater than that of cloud and shadow pixels. Based on the above
analysis, we suggest that the maximum saturation can act as a good cloud-free pixel index for
water and nonvegetation areas.

4 Results and Discussion

The algorithm proposed here for compositing cloud-free images is similar to that of MOD09A1,
in which both select cloud-free pixels from MODIS daily images and combine these pixels.

Fig. 6 A comparison of the B1∕7 values for cloud-free, cloud shadow, and cloud conditions for the
following land cover types: (a) urban, (b) water, (c) vegetation (Veg), (d) nonvegetation (NoV). C,
S, CFC, and CFS represent cloud, shadow, cloud free for the cloud-comparison pixel, and cloud
free for the shadow-comparison pixel, respectively. The samples for (a) and (b) and for (c) and
(d) were obtained from different daily images of the same pixels.

Xiang et al.: Algorithms for Moderate Resolution Imaging Spectroradiometer. . .

Journal of Applied Remote Sensing 073486-9 Vol. 7, 2013



We investigated samples A, B, and C using both the MOD09A1 method and our compositing
technique both qualitatively and quantitatively through visual evaluation and analysis of
indicators.

4.1 Visual Evaluation

Based on visual evaluation, our proposed algorithm performs better in the selection of cloud-free
pixels over water (including marine, coastal, lake, reservoir, and river environments) than the
MOD09A1 product (Fig. 8). For example, MOD09A1 erroneously defined a cloud pixel as water
under the clear-sky conditions [red circles in Figs. 8(a1) and 8(a2)]. Thus, our algorithm per-
forms better than MOD09A1 in such cloud regions, although our method is less spatially con-
sistent than MOD09A1 [e.g., the rectangle for sample B in Figs. 8(b1) and 8(b2)]. Moreover, for
sample C [Figs. 8(c1) and 8(c2)], our algorithm removed the cloud in the lower left of the image,
whereas MOD09A1 did not. Finally, the ocean color in the cloud-free images obtained using our
method is more spatially homogeneous than that obtained from the MOD09A1 product.

4.2 Indicator Evaluation

Residual cloud, cloud shadow, and mixed pixels can be found in the composite image, and quan-
titative evaluation of the relative proportions of these residual pixels is essential. The 1-km State
QA Descriptions (16-bit) dataset of the MOD09GA product includes 11 indicators, including
five quantitative indicators that are useful for the estimation of the quality of image composition:
cloud state, internal cloud, cloud shadow, cirrus detected, and pixels adjacent to cloud.

In the original dataset of daily images, each pixel includes three classes: every day is cloudy;
every day is noncloudy; there are at least one cloudy day and at most seven cloudy days through-
out the 8-day period. For this third class, the accuracy of the cloud-free composited image has
been evaluated previously according to Eq. (12).

Pi ¼ Mi∕Mclear oud i; (12)

Fig. 7 A comparison of the saturation values for cloud-free, shadow, and cloud conditions for the
following land cover types: (a) urban, (b) water, (c) vegetation (Veg), and (d) nonvegetation (NoV).
C, S, CFC, and CFS represent cloud, shadow, cloud free for the cloud-comparison pixel, and cloud
free for the shadow-comparison pixel, respectively. The samples are the same as those shown in
Fig. 6.
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where i is a state of cloud-free, cloud, cloud shadow, cirrus, and so on, Mi represents the pixel
number of a given state remaining in the cloud-free image, andMclear oud i represents the number
of pixels exhibiting the state in at least one day and at most seven days throughout the 8-day
period. Based on Eq. (12), we conducted a comparative evaluation of the quality of the images
produced using our compositing technique (Table 3).

It is clear that our method performs well in removing cloud and cirrus pixels, but less well
for cloud-shadow pixels. In the composite image, the internal cloud in the coastal areas of
southeastern China (sample C) is lower than that in the MOD09A1 product, indicating that
fewer residual cloud pixels remain in the composite image than in the MOD09A1 product.

Fig. 8 MOD09A1 and cloud-free images composited by the integrated method for samples A, B,
and C: (a1) MOD09A1 for sample A; (a2) cloud-free image composited by the integrated method
for sample A; (b1) MOD09A1 for sample B; (b2) cloud-free image composited by the integrated
method for sample B; (c1) MOD09A1 for sample C; and (c2) cloud-free image composited by the
integrated method for sample C.
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Moreover, slightly less high cirrus can be found in the composite image than in the MOD09A1
product, although there is slightly more medium height and small cirrus in the composited
image. However, residual small cirrus is less than 5% in samples A and B, and that in sample
C is 7.15%. More residual cloud shadow pixels are present in the composite image than in the
MOD09A1 product with residual cloud shadow greater than 30% in the Northwest Territories
(sample B) and the coastal areas of southeastern China (sample C).

Table 4 presents average values for sensor zenith angle, scattering angle, and relative azimuth
angle for samples A, B, and C for both the composite image and the MOD09A1 product. It is
clear that, regardless of whether the B1∕7 ratio or the maximum saturation method is adopted, the
average sensor zenith angle is greater for the composite image than for the MOD09A1 product.
This occurs because our method exhibits preference for nonnadir pixels, whereas the MOD09A1
product exhibits preference for nadir pixels. Furthermore, the average scatter angle for the
composite image is less than that for the MOD09A1 product, and the average scatter angle
obtained according to the maximum saturation method is less than that obtained using the
B1∕7 ratio method. This may have occurred because our method mistakes cloud-shadow pixels
for cloud-free pixels, particularly when the maximum saturation method is adopted. The average
relative azimuth angle for the composite image is approximately 90 to 270 deg, whereas that of
the MOD09A1 product is less than 45 deg or greater than 315 deg. This likely occurs because our
method preferentially selects the forward hemisphere pixels as cloud-free pixels, whereas the

Table 3 A comparative evaluation of the quality of our composited cloud-free images (units: %).

Parameter name Description MOD_A COM_A MOD_B COM_B MOD_C COM_C

Cloud state Clear 95.29 78.77 79.54 76.01 92.79 86.54

Cloudy 1.64 6.22 11.49 10.73 9.20 12.78

Mixed 7.98 27.74 30.60 35.50 19.33 29.37

Cloud shadow 3.02 9.68 13.92 33.22 12.54 32.00

Cirrus detected None 99.17 98.52 98.05 97.91 98.28 97.86

Small 0.87 3.28 0.22 0.66 3.45 7.15

Average 0.65 2.49 1.95 4.17 3.04 4.14

High 0.79 0.92 2.06 1.87 2.07 1.36

Internal cloud 0.87 2.88 2.95 8.69 5.55 4.16

Pixel is adjacent to cloud 2.76 8.93 8.70 24.59 12.17 21.17

Note: MOD represents the MOD09A1 product; COM represents cloud-free images obtained using our method;
and A, B, and C represent the three samples.

Table 4 A comparative analysis of scattering angle, sensor zenith angle, and relative azimuth
angle (units: deg).

Parameter name Description MOD_A COM_A MOD_B COM_B MOD_C COM_C

Scatter angle B1∕7 128.33 122.79 117.36 119.68 119.11 116.75

Saturation 126.09 118.18 109.75 108.19 143.99 132.66

Sensor zenith angle B1∕7 11.29 34.65 15.12 44.57 35.61 38.29

Saturation 21.22 38.80 34.33 41.52 23.77 34.59

Relative azimuth angle B1∕7 34.72 177.59 16.76 216.05 342.86 34.69

Saturation 31.56 162.56 12.16 140.09 57.81 97.73
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MOD09A1 product preferentially selects backward hemisphere observations pixels as cloud-
free pixels. Thus, it is clear that our method exhibits obvious differences from the
MOD09A1 algorithm.

The selection of the maximum saturation pixel as a cloud-free pixel is likely the key factor
causing the differences that are apparent from Table 4. The atmosphere has a difference to the
extinction coefficient of the red, green, and blue, the longer the light transmission path in
the atmosphere, the greater the energy difference among the red, green, and blue, and then
the greater the saturation. Therefore, pixels exhibiting large zenith angles are likely to be selected
as cloud-free pixels, although the maximum saturation method is more likely to preferentially
select such pixels than the B1∕7 method. Thus, when backward (i.e., back to the sun) observations
are used, the transmission distance for reflected sunlight is short, and the pixel saturation is low.
Conversely, when forward (i.e., toward the sun) observations are used, the transmission distance
for scattered sunlight is long, and the pixel saturation is high. Therefore, our method preferen-
tially selects forward observation pixels as cloud-free pixels. The incident light of cloud-free
pixels is primarily reflected sunlight, whereas that of shadow pixels is primarily light scattered
by the surrounding objects. Therefore, the saturation of cloud-shadow pixel is greater than that of
cloud-free pixel, and then shadow pixels can be more easily mistaken for cloud-free pixels.

To verify whether our results have been affected by land-use type, we selected two indicators
of internal cloud and cloud shadow and used Eq. (12) to calculate Pi for residual cloud and
shadow for the composited cloud-free image for the water, vegetation, urban, snow, and non-
vegetation land cover categories (Table 5). For this, we used land cover data from the MCD12Q1
type 5 dataset. Water bodies, nonvegetated areas, urban and built-up areas, and snow and ice
were extracted directly from the dataset; the vegetation category was obtained by combining the
evergreen needleleaf trees, evergreen broadleaf trees, deciduous needleleaf trees, and deciduous
broadleaf trees classes.

It is clear that, in the cloud-free images from North China (sample A) and the Northwest
Territories (sample B), the percentage of residual cloud for the vegetation, built-up, bare ground,

Table 5 Pi analysis for residual cloud and shadow in the composited cloud-free images for
different land cover types.

Sample Land cover type
Percentage of
land cover (%)

Internal cloud (%) Cloud shadow (%)

MOD COM MOD COM

A Water 69.33 0.38 4.04 3.09 14.64

Vegetation 20.13 0.61 1.77 3.09 10.78

Built-up 8.49 0.79 3.05 1.60 8.13

Nonvegetation 1.90 0.65 2.34 0.75 10.95

B Water 0.54 2.14 12.02 13.21 46.07

Vegetation 6.27 0.30 1.10 7.41 22.40

Built-up 0.63 0.00 3.56 0.01 30.68

Snow 8.18 27.23 43.29 53.50 48.26

Nonvegetation 84.38 1.96 7.81 11.94 31.58

C Water 51.11 4.68 7.18 11.55 35.32

Vegetation 46.95 5.37 1.87 12.93 27.31

Built-up 1.76 4.77 2.49 16.11 31.48

Nonvegetation 0.16 6.43 5.08 13.99 30.11

Note: MOD represents the MOD09A1 product; and COM represents the cloud-free images obtained by our
method.
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and other land use types is small but still greater than corresponding percentages for the
MOD09A1 product. In the cloud-free image for the Northwest Territories (sample B), the per-
centage of residual cloud pixels in snow areas was found to be 43.29% (27.3%) using our method
(the MOD09A1 product). Thus, it is clear that the MOD09A1 product performs significantly
better than our method in this respect. In the cloud-free image of the coastal areas of southeastern
China (sample C), considerably more residual cloud pixels remain over water than in the
MOD09A1 product. Moreover, in the Northwest Territories (sample B) and coastal areas of
southeastern China (sample C), the number of residual cloud shadow pixels is relatively
high with percentages greater than 20%. In the Northwest Territories (sample B), the composited
image was produced primarily using the B1∕7 method; here, Pi of the vegetation were found to be
significantly lower than those of water, indicating that the B1∕7 method performs better than the
saturation method in removing cloud shadow.

5 Conclusions and Future Work

Our newly developed integrated cloud-free image compositing algorithm requires only bands 1,
3, 4, and 7 of MODIS images, all of which are readily available, and the algorithm complexity is
smaller than MOD09A1. The B1∕7 method is suitable for extracting cloud-free pixels for land
areas, whereas the saturation method is suitable for extracting cloud-free pixels for marine envi-
ronments, coastal areas, and other water bodies. Our proposed method can eliminate cloud
effects and produces slightly higher values for the percentage area ratio of residual cloud pixels
and pixels adjacent to cloud in cloud-free images than those in the MOD09A1 product.
Moreover, our proposed method performs well in terms of removing cirrus, particularly high
cirrus. The calculation accuracy of our method depends on land cover type: the algorithm per-
forms best in the removal of cloud and shadow for vegetation, followed by urban areas, bare
land, and water, but performs relatively poorly for snow and ice. Conversely, the MOD09A1
product exhibits no such variation in performance with land cover type. Moreover, our algorithm
preferentially selects cloud-free image pixels with larger zenith angles and smaller scattering
angles and prefers forward observations to backward observations, which is in stark contrast
to the MOD09A1 product. However, our method has some limitations in compositing cloud-
free images. For example, the method can only be used to process multiday images obtained in
daytime; it also produces more residual cloud pixels than the MOD09A1 product, although it
performs similarly to the MOD09A1 product in terms of removing cloud and shadow in ice and
snow areas. These limitations need further improvements.
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