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ABSTRACT
In ultrasound tomography the time-domain moment method is very promising in that it has been shown to
yield a close agreement between the time-spatial moment expansion and the true field representation. This
paper introduces a numerical technique to compute the analytical solution for forward scattering by using a
Bessel function series and the inverse discrete Fourier transform, and shows that the artifacts that occur are
due to convolution aliasing and undersampling aliasing. Computer simulation has reconstructed these two
types of aliasing separately, and has shown that they can be removed by a properly designed algorithm. This
alias-free numerical solution is used to verify Cavicchi’s moment-method formulation. A significant improve-
ment in numerical verification is then obtained. © 1996 Society of Photo-Optical Instrumentation Engineers.
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1 INTRODUCTION
Ultrasonic diffraction tomography, still in its re-
search stages, is a computed imaging technique for
identifying the interaction between an incident field
and scattered objects. In medical imaging applica-
tions, the ultrasound inverse scattering procedure
has been studied intensively in the frequency do-
main in the past two decades.1–2 However, phase
wrapping has been proven to be a fundamental
problem in these approaches: when the phase dif-
ferences between waves propagating through a
relatively homogeneous medium and those propa-
gating through the strong scatterer exceed 6p, the
information required to reconstruct the scatterer is
lost. Consequently, the time-domain moment
method introduced recently by Cavicchi appears to
be very promising because it is a nonlinear higher-
order inverse scattering procedure that inherently
retains all information in the field representation.3

Some preliminary numerical studies based on
Cavicchi’s discrete time-spatial expansion of the
acoustic inhomogeneous wave equation have
shown good agreement between the temporal-
moment method approximation and the ‘‘true’’ so-
lution for forward scattering, in which the agree-
ment between these two solutions was measured
by the average inner product (perfect alignment
yields a value of 1). By closely investigating the
data, we found that the lack of perfect agreement in
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the computer simulations, with average inner prod-
uct values of 0.8 to 0.9, was mainly due to distor-
tions in the numerical ‘‘true’’ field representation.4

The primary purpose of this paper is to show that
two sources of aliasing contribute to this distortion.
One source is due to the use of circular convolution
when in fact linear convolution is required, and the
other is due to undersampling in the frequency do-
main when the Bessel function series discretization
is used. The underlying mathematics will be re-
viewed in Sec. 2. In Sec. 3, a computer simulation
procedure is presented to reconstruct these two dif-
ferent aliasing effects separately to verify that the
ripples observed ahead of the wavefront are due to
aliasing, and to show that the artifacts can be re-
moved by a well-designed algorithm. Also in Sec. 3,
the beneficial effects of these corrections will be
demonstrated by showing that the alias-free nu-
merical representation of the ‘‘true’’ field leads to a
better agreement with the moment method ap-
proximation. Some conclusions will be presented in
Sec. 4.

2 MATHEMATICAL BACKGROUND
Consider two-dimensional forward scattering. Let
the total field strength and the scattered field
strength at position (x ,y) and time t be represented
by the scalar functions p tot(x ,y ,t) and psc(x ,y ,t), re-
spectively. According to scalar diffraction theory,
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the wave propagation must satisfy the time-
dependent linear inhomogeneous lossless scalar
wave equation
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at each source-free point, where c0 is the free-space
speed of sound, and c(x ,y) is the spatially varying
speed of sound. The relation [Eq. (1)] is known as
the Helmholtz equation. By applying Green’s func-
tion, the theoretical solution to the above equation
is given by the Lippmann-Schwinger equation:3,5
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where G(.) is Green’s solution given by
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and H(.) is the Heaviside step function. Under the
time-spatial moment method expansion, Eq. (2) can
be rewritten as4,6
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and p inc is the incident field, Dt is the temporal
sampling interval, Nxy denotes the total number of
pixels along either the x or y axis, Nf denotes the
size of filter window, If is the integration of the
basis function f against the Heaviside step func-
tion, and hf(m) is a second-order digital differential
filter. Let p inc be expressed by
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where the matrix elements Ai ,j are required to sat-
isfy the matrix equation

pinc5A•ptot. (7)

Then, mathematically, the transient response p tot

can be obtained from information of If , c(x ,y) and
p inc. Based on the same field expansions, an itera-
tive inverse scattering procedure for reconstructing
the scatterer is very desirable.
In the test case of the scattering inside and out-

side an infinite-length circular cylinder, an indepen-
dent analytical ‘‘true’’ solution is numerically syn-
thesized by first calculating the impulse response of
the scattered field from the well-known Bessel func-
tion series solution, and then applying the inverse
discrete Fourier transform (IDFT) in the light of the
actual incident field. Let the incident field be a
Gaussian-damped sinusoidal plane wave given by
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with its DFT representation

pd
inc~k !5 (

n50

Nt21

pinc~nDt !exp~2j2pnk/Nt!, (9)

and let the sampled Fourier representation of the
Bessel function series solution be given by4,7
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Then, from the Fourier convolution theorem, the
temporal scattered field can be calculated through
the IDFT operation given by:
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Note that a result similar to Eq. (10) appears in Ref.
6, but it is for a cylindrical incident wave and is in
terms of a polar coordinator system. Also, in Cav-
icchi’s paper,3 Eq. (A15) is missing the factor (Dt)−1

and Eq. (A10) has an erroneous expression. From
signal processing theory, this discrete solution is of
course subject to the aliasing effects of undersam-
pling (determined by Dt or DV) and the smearing
effects of windowing (determined by Nt).

3 SIMULATION AND ANALYSIS
Our simulation study and aliasing analysis of the
test case included Cavicchi’s moment method ap-
proximation, the numerical ‘‘true’’ field representa-
tion, and the alias-free numerical verification. The
parameter setup was the same as Cavicchi’s3,6:
V0=1.0M Hz, s=2.0 mm, a=1.5 mm, c1=0.5 mm/ms,
c0=1.0 mm/ms, fs=19 M Hz, Nxy=64, Nt=256, and
Dl=2.0 c0Dt . For simplicity, a three-point central
differential approximation is currently used to
implement the second-order digital differential fil-
ter hj(m), and If is specified as
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The total field values p tot=p inc+psc from the mo-
ment method expansion were compared with the
numerical ‘‘true’’ solution in terms of spatially nor-
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malized inner products in order to evaluate the de-
gree of agreement, where the spatially normalized
inner product is defined by
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For our test experiment, the average inner product
values are 0.876 and 0.924 at two different time
snapshots. These values indicate less than perfect
alignment. Figure 1 shows the ‘‘true’’ total field
representation in which some ripples due to alias-
ing effects are noticeable ahead of the wavefront.
To identify the aliasing sources, we consider the

complete computational procedure for obtaining
the ‘‘true’’ scattered field. From digital signal pro-
cessing theory, Eq. (14) can be rewritten as
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Fig. 1 Numerical ‘‘true’’ field representation at time snapshot
t0175D t. The incident field is a Gaussian-damped sinusoid spatial
plane wave pulse propagating into the cross section of the cylinder
object from the left to the right (along the x axis). The ripples no-
ticeable ahead of the wavefront clearly indicate the effects of alias-
ing.
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Hence, this multiple reflection scattering clearly in-
dicates that two sources of aliasing need to be taken
into account, namely, undersampling aliasing and
circular convolution aliasing. In Eq. (15) the fre-
quency representation of the scattered field in-
cludes two components: the impulse response
pi
sc(x ,y ,k), which is directly sampled from a
continuous-frequency signal, and the incident field
pd
inc(k), which is the DFT of a continuous-time sig-
nal. Undersampling aliasing in both the time and
frequency domains may be introduced if the
Heisenberg uncertainty constraint on the sampling
resolution in the time and frequency domains is not
satisfied.7 In addition, from direct application of the
IDFT given by Eq. (14), circular convolution alias-
ing may occur in the scattered field psc(x ,y ,n) be-
cause, in fact, linear convolution is required.
Figure 2 shows both circular-convolution aliasing

and undersampling aliasing effects as a function of
time at a fixed spatial position. We designed an al-
gorithm to reconstruct and remove these two alias-
ing effects separately and thereby obtain a clean
‘‘true’’ field representation. The basic principle is

Fig. 2 Alias-response signal at a fixed spatial position as a func-
tion of time in a temporal window (Nt=256). The multiple
reflections of the scattering field in this diffraction case are clearly
observed. With a relation to the spatial domain, aliasing can be
detected in the time domain.
that, for reconstructing undersampling aliasing, we
use zero padding to eliminate the effect of circular-
convolution aliasing so that the mislocations of the
impulse response can be clearly detected; on the
other hand, for reconstructing circular-convolution
aliasing, we first open a window in the time do-
main sufficiently wide to include all significant re-
flection pulses, and then apply circular convolution
to the window used previously.8 Figure 3 shows the
undersampling aliasing effect where some reflec-
tion signals have been relocated ahead of the main
scattering, and Figure 4 shows that circular convo-
lution generates additional aliasing effects. Figure 5
shows the clean signal obtained by jointly imposing
critical-sampling constraints (satisfying the Heisen-
berg uncertainty constraint when the maximum fre-
quency value is given) and using a zero-padding
technique.
By using our alias-free ‘‘true’’ field data, a new

numerical verification for the Cavicchi’s moment
method expansion has shown a better agreement
with higher inner-product values of 0.934 and 0.936
at the corresponding time snapshots, respectively.
Figure 6 illustrates the alias-free scattered field that
served as a reference for our verification.

4 CONCLUSION
In this paper, we designed and proposed an algo-
rithm so that an alias-free numerical ‘‘true’’ field
representation can be efficiently calculated to verify
the time-domain moment method in ultrasound to-
mography. We presented a general form for nu-
merical implementation of the scattered field in
terms of a triple convolution computation [Eq. (18)],

Fig. 3 Reconstructed-response signal with only undersampling
aliasing.
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and a new formulation of the discrete Bessel func-
tion series solution for a plane wave response in a
rectangular coordinate system [Eqs. (10) to (13)].
Using both theoretical analysis and computer simu-
lations, we determined that the previous less than
perfect agreement (with the average inner-product
range of 0.8 to 0.9) in numerical verification was
mainly due to the effects of undersampling aliasing
and circular-convolution aliasing in the ‘‘true’’ scat-

Fig. 4 Reconstructed-response signal with only convolution alias-
ing.

Fig. 5 Clean-response signal without aliasing generated by the
well-designed new algorithm, where critical-sampling and zero-
padding techniques are jointly imposed.
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tered field representation. This result has led to a
new artifact-free algorithm and has shown signifi-
cant improvement in numerical verification by pro-
viding a higher average inner-product value of
0.94. Our analysis technique not only supports Cav-
icchi’s time-domain moment method expansion ap-
proach, but is also of great practical importance for
confidently evaluating the performances of other
new algorithms, such as the quantum mechanics in-
verse method,9 without the Born approximation.
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