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Abstract. Characteristic spectral parameters such as the wavelength and depth of absorption
bands are widely used to quantitatively estimate the composition of samples from hyperspectral
reflectance data in soil science, mineralogy as well as vegetation study. However, little
research has been conducted on the spectral characteristic of rare earth elements (REE) and
their relationship with chemical composition of aqueous solutions. Reflectance spectra of
ore leachate solutions and contaminated stream water from a few REE mines in the Jiangxi
Province, China, are studied for the first time in this work. The results demonstrate that the
six diagnostic absorption features of the rare earths are recognized in visible and near-infrared
wavelengths at 574, 790, 736, 520, 861, and 443 nm. The intensity of each of these six absorp-
tion bands is linearly correlated with the abundance of total REE, with the r2 value>0.95 and the
detection limit at ≥75;000 μg∕L. It is suggested that reflectance spectroscopy provides an ideal
routine analytical tool for characterizing leachate samples. The outcome of this study also has
implications for monitoring the environmental effect of REE mining, in particular in stream
water systems by hyperspectral remote sensing. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.7.073513]
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1 Introduction

Rare earths are valuable resources that play an important role in modern industrial materials.
Weathered crust rare earth ore is a new type of rare earth resource in China, which was first
discovered in Jiangxi and later found widely in south China. This type of rare earth ore has
many advantages, such as wide distribution, huge reserve, low radioactivity, and easy extrac-
tion.1 In weathered crust rare earth ores, the rare earth ions are absorbed in clay minerals formed
from weathering of granites and volcanic rocks.2 Thus the rare earths can be easily extracted by
an ion-exchange method. In the metallurgical process, the rare earth elements (REE) absorbed in
clay minerals are dissolved in ammonia sulfate solution, which are collected in a leaching liquor
pool. Then rare earths are deposited by carbonic acid solution.1,3 Nowadays, unauthorized min-
ing of weathered crust rare earth ores becomes more and more serious as the price of rare earths
is rising. The leaching liquor pools that contain different concentrations of dissolved rare earths
are discharged arbitrarily. Thus, the rivers near rare earth ores are often polluted by discharge or
groundwater permeation of leaching liquor, which lead to severe changes of elemental balance in
the environment and the biosphere, which in turn, have the potential to endanger public health.4–6

The concentration of dissolved REE is a vital factor to evaluate the abundance of REE in
leaching liquor and to estimate the contamination of the river near the rare earth ores.
Conventionally, quantitative measurement of the abundance of REE in aqueous solutions is
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done by laboratory-based analytical techniques, such as the inductively coupled plasma mass
spectrometry (ICP-MS),7 which are time consuming and costly. Consequently, a simple and
economic method is necessary for measuring the content of REE in aqueous media.
Reflectance spectroscopy is a rapidly advancing technique used to acquire spectral reflectance
data in the visible-near infrared (VNIR) and short-wave infrared (SWIR) wavelength regions
(0.4 to 2.5 nm) for material characterization.8,9 The spectral reflectance method as an analytical
tool has advantages such as rapid data acquisition, nondestructive sample measurement, and low
operational cost.10–12 Electronic transition and charge transfer processes associated with transi-
tion metal ions cause absorptions of incident light in the visible and infrared region, producing
diagnostic spectral features.13–16 Previous studies have established that the absorption bands in
the visible wavelength region related to REE are due to electronic transitions within the 4f con-
figuration.17–20 It has been found that the wavelength, shape, depth, and width of the absorption
features are controlled by the chemical composition of the material. Therefore, the variation of
absorption features can be directly related to the chemistry of the absorbing material, for in-
stance, the depth of an absorption band is an indication for the amount of the absorbing material
present in a sample.16,21,22 Reflectance spectra acquired in the field and laboratory have been
used to retrieve the chemical composition of samples in soil science and geology as well as
botany.23–31 However, little research has been undertaken on the diagnostic absorption features
of REE, and few data have been published on the relationship between absorption features and
chemical composition of REE. Of the few available references in the literature, Clark et al.
showed the spectral characteristics of several rare earth oxides involving Eu, Nd, and Sm,32

and Rowan et al. and Bedini identified the absorption bands of REE at 0.58, 0.74, and
0.80 μm which are attributed to electronic transitions of Nd3þ in REE-bearing minerals.33,34

Silver et al. showed the spectral characteristics of yttrium oxides doped with different contents
of Nd, Er, and Ho.35

In this paper, we present a new method for quantitative estimation of the concentration of
REE dissolved in aqueous media using reflectance spectroscopy. In our study, pure water, rare
earth oxide, and ore leaching liquor samples containing various amounts of REE were collected;
the reflectance spectra and the concentrations of REE were measured by reflectance spectros-
copy and ICP-MS, respectively. Then, the spectrally diagnostic absorption characteristics of
these samples were analyzed, and the lower detection limit by the spectral absorption band
method for REE in aqueous media was determined. Finally, the correlation between the spectral
absorption depth and the concentration of REE was analyzed, and linear regression models were
derived that can be used for estimating the concentration of REE in aqueous media samples.

2 Samples and Methods

2.1 Sample Collection

In this study, 10 leaching liquor and stream water specimens numbered D1 to D10 which contain
different concentrations of REE were collected from three rare earth ores in Xunwu, Dingnan,
and Anyuan, respectively, in southern Jiangxi in May 2012 (Figs. 1 and 2). In this study, samples
were collected and stored in high-density polyethylene bottles. The samples were then filtered
through 0.45-μmmembranes to remove suspended substances. The filtered samples were kept in
a cold storage at temperatures between 0°C and 4°C before spectral reflectance and chemical
measurements.

2.2 Spectral Reflectance Measurements

The spectral reflectance data of the aqueous samples were acquired using ASD FieldSpec-3
portable spectroradiometer in a darkroom. The FieldSpec-3 spectroradiometer measures disper-
sive reflectance at wavelengths from 0.35 to 2.5 μm which contains the wavelengths of diag-
nostic electronic transitions of REE (Table 1).36 The setup of spectral reflectance measurement is
illustrated in Fig. 3. A large sheet of white paper was placed on the table to form a diffuse
reflection surface. Then, 40 ml of each sample was poured into a clean beaker (50 ml capacity)
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placed on the table. Tripods were used for holding the lamp and the sensor. The positions of the
lamp, the foreoptical lens of the ASD spectroradiometer, and the beaker remained constant for all
samples measured to ensure each sample was measured under exactly the same geometric con-
dition. For reference, a Spectralon@ plate was measured in the same position as the beaker. An
8 deg field-of-view foreoptics lens was used for spectral data acquisition. The incident angle of
light source was 30 deg, for the luminous beams point to the beaker, while the foreoptics lens
was placed perpendicular above the beaker. The distance from the lamp to the center of the liquid
surface in the beaker was 10 cm, while the range from the lens to the liquid surface was 8 cm.

Spectral reflectance measurements were undertaken using ASD built-in software (ASD
ViewSpecPro). Spectral reflectance of samples was measured in reference to Spectralon.
Five spectral scans were repeated for each sample and an average spectrum was recorded.
For comparison of the reflectance spectra of samples containing different concentrations of
REE, reflectance spectra of pure water and rare earth oxides were measured.

Fig. 1 The distribution of samples on Landsat ETM 532 band composition image. The white areas
on the image present the rare earth mining areas and our samples distribute in three different rare
earth ores in south Jiangxi province of China.

Fig. 2 Samples collected in the leaching liquor pools (a) and in the rivers which are polluted by the
neighboring rare earth ores (b).
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Continuum removal was undertaken as a pre-processing procedure. This is based on the
assumption that an absorption spectrum has two components: a continuum and individual
absorption features. The continuum or background is the overall albedo of the reflectance
curve. To remove the background, continuum was fitted to a raw spectrum and at each wave-
length the reflectance was divided by this continuum.37,38 Mathematically this was done as fol-
lows: RccðwÞ ¼ RðwÞ∕RcðwÞ, where RðwÞ is the spectrum as a function of wavelength w, Rc is
the continuum for the spectrum, and Rcc is the continuum removal spectrum. For each absorption
feature, we choose 10 nm as the wavelength range when performing continuum removal. Taking
the absorption feature at 790 nm as an example, we used the 785 to 795 nm wavelength range for
local continuum removal. Then the depth of the absorption feature, defined as the reflectance
value at the shoulders minus the reflectance value at the absorption-band minimum, was calcu-
lated from continuum removal spectra asD ¼ 1 − Rb∕Rc, where Rb is the reflectance at the band
bottom and Rc is the reflectance of the continuum at the same wavelength as Rb.

39

2.3 Chemical Analyses

The concentrations of dissolved REE were measured using the ICP-MS in the National Research
Center for Geoanalysis of China. The REE was extracted with mixed extracting agents of di(2-
ethylhexyl)phosphoric acid (HDEHP) and mono(2-ethylhexyl)phosphoric acid (H2MEHP).7

The detection limits for the various isotopes of REE are 0.022 μg∕L for 89Y, 0.018 μg∕L
for 139La, 0.028 μg∕L for 140Ce, 0.005 μg∕L for 141Pr, 0.076 μg∕L for 146Nd, 0.009 μg∕L
for 147Sm, 0.002 μg∕L for 151Eu, 0.021 μg∕L for 157Gd, 0.002 μg∕L for 159Tb, 0.009 μg∕L
for 163Dy, 0.003 μg∕L for 165Ho, 0.005 μg∕L for 167Er, 0.002 μg∕L for 169Tm, 0.003 μg∕L

Table 1 Details of the ASD FieldSpec-3 spectroradiometer.

Spectral range 350 to 2500 nm

Detectors VNIR (350 to 1000 nm)

SWIR1 (1000 to 1830 nm)

SWIR2 (1830 to 2500 nm)

Spectral resolution 3 nm at 700 nm

10 nm at 1400 nm

10 nm at 2100 nm

Sampling interval 1.4 nm for 350 to 1000 nm

2 nm for 1000 to 2500 nm

Field of view 8, 18, 28 deg

Fig. 3 General setting for laboratory measurements with ASD FieldSpec-3 spectroradiometer.
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for 173Yb, and 0.0005 μg∕L for 175Lu. The analytical precision for the heavy REE and yttrium is
2% to 3%, respectively, and approximately 5% for the light REE. For each sample, the total
concentration of the 15 REE was calculated (Table 2).

2.4 Statistical Analysis

In our study, Pearson’s correlation, linear regression, and cluster analysis were utilized. The
coefficient of determination (r2) was selected as the standard for determining the application
of absorption intensity for the measurement of the concentrations of REE. The coefficient of
determination (r2) between the intensity of six absorption bands and the abundance of total
REE, r2 between the intensity of 6 absorption bands, and 15 single REE were calculated.
The least squares method was used to establish the linear regression equation, which was applied
to quantitatively estimating the concentrations of dissolved REE using reflectance spectros-
copy.22 Cluster analysis is a statistical technique that sorts observations into similar sets or
groups.40 In our study, it was used to group the 15 REE into different groups according to
their concentrations in 10 samples.

3 Results

3.1 The Spectral Characteristics of Dissolved REE

Based on the chemical analyses (Table 2), the sample D1, which contained the maximum
amounts of REE, was selected, and its spectrum was compared with the spectra of pure
water and rare earth oxide. For pure water, the high reflectance at 20% to 70% in the visible
wavelengths is due to high transmission of visible light in water and the white background under-
neath the beaker. The reflectance is reduced sharply in the near-infrared (NIR) and SWIR regions
because of strong absorption by water in these wavelengths. Two board absorption features at
780 and 950 nm are probably caused by the white paper background. In the spectra of rare earth
oxide, absorption bands at wavelengths of 1400 and 1900 nm are related to hydrous minerals,
and the several sharp absorption features on visible and NIR wavelengths are due to REE. The
main spectral reflectance characteristics of ore leachate sample D1 are similar to pure water, i.e.,
with high reflectance in visible wavelengths but very low reflectance in the NIR and SWIR
regions (Fig. 4). Besides, the diagnostic spectral reflectance features of sample D1 show six
intense absorption bands in the visible and NIR wavelengths at 574, 790, 736, 520, 861,
and 443 nm according to the absorption intensity, similar to the absorption features of the

Fig. 4 The spectra of pure water, rare earth oxide, and leachate containing maximum concen-
tration of total REE (D1).
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rare earth oxides (Fig. 5). Furthermore, with the decrease in the concentrations of REE, i.e., from
D1 to D10, the diagnostic absorption bands become weaker (Figs. 6 and 7). As revealed by the
analysis of concentrations and absorption-band depth of the 10 samples, the upper five samples
with higher concentrations of REE show well-developed diagnostic absorption characteristics.
Therefore, the minimum concentration of total REE detectable by reflectance spectroscopy must
exceed 75;000 μg∕L.

3.2 Correlations Between the Concentration of Total REE and Diagnostic
Absorption Features

The relative intensity of the six diagnostic absorption features of REE was calculated on the local
continuum removal spectra (Fig. 8). The relative depths of six diagnostic absorption features are listed
in Table 3. A linear correlation model of relative absorption-band depth as a function of the concen-
tration of total REE is established using the least squares method for each absorption feature (Fig. 9).
The results show for each linear relationship the coefficient of determination (r2) at about 0.96 to 0.97,
e.g., the depth of the absorption feature has a high correlation with the concentrations of total REE. The

Fig. 5 The absorption feature of sample (D1) and pure rare earth oxide.

Fig. 6 The spectra of 10 samples that are listed from high to low according to the concentrations of
total REE (wavelength from 350 to 900 nm).
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linear regression equations for the absorption features at 574, 790, 736, 520, 861, and 443 nm are
y ¼ 15.703x − 0.0057, y ¼ 10.835xþ 0.0088, y ¼ 29.295x − 0.2549, y ¼ 20.677xþ 0.0128,
y ¼ 26.062xþ 0.0293, and y ¼ 40.092x − 0.016, respectively. The standard error of prediction
of the least squares method is 0.0511, 0.0526, 0.0588, 0.0470, 0.0538, and 0.0545 g∕L for the absorp-
tion features at 574, 790, 736, 520, 862, and 443 nm, respectively.

3.3 Analysis of Correlation Between the Concentration of each Individual REE
and Six Diagnostic Absorption Features

The REE contain 15 single elements; the correlation between concentration of each single element
and the relative depths of six diagnostic absorption features was also analyzed using the linear
regression method mentioned above. The results show that the 15 single elements can be divided
into four groups according to the correlation coefficients (Table 4). The first group contains Ce,
which has the lowest correlation coefficient of all four groups (<0.1). The second group is La,
which has a correlation coefficient between 0.8 and 0.9. The third group contains Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu, and Y, with correlation coefficients between 0.9 and 0.98. The fourth
group contains Pr, Nd, and Sm, each with a correlation coefficient higher than 0.98.

For these 15 REE, cluster analysis was undertaken in reference to their concentrations
(Table 2). The results also show that these elements are split into four groups (Fig. 10). Ce
has little correlation with any other REE. La shows a low correlation with the rest of the
REE. Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y form one closely correlated group, whereas

Fig. 7 The spectra of 10 samples that are listed from high to low according to the concentrations of
total REE (wavelength from 350 to 900 nm) after continuum removal.

Fig. 8 The relative reflectance and depth on the six diagnostic absorption wavelengths for each sample.
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Pr, Nd, Sm form another well-correlated group. The results agree with the correlation analyses
between the concentration of each individual element and the depth of its diagnostic absorption
feature. Therefore, we can draw the conclusion that the chemical analysis and the spectral analy-
sis can confirm one another.

4 Discussions and Conclusions

In this study, dissolved REE in aqueous media sampled from the leachate ponds and the nearby rivers
were analyzed using reflectance spectroscopy with reference to pure water and synthesized rare earth
oxide. It was observed that even though the concentration of REE in aqueous solution is very low,

Table 3 The concentrations of total REE and the corresponding depths of six diagnostic absorp-
tion features.

Sample
name

P
REE

(μg∕L)
The depths
on 574 nm

The depths
on 790 nm

The depths
on 736 nm

The depths
on 520 nm

The depths
on 862 nm

The depths
on 443 nm

D1 925,427 0.06103 0.08671 0.04122 0.04524 0.03548 0.02472

D2 593,727 0.03782 0.05449 0.02923 0.0283 0.02182 0.01334

D3 390,373 0.02157 0.0291 0.01931 0.01656 0.01139 0.00879

D4 387,395 0.01902 0.02602 0.01811 0.01306 0.00963 0.00861

D5 167,697 0.01647 0.02244 0.01699 0.0107 0.00824 0.00678

D6 76,410 0.00542 0.00786 0.0124 0.00332 0.00191 0.0029

D7 48172.5 0.00468 0.00508 0.01113 0.0026 0.00128 0.00227

D8 32541.7 0.00334 0.00354 0.01055 0.00154 0.00045 0.0016

D9 16230.3 0.00187 0.00102 0.00984 0.00063 0.00021 0.00061

D10 11384.01 0.0011 0.00015 0.00868 0.0001 0.00002 0.00044

Fig. 9 The linear regression of the concentration of total REE and absorption depth on six absorp-
tion wavelength features.
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their spectral absorption features in visible and NIR wavelengths are detectable as shown by the six
diagnostic absorption bands at 574, 790, 736, 520, 861, and 443 nm. Furthermore, with the descend-
ing of the REE concentration, the intensities of the six absorption features decrease. The minimum
concentration of total REE that can be confidently detected by reflectance spectroscopy is approx-
imately 75;000 μg∕L. Thereafter, a linear correlation between the depth of each of the six diagnostic
absorption features and the concentration of total REE has been found that can be used to estimate
the concentration of total REE in ore leachate and river water samples. Based on the results of the

Table 4 The coefficient of determination (r 2) of the six diagnostic absorption features with the
concentrations of the 15 individual REE.

r 2 on 574 nm r 2 on 790 nm r 2 on 736 nm r 2 on 520 nm r 2 on 862 nm r 2 on 443 nm

La 0.8777 0.8754 0.8632 0.8718 0.8684 0.8987

Ce 0.0145 0.0138 0.0097 0.0113 0.0111 0.0261

Pr 0.9966 0.9951 0.9916 0.9953 0.995 0.9938

Nd 0.9984 0.9971 0.9957 0.9973 0.9983 0.9912

Sm 0.988 0.9875 0.9895 0.9901 0.9911 0.9722

Eu 0.9509 0.9507 0.9553 0.9624 0.9577 0.9273

Gd 0.9703 0.9699 0.9707 0.9807 0.9743 0.9484

Tb 0.9536 0.9527 0.9515 0.9675 0.9566 0.9299

Dy 0.9526 0.9519 0.9514 0.9664 0.9556 0.9304

Ho 0.9522 0.9517 0.9516 0.9661 0.9566 0.926

Er 0.9377 0.9375 0.9383 0.9536 0.9425 0.9109

Tm 0.9262 0.9251 0.9248 0.9437 0.9315 0.899

Yb 0.9299 0.9296 0.9309 0.9466 0.9359 0.9011

Lu 0.9136 0.9123 0.9133 0.9321 0.92 0.8838

Y 0.924 0.9238 0.9207 0.9416 0.9265 0.8977

Fig. 10 Cluster analysis of the 15 individual REE according to their concentrations.
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quantitative analyses in this study, it can be concluded that the relationship between the depth of the
six diagnostic absorption features and the concentration of total REE can be quantified using a linear
regression method at a high confidence level as indicated by the correlation coefficients up to 96% to
97%. The results of this study also show that the technique of using a linear relationship of absorption
feature parameters for modeling the concentrations of REE is a simple first-order approximation.
Furthermore, the study results in improved understanding of the reflectance spectroscopy of
REE in liquid solutions, and bridges the gap between the reflectance spectroscopy of REE in aqueous
media and their chemical concentration.

Based on the linear correlation between the diagnostic absorption features and the concen-
tration of total REE, we can easily estimate the concentration of total REE with reflectance
spectroscopy of aqueous samples. The ASD spectroradiometer can get 10 spectra∕s in real
time, and therefore the method stated in our paper can deal with massive samples in a short
time. Currently, the reflectance spectroscopy can be obtained with portable spectroradiometer
in fieldwork, which makes it possible to estimate the concentration of total REE without labo-
ratory analysis. Therefore, our research could be used for routine monitoring of REE pollution as
a quicker and cheaper method.

However, there are still questions remaining unanswered in this study, for which more
research should be conducted:

1. Although the relationship between spectral responses and concentrations of REE shows
a good linear correlation, the number of samples considered in this study is so limited as
not to permit a thorough statistical analysis. Due to suspended mining operations, we
could only obtained 10 leachate samples from three mines. More leachate samples will
be collected when mining resumes in the near future.

2. In this study, total REE comprising 15 individual REEwere studiedwith regard to their spectral
characteristics in relation to the concentrations in liquid solution. It is necessary to carry out
subsequent work to study the reflectance spectral characteristics of each individual REE or a
subgroup of REE, such as the light REE or the heavy REE, and the relationship between
spectral response and their chemical concentration.

3. In this study, the depth of an absorption band is used as a parameter for quantitative
analysis. It may be worthwhile to test other spectral parameters such as second derivative
as a concentration index for correlation analysis. Also, even though the liner regression
method as used in this study has proven useful to provide a simple and reliable approxi-
mation for the concentration of REE, in a future study other modeling techniques need to
be tested for modeling more complex relationships.

4. If field study is conducted using spectroradiometers, more research work needs to be
done to refine this technique for routine monitoring, such as the study of the influence
of sunlight, and the impacts of silt, chlorophyll, and heavy metals in water.
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