PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The Wide Field Imager (WFI) is one of two focal plane instruments of the Advanced Telescope for High-Energy Astrophysics (Athena), ESA’s next large x-ray observatory, planned for launch in the early 2030s. The current baseline halo orbit is around L2, and the second Lagrangian point of the Sun-Earth system L1 is under consideration. For both potential halo orbits, the radiation environment, solar and cosmic protons, electrons, and He-ions will affect the performance of the instruments. A further critical contribution to the instrument background arises from the unfocused cosmic hard x-ray background. It is important to understand and estimate the expected instrumental background and to investigate measures, such as design modifications or analysis methods, which could improve the expected background level to achieve the challenging scientific requirement (<5 × 10 − 3 counts / cm2 / keV / s at 2 to 7 keV). Previous WFI background simulations done in Geant4 have been improved by taking into account new information about the proton flux at L2. In addition, the simulation model of the WFI instrument and its surroundings employed in Geant4 simulations has been refined to follow the technological development of the WFI camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Silver (Ag) mirrors for astronomical telescopes consist of multiple metallic and dielectric thin films. Furthermore, the topmost surface of such Ag mirrors needs to be covered by a protection coating. While the protection coating is often deposited at room temperature and the entire mirrors are also handled at room temperature, various thin-film deposition techniques offer protection coatings with improved characteristics when carried out at elevated temperatures. Thus, high-performance Ag mirrors were designed and fabricated with a new benchmark. The resulting Ag mirrors were annealed (i.e., post-fabrication annealing) at various temperatures to investigate the viability of introducing thermal processes during and/or after fabrication in improving the overall optical performance and durability of protected silver mirrors. In our experiments, Ag mirror samples were deposited by electron-beam evaporation and subsequently annealed at various temperatures in the range from 60°C to 300°C, and then the mirror samples underwent an environmental stress test at 80°C and 80% humidity for 10 days. While all the mirror samples annealed below 200°C showed negligible corrosion after undergoing the stress testing, those annealed below 160°C presented spectral reflectivity comparable to or higher than that of as-deposited reference samples. In contrast, the mirror samples annealed above 200°C exhibited significant degradation after the stress testing. The comprehensive analysis indicated that delamination and voids caused by the growth of Ag grains during the annealing are the primary mechanisms of the degradation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Mars surface composition detector (MarSCoDe) is a scientific instrument suite onboard the Mars rover of the “Tianwen-1” mission, which uses laser-induced breakdown spectroscopy and shortwave infrared spectroscopy to detect the composition of soils and rocks at the surface of Mars. The optical head unit (OHU) is the core hardware of MarSCoDe, containing a Cassegrain telescope and other optical modules for lasers generation and signals transmission. The unit lacks thermal control resources and is located outside the rover’s cabin, which will directly face the Martian surface drastic temperature changes. We introduce the optomechanical designs that realize the lightweight and high thermal stability of the OHU optical system, especially the designs and implementations of the semiopen primary mirror based on silicon carbide and the fully closed optical bench based on carbon fiber-reinforced polymer. Meanwhile, the advantages and difficulties of silicon carbide, long carbon fiber-reinforced silicon carbide composites, and carbon fiber-reinforced polymer materials used for small and compact optomechanical systems are discussed. Subsequently, the environmental adaptability of the telescope system of OHU was studied through analytical and experimental methods, which show that it can achieve the required optical performance over a temperature range of approximately 100°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Galaxy Evolution Probe (GEP) is a concept for a mid- and far-infrared space observatory to measure key properties of large samples of galaxies with large and unbiased surveys. GEP will attempt to achieve zodiacal light and Galactic dust emission photon background-limited observations by utilizing a 6-K, 2.0-m primary mirror and sensitive arrays of kinetic inductance detectors (KIDs). It will have two instrument modules: a 10 to 400 μm hyperspectral imager with spectral resolution R = λ / Δλ ≥ 8 (GEP-I) and a 24 to 193 μm, R = 200 grating spectrometer (GEP-S). GEP-I surveys will identify star-forming galaxies via their thermal dust emission and simultaneously measure redshifts using polycyclic aromatic hydrocarbon emission lines. Galaxy luminosities derived from star formation and nuclear supermassive black hole accretion will be measured for each source, enabling the cosmic star formation history to be measured to much greater precision than previously possible. Using optically thin far-infrared fine-structure lines, surveys with GEP-S will measure the growth of metallicity in the hearts of galaxies over cosmic time and extraplanar gas will be mapped in spiral galaxies in the local universe to investigate feedback processes. The science case and mission architecture designed to meet the science requirements is described, and the KID and readout electronics state of the art and needed developments are described. This paper supersedes the GEP concept study report cited in it by providing new content, including: a summary of recent mid-infrared KID development, a discussion of microlens array fabrication for mid-infrared KIDs, and additional context for galaxy surveys. The reader interested in more technical details may want to consult the concept study report.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Pancharatnam-based achromatic half-wave plates (AHWP) achieve high polarization efficiency over a broad waveband. These AWHPs generally contain a property whereby the optic axis is dependent on the electromagnetic frequency of the incident radiation. When the AHWP is used to measure incident polarized radiation with a finite detection bandwidth, this frequency dependence causes an uncertainty in the determination of the polarization angle due to the limited knowledge of the shape of the source spectrum and detection band. To mitigate this problem, we propose new designs of the AHWP that eliminate the frequency dependence of the optic axis over the bandwidth while maintaining high modulation efficiency. We carried out this optimization by tuning the relative angles among the individual half-wave plates of the five and nine layer AHWPs. The optimized set of relative angles achieves a frequency-independent optic axis over the fractional bandwidth, a bandwidth over which polarization efficiency is greater than 0.9, of 1.3 and 1.5 for the five- and nine-layer AHWPs, respectively. We also study the susceptibility of the alignment accuracy on the polarization efficiency and the frequency dependence of the optic axis, which provides a design guidance for each application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Imaging, Spectroscopic, High-Contrast, and Interferometric Instrumentation
Imaging the planets that orbit around other stars requires blocking the host star which is usually 8 to 10 orders of magnitude brighter than the planets. This is achieved with the help of a stellar coronagraph. In the current work, a concept of a new type of stellar coronagraph is introduced where the star light is blocked by a linear polarizer in the collimated beam. It is based on differential rotation between the linear polarization state of planet light and that of star light. This is achieved with the help of a set of thick birefringent crystals in the collimated beam of a telescope where the planet light is made to travel extra optical path length compared to star light. By adjusting the orientation and thickness of the crystal, the optical path length can be made to cause a phase difference of π, just enough to rotate the initial plane of polarization by 90 deg for planet-light without affecting the star light. Theoretical calculations involving the phase difference due to birefringent crystals are presented along with the basic configuration and design. It is shown that the design blocks the star light identically at all wavelengths. Application of this concept for detecting Earth-like extrasolar planet is discussed using a 1-m class telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
NEREA (Near Earths and high-Res Exoplanet Atmospheres) is a stable, compact, high-resolution spectrometer concept for the Gran Telescopio Canarias (GTC). The spectrograph is designed to be a common user instrument; however, its specifications are governed by two main science goals. (1) The discovery and characterization of planets around late-M type stars. Using the GTC’s large 10 m collecting area, NEREA would be capable of reaching out for planets around cooler, smaller, and dimmer stars than current facilities, contributing to completing the census of small planets in our stellar neighborhood (<30 pc); (2) The characterization of planetary atmospheres from Hot-Jupiters to Super-Earths. NEREA would be capable of detecting species including H2O, CH4, CO2, and ionized metals in planetary atmospheres; as well as detecting and resolving individual Na I, Hα, and He I line profiles, improving our understanding of the physical and chemical evolution of planetary atmospheres. Owing to the GTC’s collecting area, the current planetary sample size can be expected to increase by ∼40 times. The spectrometer preliminary design follows a single-pass echelle layout and is fiber-fed with both a rectangular 22 μm × 198 μm science fiber and a 29 μm calibration fiber. The system is designed to achieve a resolving power of 100,000 in the red-NIR regime (0.7 to 1.7 μm). The device footprint is ∼0.25 m × 1 m × 0.75 m, allowing the system to be temperature and pressure stabilized (<50 cm / s) in a small, compact container. The concept applies a 320 mm × 90 mm, R4 blazed, diffraction grating as the disperser and a 60.6-deg P-SF67 prism as the cross disperser. A 325 mm focal length, off-axis, parabolic mirror is employed as the collimator and the camera consists of a custom designed 325 mm refocusing lens. The instrument is designed to efficiently couple to the GTC AO system, for which we assume moderate performance of 0.3″ in our wavelength range. The spectrometer would also be able to perform efficiently without adaptive optics at a resolving power of 40,000 or, with losses, at a resolving power of 70,000 to 100,000.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Differential atmospheric dispersion, due to the wavelength-dependent index of refraction of the atmosphere, affects ground-based observations. To correct this effect, the usage of an atmospheric dispersion corrector (ADC) is fundamental. Insufficient or wrong correction of the atmospheric dispersion produces a spectrally elongated shape instead of a circular white one for the observed target. The commissioning tests of ADCs with on-sky observations are not an easy task. In fact, the residual dispersion is expected to be of a few tens of milliarcsec, with the object for a seeing limited telescope being almost 1 arc sec. A procedure was developed, based on ellipse fitting of several cuts from the guiding camera images, to determine the levels of oblongness in an object image caused by atmospheric dispersion. The characterization of the data allows for the validation of the ADC alignment by determining the dispersion direction and minimizing the ellipticity. The ellipse fit method was tested on ESPRESSO using the guiding camera images. The procedure was tested and demonstrated using simulated data that mimics the expected images using real sky dispersion models and real sensor characteristics. The accuracy of the method is highly dependent on the observational conditions and on the ratio between expected elongation (dispersion) and image size, but it is expected that the method can be more sensitive than traditional ADC on-sky alignment methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Measuring the orbits of directly imaged exoplanets requires precise astrometry at the milliarcsec level over long periods of time due to their wide separation to the stars (≳10 au) and long orbital period (≳20 yr). To reach this challenging goal, a specific strategy was implemented for the instrument Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE), the first dedicated exoplanet imaging instrument at the Very Large Telescope of the European Southern Observatory (ESO). A key part of this strategy relies on the astrometric stability of the instrument over time. We monitored for five years the evolution of the optical distortion, pixel scale, and orientation to the True North of SPHERE images using the near-infrared instrument IRDIS. We show that the instrument calibration achieves a positional stability of ∼1 mas over 2″ field of views. We also discuss the SPHERE astrometric strategy, issues encountered in the course of the on-sky operations, and lessons learned for the next generation of exoplanet imaging instruments on the Extremely Large Telescope being built by ESO.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Multi-conjugated adaptive optics (MCAO) is essential for performing astrometry with the Extremely Large Telescope (ELT). Unlike most of the 8-m class telescopes, the ELT will be a fully adaptive telescope, and a significant portion of the adaptive optics (AO) dynamic range will be depleted by the correction and stabilization of the telescope aberrations and instabilities. MCAO systems are of particular interest for ground-based astrometry since they stabilize the low-order field distortions and transient plate scale instabilities, which originate from the telescope and in the instrument. All instruments have several optical elements relatively far away from the pupil that can potentially challenge the astrometric precision of the observations with their residual mid-spatial frequencies errors. Using a combined simulation of ray tracing and AO numerical codes, we assess the impact of these systematic errors at different field-of-view (FoV) scales and fitting scenarios. The distortions have been assessed at different sky position angles (PA) and indicate that over large FoVs only small PA ranges (±1 deg to 3 deg) are accessible with astrometric residuals ≤50 μas. A full compliance with the astrometric requirement, at any PA, is achievable for 2 arc sec2 FoV patches already with a third-order polynomial. The natural partition of the optical system into three segments, i.e., the ELT, the MAORY MCAO module, and the MICADO instrument, resembles a splitting of the astrometric problem into the three subsystems that are characterized by different distortion amplitudes and calibration strategies. The result is a family portrait of the different optical segments with their specifications, dynamic motions, conjugation height, and AO correctability, leading to tracing their role in the bigger puzzle of the 50-μas as astrometric endeavor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Keck Planet Imager and Characterizer (KPIC) is a purpose-built instrument to demonstrate technological and instrumental concepts initially developed for the exoplanet direct imaging field. Located downstream of the current Keck II adaptive optic (AO) system, KPIC contains a fiber injection unit (FIU) capable of combining the high-contrast imaging capability of the AOs system with the high dispersion spectroscopy capability of the current Keck high resolution infrared spectrograph (NIRSPEC). Deployed at Keck in September 2018, this instrument has already been used to acquire high-resolution spectra (R > 30,000) of multiple targets of interest. In the near term, it will be used to spectrally characterize known directly imaged exoplanets and low-mass brown dwarf companions visible in the northern hemisphere with a spectral resolution high enough to enable spin and planetary radial velocity measurements as well as Doppler imaging of atmospheric weather phenomena. Here, we present the design of the FIU, the unique calibration procedures needed to operate a single-mode fiber instrument and the system performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The next generation Extremely Large Telescopes (ELTs) are promising a profound transformation of humanity’s understanding of the universe by opening our eyes to a myriad of previously unseen astronomical objects across cosmic space time. Some of the key observational contributions to this transformation will, once again, be made through large-scale ultradeep spectroscopic surveys. Such surveys will call for a wide-field system to expand field of view and correct atmospheric dispersion beyond what an uncorrected ELT is canonically capable of. Although the traditional monolithic form of field correctors served our needs very well on 2- to 8-m class telescopes, we recognize challenges around scaling this traditional design to the ELT level, and hence, as detailed here, present a fundamentally different architecture, called the arrayed wide-field astronomical corrector system or AWACS, for the ELTs of two-mirror construction. The AWACS accomplishes field expansion via an array of small units populated over a telescope’s focal surface, compensating for field aberrations and atmospheric dispersion locally but simultaneously. The AWACS units share one common electro-opto-mechanical design, permitting cost-effective high-volume part manufacturing. We detail the architectural features and proof-of-concept on-sky demonstration of the AWACS. In addition, we highlight our recent development results of randomly nano-textured antireflective (AR) surface structures in terms of an immediately viable, super-broadband, high-performance AR solution for not only the AWACS optics, but also broader ranges of electro-optical devices, particularly those subjected to harsh environments such as high-power laser, cryogenic, and space systems. With continuous advances in other relevant fields, the AWACS is uniquely positioned to enable, either by itself or by complementing traditional correctors, wide-field multi-object spectroscopic surveys in the ELT era and beyond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Spectrographs nominally contain a degree of quasistatic optical aberrations resulting from the quality of manufactured component surfaces, imperfect alignment, design residuals, thermal effects, and other other associated phenomena involved in the design and construction process. Aberrations that change over time can mimic the line centroid motion of a Doppler shift, introducing radial velocity (RV) uncertainty that increases time-series variability. Even when instrument drifts are tracked using a precise wavelength calibration source, the barycentric motion of the Earth leads to a wavelength shift of stellar light, which causes a translation of the spectrum across the focal plane array by many pixels. The wavelength shift allows absorption lines to experience different optical propagation paths and aberrations over observing epochs. We use physical optics propagation simulations to study the impact of aberrations on precise Doppler measurements made by diffraction-limited, high-resolution spectrographs. Using the optical model of the iLocater spectrograph, we quantify the uncertainties that cross-correlation techniques introduce in the presence of aberrations and barycentric RV shifts. We find that aberrations that shift the point-spread-function photocenter in the dispersion direction, in particular primary horizontal coma and trefoil, are the most concerning. To maintain aberration-induced RV errors <10 cm / s, phase errors for these particular aberrations must be held well below 0.05 waves at the instrument operating wavelength. Our simulations further show that wavelength calibration only partially compensates for instrumental drifts, owing to a behavioral difference between how cross-correlation techniques handle aberrations between starlight versus calibration light. Identifying subtle physical effects that influence RV errors will help to ensure that diffraction-limited planet-finding spectrographs are able to reach their full scientific potential.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Full-sun Ultraviolet Rocket SpecTrograph (FURST) is a sounding rocket designed to acquire the first full-disk integrated high resolution vacuum ultraviolet (VUV) spectra of the Sun. The data enable analysis of the Sun comparable to stellar spectra measured by astronomical instruments such as those on board the Hubble Space Telescope. The mission is jointly operated by teams at Montana State University (MSU), developing the instrument, and Marshall Space Flight Center (MSFC), developing the camera and calibration systems, and is scheduled to launch from White Sands Missile Range, New Mexico, in 2022. This mission requires the development of a pre- and post-launch calibration plan for absolute radiometric and wavelength calibration to reliably generate Hubble analogue spectra. Absolute radiometric calibration, though initially planned to be performed at the National Institute for Standards and Technology (NIST) calibration facilities, is now planned to be completed with a portable VUV calibration system provided by MSFC, due to instrument incompatibilities with NIST infrastructure. The portable calibration system is developed to provide absolute wavelength calibration and track changes in calibration over the duration of the mission. The portable calibration system is composed mainly of a VUV collimator equipped with an extreme ultraviolet line source and calibrated photodiodes. The calibration system is developed to accommodate both repeatable wavelength and radiometric testing of the FURST instrument at various test sites before and after launch. Presented here are the requirements, design, and implementation of this portable calibration system with a focus on those features most significant to radiometric measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
X-ray silicon-on-insulator (SOI) pixel sensors, “XRPIX,” are being developed for the next-generation x-ray astronomical satellite, “FORCE.” The XRPIX is fabricated with the SOI technology, which makes it possible to integrate a high-resistivity Si sensor and a low-resistivity Si complementary metal oxide semiconductor (CMOS) circuit. The CMOS circuit in each pixel is equipped with a trigger function, allowing us to read out outputs only from the pixels with x-ray signals at the timing of x-ray detection. This function thus realizes high throughput and high time resolution, which enables to employ anti-coincidence technique for background rejection. A new series of XRPIX named XRPIX6E developed with a pinned depleted diode (PDD) structure improves spectral performance by suppressing the interference between the sensor and circuit layers. When semiconductor x-ray sensors are used in space, their spectral performance is generally degraded owing to the radiation damage caused by high-energy protons. Therefore, before using an XRPIX in space, it is necessary to evaluate the extent of degradation of its spectral performance by radiation damage. Thus, we performed a proton irradiation experiment for XRPIX6E for the first time at Heavy Ion Medical Accelerator in Chiba in the National Institute of Radiological Sciences. We irradiated XRPIX6E with high-energy protons with a total dose of up to 40 krad, equivalent to 400 years of irradiation in orbit. The 40-krad irradiation degraded the energy resolution of XRPIX6E by 25 ± 3 % , yielding an energy resolution of 260.1 ± 5.6 eV at the full-width half maximum for 5.9 keV X-rays. However, the value satisfies the requirement for FORCE, 300 eV at 6 keV, even after the irradiation. It was also found that the PDD XRPIX has enhanced radiation hardness compared to previous XRPIX devices. In addition, we investigated the degradation of the energy resolution; it was shown that the degradation would be due to increasing energy-independent components, e.g., readout noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
TOPICS: Calibration, Space operations, Databases, System on a chip, X-rays, Data processing, Data archive systems, Source mask optimization, X-ray imaging, Pulmonary function tests
X-Ray Imaging and Spectroscopy Mission (XRISM) is an x-ray astronomical mission led by the Japan Aerospace Exploration Agency (JAXA) and National Aeronautics and Space Administration (NASA), with collaboration from the European Space Agency (ESA) and other international participants, that is planned for launch in 2022 (Japanese fiscal year), to quickly restore high-resolution x-ray spectroscopy of astrophysical objects using the microcalorimeter array after the loss of Hitomi satellite. In order to enhance the scientific outputs of the mission, the Science Operations Team (SOT) is structured independently from the Instrument Teams (ITs) and the Mission Operations Team. The responsibilities of the SOT are divided into four categories: (1) guest observer program and data distributions, (2) distribution of analysis software and the calibration database, (3) guest observer support activities, and (4) performance verification and optimization activities. Before constructing the operations concept of the XRISM mission, lessons on the science operations learned from past Japanese x-ray missions (ASCA, Suzaku, and Hitomi) are reviewed, and 15 kinds of lessons are identified by categories, such as lessons on the importance of avoiding non-public (“animal”) tools, coding quality of public tools in terms of the engineering viewpoint and calibration accuracy, tight communications with ITs and operations teams, and well-defined task division between scientists and engineers. Among these lessons, (a) the importance of early preparation of the operations from the ground stage, (b) construction of an independent team for science operations separate from the instrument development, and (c) operations with well-defined duties by appointed members are recognized as key lessons for XRISM. Based on this, (i) the task division between the mission and science operations and (ii) the subgroup structure within the XRISM Team are defined in detail as the XRISM operations concept. Based on this operations concept, the detailed plan of the science operations is designed as follows. The science operations tasks are shared among Japan, the USA, and Europe and are performed by three centers: the Science Operations Center (SOC) at JAXA, the Science Data Center (SDC) at NASA, and European Space Astronomy Centre (ESAC) at the ESA. The SOT is defined as a combination of the SOC and SDC. The SOC is designed to perform tasks close to the spacecraft operations, such as spacecraft planning of science targets, quick-look health checks, and prepipeline data processing. The SDC covers tasks regarding data calibration processing (pipeline processing) and maintenance of analysis tools. The data-archive and user-support activities are planned to be covered both by the SOC and SDC. Finally, the details of the science operations tasks and the tools for science operations are defined and prepared before launch. This information is expected to be helpful for the construction of science operations of future x-ray missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Future, large-scale, exoplanet direct-imaging missions will be capable of discovering and characterizing Earth-like exoplanets. These mission designs can be evaluated using completeness, the fraction of planets from some population that are detectable by a telescope at an arbitrary observation time. However, the original formulation of completeness uses instrument visibility limits and ignores additional integration time and planetary motion constraints. Some of the sampled planets used to calculate completeness may transit in and out of an instrument’s geometric and photometric visibility limits while they are being observed, thereby causing the integration time agnostic calculation to overestimate completeness. We present a method for calculating completeness that accounts for the fraction of planets that leave the visibility limits of the telescope during the integration time period. We define completeness using the aggregate fraction of an orbital period during which planets are detectable, calculated using the specific times that planets enter and leave an instrument’s visibility limits and the integration time. To perform this calculation, we derive analytical methods for finding the planet-star projected separation extrema, times past periastron that these extrema occur, and times past periastron that the planet-star projected separation intersects a specific separation circle. We also provide efficient numerical methods for calculating the planet-star difference in magnitude extrema and times past periastron corresponding to specific values Δmag. Our integration time adjusted completeness shows that, for a planned star observation at 25 pc with 1-day and 5-day integration times, integration time adjusted completeness of Earth-like planets is reduced by 1% and 5% from the integration time agnostic completeness, respectively. Integration time adjusted completeness calculated in this manner also provides a computationally inexpensive method for finding dynamic completeness—the completeness change on subsequent observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Data and Instrumentation Analysis Techniques and Methods
TOPICS: Signal to noise ratio, Charge-coupled devices, Autoregressive models, Stars, Electron multiplying charge coupled devices, Cameras, Radon, Optimization (mathematics), Telescopes, Control systems
We present the optimization method for the electron multiplying charge coupled devices of the acquisition system of the SPARC4 (OMASS4). The OMASS4 uses as figures of merit the signal-to-noise ratio (SNR) and the acquisition rate (AR) as a function of the operation mode of the CCDs. Three different modes of optimization are included in the OMASS4: (1) optimization of SNR only; (2) optimization of AR only; and (3) optimization of both SNR and AR simultaneously. The first two modes calculate an analytical maximization of the cost function, whereas the third mode uses the Bayesian optimization method to determine the optimum mode of operation. We apply the OMASS4 to find the optimum mode for observations obtained at the Pico dos Dias Observatory, Brazil and compare the delivered modes of operation and its performance with the ones adopted by the observer. If the OMASS4 had been used as a tool to optimize the CCDs in all of these nights, it would be possible to improve their efficiency in 97.17%, 65.08%, and 77.66% for the optimization modes 1, 2, and 3, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Astronomical spectropolarimeters require high accuracy polarizers with large aperture and stringent uniformity requirements. In solar applications, wire grid polarizers are often used as performance is maintained under high heat loads and temperatures over 200°C. DKIST is the NSF’s new 4-m aperture solar telescope designed to deliver accurate spectropolarimetric solar data across a wide wavelength range, covering a large field of view simultaneously using multiple facility instruments. Polarizers at 120 mm diameter are used to calibrate DKIST instruments but vary spatially in transmission, extinction ratio, and orientation of maximum extinction. We combine new spatial and spectral metrology for polarizers and retarders to simulate the accuracy losses with field angle and wavelength caused simultaneously by spatial variation of several optical parameters including beam decenter from misalignments. We also present testing of a new crystal sapphire substrate polarizer designed and fabricated to improve DKIST long wavelength calibrations. We assess spatial thickness variation of sapphire and fused silica wafer substrates using spectral interference fringes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
TOPICS: Solar telescopes, Solar radiation models, Thermal modeling, Control systems, Mathematical modeling, Solar radiation, Temperature metrology, Temperature sensors, Telescopes, Solar energy
Thermal control system is one of the most important components of large ground-based solar telescope. Heat-stop is one of the key components for controlling thermal effects for a large solar telescope, which reflects over 95% of solar radiation protecting the relay optics and post-focus instruments. Meanwhile, a part of solar radiation has also converted into thermal energy, which will lead to internal seeing effect. Thus, the thermal control for heat-stop is a necessary work. We deduce a mathematical model to express the relationship between thermal response of heat-stop and its structure design, ambient environment, and coolant input. We also experimentally validate the feasibility of the proposed method based on the Chinese Large Solar Telescope, which is the largest solar telescope in China. The experimental results show that the temperature difference between the experimental results and calculated results based the proposed model is <2 ° C. Moreover, the temperature difference between the surface temperature of the heat-stop and the ambient temperature can satisfy thermal control requirement of ±5 ° C. Therefore, it can be verified that our model is correct and consistent with the actual situation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Here, we describe an implementation of an electron-multiplying charge-coupled device camera to search for seismological activity in white dwarfs (WD). The equipment was installed on the 2.12-m telescope at the Observatorio Astronómico Nacional San Pedro Mártir, Baja California, México. We have determined the proper operational regime to keep a very low noise while maintaining a high gain. We have also developed software for the instrument control system and data processing. Finally, we report the first results on the seismological activity of WD, obtained using photometry with one-second exposure. The results were compared to the known variables LAMOST J004628.31 + 343319.90 and GD 66. The WD 2255-001 showed very weak periodic activity with a dominant frequency of 67 mHz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the precise wavelength calibration of a high-resolution spectrum using uranium (U) lines in the wavelength range of 3809 to 6833 Å for precision radial velocity (RV) measurements for exoplanet detection or related astrophysical sciences. We identify 1540 well-resolved U lines from a high-resolution (R = 67 , 000) spectrum of the uranium-argon hollow cathode lamp (UAr HCL) using PARAS spectrograph in the aforesaid wavelength range. We calculate the neutral and first allowed transitions (Ritz wavelength) of U from its known energy levels and compare them with our observed central wavelengths. We measure an offset of −0.15 mÅ in our final U line list. The line list has an average measurement uncertainty of 15 ms − 1 (0.013 pixels or 0.28 mÅ). We included these lines to the PARAS data analysis framework to perform the wavelength calibration and then calculate the multi-order RV of PARAS spectra. The typical dispersion of residuals around the wavelength solution of a UAr spectrum, using U lines, is found to be 0.8 mÅ (∼45 m s − 1). With the use of this line list, we present our results for the precision RV of an on-sky source (an RV standard star) and an off-sky source (an HCL) observed with PARAS along with UAr HCL. We measure the dispersion in absolute drift difference between two fibers (inter-fiber drift) for a span of 6.5 h to be 88 cm s − 1, and the RV dispersion (σRV) for an RV standard star, HD55575 over the course of ∼450 days to be 3.2 m s − 1. These results are in good agreement with the previous ones measured using the ThAr HCL. It proves that the ThAr HCL with ∼99 % pure-Th is replaceable with the UAr HCL for the wavelength calibration of the high-resolution spectrographs such as PARAS (R ≤ 67,000) to achieve an RV precision of 1 to 3 m s − 1 in the visible region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Jessica Krick, Patrick Lowrance, Sean Carey, Jason Surace, Carl Grillmair, Seppo Laine, Schuyler Van Dyk, James Ingalls, Matthew L. Ashby, Steven Willner
We investigate differences in Spitzer/IRAC 3.6 and 4.5 μm photometry that depend on observing strategy. Using archival calibration data, we perform an in-depth examination of the measured flux densities (fluxes) of 10 calibration stars, observed with all the possible observing strategies. We then quantify differences in the measured fluxes as a function of (1) array mode (full or subarray), (2) exposure time, and (3) dithering versus staring observations. We find that the median fluxes measured for sources observed using the full array are 1.6% and 1% lower than those observed with the subarray at [3.6] and [4.5], respectively. In addition, we found a dependence on the exposure time such that for [3.6] observations, the long frame times are measured to be lower than the short frame times by a median value of 3.4% in full array and 2.9% in subarray. For [4.5] observations, the longer frame times are 0.6% and 1.5% in full and subarray, respectively. These very small variations will likely only affect science users who require high-precision photometry from multiple different observing modes. We find no statistically significant difference for fluxes obtained with dithered and staring modes. When considering all stars in the sample, the fractional well depth of the pixel is correlated with the different observed fluxes. We speculate the cause to be a small nonlinearity in the pixels at the lowest well depths where deviations from linearity were previously assumed to be negligible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Wavefront Sensing, Active and Adaptive Optics, and Control Systems
The MagAO-X instrument is an extreme adaptive optics system for high-contrast imaging at visible- and near-infrared wavelengths on the Magellan Clay Telescope. A central component of this system is a 2040-actuator microelectromechanical deformable mirror (DM) from Boston Micromachines Corp. that operates at 3.63 kHz for high-order wavefront control (the tweeter). Two additional DMs from ALPAO perform the low-order (the woofer) and non-common-path science-arm wavefront correction (the NCPC DM). Prior to integration with the instrument, we characterized these devices using a Zygo Verifire Interferometer to measure each DM surface. We present the results of the characterization effort here, demonstrating the ability to drive the tweeter to a flat of 6.9 nm root-mean-square (RMS) surface (and 0.56 nm RMS surface within its control bandwidth), the woofer to 2.2-nm RMS surface, and the NCPC DM to 2.1-nm RMS surface over the MagAO-X beam footprint on each device. Using focus-diversity phase retrieval on the MagAO-X science cameras to estimate the internal instrument wavefront error, we further show that the integrated DMs correct the instrument WFE to 18.7 nm RMS, which, combined with a 11.7% pupil amplitude RMS, produces a Strehl ratio of 0.94 at Hα.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Current and future high-contrast imaging instruments require extreme adaptive optics systems to reach contrasts necessary to directly imaged exoplanets. Telescope vibrations and the temporal error induced by the latency of the control loop limit the performance of these systems. One way to reduce these effects is to use predictive control. We describe how model-free reinforcement learning can be used to optimize a recurrent neural network controller for closed-loop predictive control. First, we verify our proposed approach for tip–tilt control in simulations and a lab setup. The results show that this algorithm can effectively learn to mitigate vibrations and reduce the residuals for power-law input turbulence as compared to an optimal gain integrator. We also show that the controller can learn to minimize random vibrations without requiring online updating of the control law. Next, we show in simulations that our algorithm can also be applied to the control of a high-order deformable mirror. We demonstrate that our controller can provide two orders of magnitude improvement in contrast at small separations under stationary turbulence. Furthermore, we show more than an order of magnitude improvement in contrast for different wind velocities and directions without requiring online updating of the control law.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.