
Spatial and spectral pattern
identification for the automatic
selection of high-quality MODIS
images

Lluís Pesquer
Cristina Domingo-Marimon
Xavier Pons

Lluís Pesquer, Cristina Domingo-Marimon, Xavier Pons, “Spatial and spectral pattern identification for the
automatic selection of high-quality MODIS images,” J. Appl. Remote Sens. 13(1), 014510 (2019),
doi: 10.1117/1.JRS.13.014510.



Spatial and spectral pattern identification for
the automatic selection of high-quality MODIS images

Lluís Pesquer,a,* Cristina Domingo-Marimon,a and Xavier Ponsb
aGrumets Research Group, CREAF, Edifici C, Universitat Autònoma de Barcelona,

Bellaterra, Catalonia, Spain
bGrumets Research Group, Dep. Geografia, Edifici B,

Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain

Abstract. Remote sensing is providing an increasing number of crucial data about Earth.
Systematic revisitation time allows the analysis of long time series as well as imagery utilization
in the most interesting moments. Nevertheless, the current huge amount of data makes essential
the usage of automatic methods to select the best captures, as many of them are not useful
because of clouds, shadows, etc. Because of that, one of the characteristics of the more recent
missions is the distribution, along with the spectral data, of a large amount of quality ancillary
datasets. These datasets can act synergistically in the aim of selecting the best quality images,
but the criteria they provide are not always enough. Indeed, these datasets are often used on
a per pixel basis and the spatial pattern of the different spectral bands is forgotten, so ignoring
the key information they can provide for our goals. With this aim, our work takes one of the most
successful instruments in remote sensing, MODIS, and demonstrates, through geostatistical
techniques, that the role of the spatial patterns of the spectral bands can effectively improve
image selection in a complex (for climate, relief, and vegetation and crop phenology) region of
63;700 km2. The results show that band 01 (red) is the preferred one, as it achieves a 13% higher
success than when only using quality bands criteria: a 94% global accuracy (66 true classifi-
cations, and only four omissions and one commission error). A second, important finding, is that
the geostatistical selection improves results when using any band, except for band 02 (NIR1),
which makes our proposal potentially useful for most remote sensing missions. Finally, the
method can be executed in a reasonable computing time due to previously developed high-per-
formance computing techniques. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.014510]
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1 Introduction

The increasing interest shown by the scientific community in using sensors from the Earth
Observation System (EOS) satellites, and specifically MODIS (MODerate Resolution
Imaging Spectroradiometer), mainly arises from the need to better understand global changes
by monitoring environmental and ecological dynamics at a global scale and at high temporal
resolution. In this framework, the free and accessible images provided by MODIS data constitute
a large set of ancillary data, essential for many remote sensing (RS) studies. Indeed, in a similar
way to this companion onboard the Aqua satellite, the MODIS sensor onboard the Terra satellite,
has been collecting data since 2000 and currently provides a long time series of daily images that
constitutes a big data framework, currently making it possible to progress in global monitoring.1

However, and due to this huge amount of data, MODIS data collection poses an interesting
challenge for achieving both accurate and automatic processing.

MODIS is a passive sensor with 36 spectral bands and covers an important portion of
the electromagnetic spectrum, from visible to thermal infrared (0.45 to 14.385 μm) at medium
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spatial resolution (from 250 m to 1 km at nadir).2 Nevertheless, as this dataset can contain some
images with specific issues that could reduce the quality of the acquisitions, a substantial effort
must be made, as said, to automatically produce high quality subsets. For instance, several
atmospheric effects interfere with the remotely sensed signal. In particular, day and nighttime
acquisitions are affected by uncontrollable cloud coverage or aerosols (pollution, dust, sea salt,
etc.), which makes difficult the measurement of land surface conditions. Among these atmos-
pheric effects, the presence of clouds, and their projected shadows over the Earth, is a major
constraint on applications that use optical RS.3 Their automatic detection is still a challenge to be
overcome, especially when automatic methods for analyzing large volumes of data are used, as in
Ref. 4 and in the present work. Moreover, MODIS has a singular field of view of 110 deg that,
combined with its distance to the ground, achieves a wide swath covering 2330 km (across track)
in one scan. This large swath causes a panoramic distortion whereas partially overlapping scans
produce data repetition.5,6 This feature, known as the bow-tie effect, is additionally exacerbated
by Earth’s curvature (bands with a spatial resolution of 250 m at nadir have 1207 m at the image
edges, while 1 km resolution bands have 4816 m at the image edges7).

In addition, these data might also have some inaccuracies derived from the different levels of
postacquisition processing, such as detector noise or data faults.2 Consequently, it is necessary to
select a high-quality dataset before massive analysis. Fortunately, many of these issues can be
filtered out using the MODIS ancillary data, but not all of them. Faced with such a large amount
of data, advancing in more complete, yet automatic, methods for selecting high-quality images
becomes necessary.

A range of methods for partially mitigating these effects have been explored in various stud-
ies. For example, authors of Ref. 8 developed a by-pixel filtering algorithm to produce relatively
cloud-free single-day snow covered area (SCA) products from MODIS imagery using the pre-
vious day’s imagery to estimate current SCA. Authors of Ref. 9 used a wavelet-based method to
remove contaminated data from NDVI time-series, generating much better temporal data, while
authors of Ref. 10 used kernel methods (linear and nonlinear) for cloud masking and cloud
removal to obtain cloud-free time series. In addition, authors of Ref. 11 presented an interesting
aerosol retrieval method. However, the present work is not focused on overcoming one particular
atmospheric effect, but rather aims to select a subset of high-quality images while preserving
their original values.

The present research is based on a geostatistical approach and a tailor-made set of spatial
pattern analysis tools. The spatial and spectral pattern analysis is the core of the presented meth-
odology. Exploring, describing, and providing indicators of spatial variation in images are
among the main geostatistical applications in RS.12 Indeed, geostatistics can provide parameters
for describing spatial patterns,13 modeling uncertainty in spatial analyses,14 measuring the spatial
autocorrelation15 and radiometric coregionalization,16 and can also support downscaling
techniques17 and classification.18 Authors of Ref. 19 presented a method based on variogram
analysis that analyzed the spatial pattern of MODIS images using variogram tools to identify
the images with higher quality, adopting MODIS band 03 (459 to 479 nm, blue) as the band that
defines the structural parameters of the variogram. Such approach was successfully used in the
generation of pseudo (radiometrically) invariant areas.20 However, different studies21,22 demon-
strated that the results of the RS’s derived analyses could be spectral dependent and, conse-
quently, the selection of the band to be used in the method should be studied in depth,
particularly due to the influence of the data spatial pattern on the analyses.23 Likewise, the
use of some combination of bands (e.g., orthogonal transformations, tasseled cap, panchromatic
fusion, etc.) in different RS applications can achieve higher quality results than just using
pure original bands.24 Accordingly, such types of transformations are also considered in the
present work.

This paper explores the influence of the spatial pattern of different MODIS spectral bands
(bands 01, 02, 03, 04, 06, and 07) and the first component of the principal component analysis
(PCA)25 of two subsets of spectral bands on the variability of the variogram. The result to be
reached is a criterion that aims to identify the most suitable spectral band, or transformation of
bands (in this case, the selected variable is the first component of the PCA) to spatially character-
ize a given geographical region. Two complementary targets are to increase the quality of
the set of selected images and to provide additional validations that increase the robustness
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and confidence on the assessed methodology. It is absolutely necessary to achieve this objective
in an automatic and massive geoprocessing environment, implementing a chain of GIS and
RS algorithms to manage huge series of RS data.

2 Data

2.1 Test Area

The presented method was tested in the NE of the Iberian Peninsula (SW Europe), in the area of
Catalonia and neighboring regions, a 63;700 km2 region covered by MODIS tile h18v04
(Fig. 1). The topography of the area stands out for its wide altitudinal range, from 0 m to
more than 3000 m above sea level, configuring a heterogeneous landscape with several mountain
ranges (including the pre-coastal mountain range, the coastal mountain range, and the Pyrenees).
This area’s interesting mosaicked land cover is composed of agriculture lands mixed with areas
of natural and seminatural vegetation, including coniferous, sclerophyllous, and deciduous
forests. These characteristics, together with its mainly mediterranean climate with a strong
seasonality (snow cold winters with heavy rains and dry hot summers), make the selected
area a perfect test region in terms of several types of potential problems that need to be solved
when the spatial pattern variability of the variogram is analyzed.

2.2 MOD09GA Product Preprocessing

MOD09GA, the daily surface reflectance product, provides MODIS bands from 1 to 7 (459 to
479 nm (B03-blue), 545 to 565 nm (B04-green), 620 to 670 nm (B01-red), 841 to 876 nm [B02-
NIR1 (near infrared)], 1230 to 1250 nm (B05-NIR2), 1628 to 1652 nm [B06-SWIR1 (short wave
infrared)], and 2105 to 2155 nm (B07-SWIR2) at 500-m spatial resolution (nadir nominal spatial
resolution of 463.31 m, 2413 m at the image edges) together with their quality assurance science
data set (QA-SDS), which provides information about the quality of each pixel.2 The MODIS
land quality assessment (QA) products are essential for discarding potentially wrong pixel values
and for applying high quality image selection filtering. However, the quality of these datasets
could be affected by the presence of undetected poor quality pixels or artifacts corresponding to
clouds and cloud shadows, imprecise snow coverage detection, atmospheric contamination,
aerosols, technical problems of the acquisition, or algorithm problems.26

A total of 364 images of the MOD09GA daily surface reflectance from 2009 (all bands
except band 05 due to the stripe noise,27 and an image from November 16, 2009 due to internal
errors) were downloaded and used in this work. The original sinusoidal cartographic projection

Fig. 1 Location of the study area.
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was kept. Embedded QA-SDS were used to obtain meaningful image processing28,29 and data
were masked accordingly. Pixels with clouds (state QA band bits 0-1 described as “cloudy,”
“mixed,” or “not set”), cloud shadows (state QA band bit 2 described as “yes”), cirrus (state
QA band bits 8 to 9 described as “small,” “average,” or “high”), and fire (state QA band bit
11 described as “no fire”) and snow (state QA band bit 12 and bit 15 with nonzero value)
were discarded. Pixels with a sensor zenith angle of 35 deg or greater were removed in
order to delete pixels subject to heavy geometric distortion and lower spatial resolution.30

In addition, pixels classified with high aerosol categories (State QA band bits 6 to 7 described
as “high,” “average,” or “climatology”) were also excluded because areas with high aerosol
optical depth reduce the surface contrast and have a negative effect on surface reflectance.31

As another filter, only pixels classified as “corrected product at ideal quality” in the QC quality
band (bits 0 to 1) were kept. Sea regions were also excluded for all images.

Moreover, to maintain informative power but to decrease computation efforts, it may also be
useful to reduce the number of variables without losing too much information. Therefore, an
orthogonal transformation (PCA) of the original MODIS bands (bands 01, 02, 03, 04, 06,
and 07) was performed to generate a second type of variable, a combination set. The first prin-
cipal component, which has the largest possible variance of the six spectral bands of the same
acquisition, was included in the analysis and hereafter is referred to as PCA6. In addition, and to
improve the results of this complete PCA combination, the first PCA component generated
through only the two bands (bands 01 and 03) was also included and called PCA2. Band
01 and band 03 were selected because they were the ones that achieved the best results for
the analysis on separated bands (no combination). In particularly, as all bands were in reflectance
units, it was considered more convenient not to apply a standardized PCA, but to run an unstand-
ardized one. Altogether, the final dataset was formed by eight subsets (one per each individual
spectral band and the two PCA combinations, PC6 and PC2) made up of 364 images.

3 Methodology

3.1 Geostatistical Approach: the Variogram Analysis

As previously mentioned, the QA-SDS is a very useful dataset that may have some limitations.
A regionalized approach based on a geostatistical point of view has been developed in order to
improve the quality of the information provided with the aim of complementing the pixel-by-
pixel approach of the QA-SDS.

The geostatistical analysis was carried out following the image preprocessing flow described
in Fig. 2. The method applied, the variogram analysis, plots the dependence of the spatial vari-
ance of a given variable (e.g., surface reflectance of a spectral band in a MODIS image) and
therefore the spatial pattern can be analyzed.32 The empirical variogram (coming from samples,
i.e., pixels, in the particular case of remotely sensed images) can be modeled and fitted by a
continuous function to identify structural parameters (nugget, sill, and range) that characterize
the spatial pattern for any quantitative variable distribution.32 The nugget is the variance near the
origin (very short distances) and represents the component of the nonspatially correlated error.
The sill represents the variance at the variogram saturation and the range is the spatial distance at
which the variogram reaches this mentioned saturation, and represents the limit distance of
autocorrelation. The concrete calculation of the nugget, sill, and range depends on the type of
variogram function. This work used the exponential and the quadratic models (both with nugget
effect) to obtain the fitted variogram and the corresponding structural parameters. The equations
of these models are

EQ-TARGET;temp:intralink-;sec3.1;116;153
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where c0 is the nugget, c1 is the sill, and r is the range.
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Therefore, these parameters characterize the spatial pattern of a concrete spectral band (or
PCA combination) of a MODIS image. For instance, a homogeneous image has a higher range
than a heterogeneous image. The variogram of a high quality image can characterize the land-
scape in a way that the variogram is spatially (in the extension of 63700 km2 study region) and
statistically invariant along time. The general spatial pattern differences among most of the
images are caused by meteorological conditions (e.g., snow and clouds), geometrical distortions,
or processing errors; seasonal phenology changes or urban growing are spectral band depending
(e.g., vegetation) and less statistically relevant. For instance, an increase/decrease in the spatial
pattern heterogeneity could be caused by the above-mentioned undetected poor quality pixels.
Thus, the variogram analysis identifies the pixels in the latter case (such as an unusual increase in
variability in some regions) and these images are filtered out (Fig. 2).

This geostatistical approach was applied using the eight subsets of MOD09GA spectral
bands or PCA combinations, corresponding to each of the MODIS bands (bands 01, 02, 03,
04, 06, and 07), PCA6 and PCA2 as the variables to be modeled (Fig. 2). PCA6 uses all suitable
bands and PCA2 is undefined at the current design step. PCA2 will be the combination of the
two bands that will generate the lowest error in the individual assessment of the proposed
methodology.

All images of these subsets were classified essentially in two groups (groups A and B)
according to the number of valid pixels (pixels considered as of good quality according to
MODIS QA-SDS and QC-SDS). The threshold used for group A was 80% valid pixels and
at least 25% valid pixels for group B. Images with less than 25% valid pixels were discarded.
It is important to note that the concrete values of the thresholds can be automatically adapted
(in an iterative process) to any range of particular spatial patterns or landscapes of a given study
region. It will basically depend on the presence and combination of possible sources of errors at
the study region (detailed in the previous 2.2 MOD09GA product preprocessing section), out-
standing as the main relevant factor the frequency of cloud cover events (Fig. 3). Additionally,
these thresholds (the default and the range of possible values) could be customized for different
purposes or requirements; for example, a lower value can be used when a higher time frequency
data information is needed.

In the second step, group A images (more than 80% valid pixels) were geostatistically ana-
lyzed and, as a result, a representative variogram for each subset was obtained. This variogram is
considered to be a model of the spatial pattern distribution of the study area and is the key for
subsequent automatic rejections of images that might have different types of problems and
distortions.

Next, group B images were also geostatistically analyzed and their variograms were com-
pared with the representative variogram. The criterion for selecting an image of group B as
having high quality was that the three variogram structural parameters (nugget, sill, and range)

Fig. 2 Process workflow and its two steps: from the original MODIS 2009 daily series, to the high
quality selected images. Groups A and B are defined according to the % of valid pixels (80% and
25%, respectively).

Pesquer, Domingo-Marimon, and Pons: Spatial and spectral pattern identification for the automatic. . .

Journal of Applied Remote Sensing 014510-5 Jan–Mar 2019 • Vol. 13(1)



were within a range that is 2.75 times the standard deviation from the mean calculated from
the representative variogram (Fig. 4).

The final selection for each band was validated by comparing it to an independent and non-
automatic expert classification, quality controlled by an analyst, manually too. The validation
was also performed by making a comparison with a set that had only been filtered by QA-SDS.

The free MiraMon GIS and RS software33 was the main software used in this work. The
authors developed auxiliary tools in MiraMon specifically addressed to fully automatic process
long time series of RS images. These specialized geostatistical tools were built on the geostat-
istical libraries in Ref. 34 and the new developed options and adaptations for the present work
are fully integrated in those libraries.

4 Results and Discussion

After masking the images (Fig. 2, step 1) only 7 out of 364 images had more than 80% valid
pixels (group A) (MonthDay [MMDD]: 0506; 0529; 0718; 0725; 0817; 0819; 1013) (Table 1)
and 71 images were classified in group B as images with at least 25% valid pixels. Figure 5
shows two examples of bands 01 and 02 of the resulting variograms for group A, which were
geostatistically analyzed; for each subset, a representative variogram was obtained. As explained

Fig. 3 (A) MOD09GA May 29, 2009 93.4% valid pixels (group A, higher than 80%); (B1)
MOD09GA April 20, 2009 26.8% valid pixels (selected in group B, higher than 25%); (B2)
MOD09GA June 28, 2009 44.5% valid pixels (nonselected, in group B); (N) MOD09GA
September 4, 2009 19.6% valid pixels (nonselected: less than 25%). RGB compositions: 6,2,1.
Note that B2 presents more valid pixels than B1 but will be automatically discarded according to
the proposed procedure.

Pesquer, Domingo-Marimon, and Pons: Spatial and spectral pattern identification for the automatic. . .

Journal of Applied Remote Sensing 014510-6 Jan–Mar 2019 • Vol. 13(1)



above, this variogram is considered as a model of the spatial distribution pattern of the study area
and is used for the automatic selection. Table 1 also shows the variogram structure parameters for
each spectral band and for the two options of the PCA.

The expert and independent visual exploration classified a total of 59 of the 71 images of
group B as high quality, and the remaining 12 images were considered to be poor quality images.
That means that a simple filter based on the usage of MODIS QA-SDS quality masks disagreed
in 12 images with regard to the expert manual classification. Therefore, using only MODIS QA-
SDS for filtering data may result in the inclusions of 17% low quality data.

The variogram of each band of these 71 images was compared to the corresponding repre-
sentative variogram (like in Fig. 4). Results are detailed in Fig. 6 and summarized in the global
accuracy (%) and commission error (%) parameters, included in the two final rows. Global accu-
racy was computed as the ratio between the number of right classifications (considering two
classes, high and poor quality images) and the total number of classifications (71); the commis-
sion error is the ratio between the number of wrongly selected images and the total number of
images (12) not selected by the manual classification (truth). Although less important in our
study, the omission error parameter was also included; this is the ratio of the number of wrongly
nonselected images and the total number of images (59) selected by the manual classification.
In most cases, the priority of the automatic selection is to achieve a low commission error on
the quality filtering, thus this indicator could be as important as the global accuracy.

These results for the two main evaluation indicators show that band 01 (red) is the more
appropriate to be used for the automatic selection because it achieves both the maximum global
accuracy (92.96%) and the minimum commission error (8.33%). Band 03 (blue) and the PCA2
(composition of band 01 and band 03) achieve the same minimum commission error as band 01.

Fig. 4 Example of band 04 representative variogram (�2.75 std: dev:) (black line and shadowed
area), group B nonselected image variogram (red line) (December 27, 2009), and group B
selected image variogram (green) (June 21, 2009). The variogram structure parameters of
the selected image are within the valid parameter interval of the representative variogram.
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Fig. 5 Example of band 01 and band 02 variogram plots for selected images with at least 80%
valid pixels (group A). MM: month; DD: day.

Table 1 Variogram parameters for images with at least 80% (group A) valid pixels, which will
define the representative variogram. Values for each band correspond to the nugget, sill, and
range. MM: month; DD: day; M: mean.

MMDD 0506 0529 0718 0725 0817 0819 1013

M − 2.75σ Mþ 2.75σN valid pixels 209547 238084 212591 216035 213553 237369 244990

B01 Nugget 2.28 2.14 3.03 2.88 2.13 2.37 2.25 1.51 3.37

Sill 6.70 10.33 15.54 13.93 12.05 12.48 8.40 3.48 19.22

Range 21996 22327 24815 24679 29119 25747 22981 18260 30787

B02 Nugget 8.94 9.13 7.55 7.42 5.52 6.94 11.82 3.06 13.31

Sill 17.13 14.37 12.63 11.48 8.55 10.38 8.56 3.90 19.84

Range 21486 21460 20871 20507 21563 21205 18379 17916 23647

B03 Nugget 0.75 0.95 0.88 0.80 0.60 0.68 0.68 0.45 1.08

Sill 1.23 2.51 2.17 2.02 2.16 2.05 1.56 0.87 3.04

Range 20028 20691 21089 21238 23116 21721 21225 18859 23744

B04 Nugget 1.53 1.78 1.92 1.80 1.27 1.48 1.70 1.07 2.21

Sill 2.51 4.46 5.11 4.72 4.25 4.31 3.40 2.23 6.10

Range 20517 20458 21094 21202 22857 21688 20818 19115 23351

B06 Nugget 7.86 7.46 11.17 11.72 10.65 11.23 14.18 4.72 16.50

Sill 13.73 14.75 28.56 27.57 27.96 25.89 21.37 6.69 38.98

Range 19861 19753 20511 20155 21207 20484 19474 18797 21704

B07 Nugget 6.93 6.19 9.41 9.22 8.45 9.30 9.03 5.09 11.64

Sill 12.72 13.01 26.51 24.12 24.62 24.76 19.11 5.90 35.49

Range 20382 20092 20511 20259 21325 20496 20098 19379 21525

PCA6 Nugget 20.49 19.36 27.80 28.16 23.74 26.08 32.90 13.50 37.51

Sill 41.77 41.83 76.72 71.49 70.36 67.92 54.07 23.45 97.73

Range 20164 19797 20591 20357 21538 20680 19741 18846 21974

PCA2 Nugget 3.69 4.09 5.14 4.80 3.43 3.99 3.73 2.54 5.71

Sill 6.85 11.05 15.18 13.69 12.18 12.50 8.60 4.09 18.79

Range 20759 20847 21453 21481 22964 21836 21103 19578 23406
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This error is a result of considering image 0427 as a high quality image while the trained expert
considered it as poor quality.

It is important to explain that all bands and band combinations, except band 02 (NIR1),
achieve better results in terms of global accuracy than when only the MODIS mask filter is
used (83.10% global accuracy of the QA-SDS method). Moreover, all bands, without exception,
obtain lower commission errors than the mask filter.

Exploring the set of images, we found that, except for band 02 (NIR1), most errors were
concentrated in a few dates: 0427 and 0520 are the scenes that increase the commission
error for most bands, while 0716, 0730, and 0812 are the images that commit omission errors
for most of bands. Figure 6 also shows that most of the not-selected images by the automatic
method and in disagreement with the trained expert, were omitted due to a range (R) parameter of
the variogram that was outside the model interval, either due to having a lower (few cases) or
higher value (most of the cases) than the model. Therefore, this spatial autocorrelation parameter,
the range, is mainly affected by the quality of the images.

Concerning the combination of bands, although the two PCA sets collected the main patterns
of their corresponding images, this collection does not improve the best results obtained by some

Fig. 6 Detail of the automatic selection of high quality images for each band or band composite
subset. Images selected are represented by filled cells, in gray for the truth column, in green when
they were successful in the geostatistical pattern comparison, and in red for the wrong results.
Images correctly nonselected are empty cells with a green cross-line, while wrongly nonselected
cases are indicated with a red letter in relation to the variogram parameter (S, R, or N) at fault.
Capitals indicate that the parameter is higher than the model while lowercase letters indicate that
the parameter is smaller than the model (out of the interval). Dates in bold belong to group A.
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of their single components: they collect most correct cases but also a few wrong cases. Thus,
the single reflectance bands preserve better the spatial pattern of radiometric variability and
the PCA combinations have less capacity to identify high quality images.

These results demonstrate that the spatial pattern characterized by each variogram is spectral
dependent and landscape dependent because each variogram, and therefore, the pattern variabil-
ity of the corresponding reflectance values, is different for each of the spectral bands (Fig. 5). The
most accurate automatic selection of high quality images was obtained when the visible bands,
i.e., red (band 01), blue (band 03), and the PCA2 (composition of bands 01 and 03), were used.
Medium accuracy was achieved by the green band (band 04), both SWIR bands (06 and 07) and
the PCA6 (composition of bands 01, 02, 03, 04, 06, and 07).

Fig. 6 (Continued)
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These results, clearly dependent on the spectral band, show that the interesting spatial pattern
in this area was mostly influenced by vegetation, given that band 02 is the most sensitive to
changes in phenology and vegetation water content.35 In a mediterranean area such as
Catalonia, where climate is characterized by strong seasonality and the landscape is fragmented,
patches of vegetation that show significantly different phenological stages directly increment the
variability in the spatial pattern, which is statistically reflected in the variogram parameters. As a
result, the total sill is increased and the range decreased. Indeed, band 02 wrongly rejected
images mainly in spring, the most active period for vegetation, when phenology events that
are relevant for RS take place (mainly the emergence of leaves). PCA6 showed an intermediate
accuracy; this decrease in accuracy was caused by the phenological variability noise introduced
by bands 02 and 07 during its computation, and the better PCA2 results (without these “noisier”
bands) confirm this point.

5 Conclusions

The presented geostatistical procedure was confirmed to be an excellent approach to automati-
cally select high-quality images using a variogram analysis. In addition, this study confirmed that
the spatial pattern characterized by the variogram is dependent on the spectral band. The highest
accuracy of automatic selection is achieved using band 01 (93.0%) and band 03 (91.6%), cor-
responding to the red and blue visible spectrum bands, respectively. On the other hand, the least
appropriated bands are band 02 (64.8%) and band 07 (80.3%), corresponding to the NIR1 and
SWIR2 regions of the electromagnetic spectrum, respectively. These bands are the most sensitive
to phenology and vegetation water content, both of which show strong seasonal variability that
decreases the effectivity of the variogram analysis. Therefore, these results confirmed that the
optimal band to be used in this geostatistical approach must follow the presented protocol for
different study regions. This is especially recommended in those regions with strong seasonal
vegetation changes where the methodology will automatically discard the bands presenting large
anomalies regarding the global spatial pattern and it will appoint the band that will obtain a time
series of high quality images.

Further analysis to reduce this seasonality component will be conducted in extreme dynamic
landscapes, as it can be considered a potential limitation of this methodology; for instance, by
applying the analysis at a 3-month time scale instead of at an annual time scale. In addition, we
plan to extend the present spectral and spatial analysis to other satellite images; an especially
interesting research will be a mixed time series obtained from different sensors: MODIS/MERIS/
Sentinel-3 or other high frequency acquisition missions.

Finally, it was demonstrated that the approach is suitable for processing huge amounts of RS
data, such as data provided by the MODIS Terra (or Aqua) full archive, with very low human
dedication to the task and a modest computational effort.
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