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Abstract. In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemo-
globin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert
Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-
dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical sys-
tems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously
estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared
with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct
for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental
CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p < 0.001). The
cross-correlations among residuals at different wavelengths were found to be significantly reduced by the EKF
method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz
and 0.4 to 2.0 Hz (p < 0.001). This observed reduction in residual cross-correlation is consistent with reduced
cross-talk error in the hemodynamic estimates from the proposed EKF method. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.5.056001]
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1 Introduction
In functional near-infrared spectroscopy (fNIRS) studies, cer-
ebral blood volume and blood oxygenation changes are studied
as indicators of brain activity. Hemodynamics are quantified
based on localized changes in the concentrations of oxyhemo-
globin (HbO) and deoxyhemoglobin (HbR). Three different
classes of NIRS instrumentation are used to measure cerebral
hemodynamics, and each have certain advantages and disadvan-
tages. Time-domain NIRS (TD) and frequency domain NIRS
(FD) are capable of providing absolute quantification of hemo-
dynamics.1–3 TD provides superior depth resolution by tracking
the time of flight of photons.4 However, the complexity of TD
and FD systems make them more costly for scale up to high-
density measurement probes5 and whole head neuroimaging.6

The instrument of choice for high-density neuroimaging appli-
cations with NIRS is continuous-wave (CW).

With CW-NIRS systems, the attenuation of light is measured
at multiple wavelengths between source and detector optodes
that are separated by a few centimeters on the scalp. The change
in light absorption or optical density ΔODλ for a given wave-
length, λ, is the negative logarithm of the ratio of the detected
light at a given time t2 relative to the detected light at a reference
time t1

ΔODλ ¼ −log10

�
Iðt2Þ
Iðt1Þ

�
: (1)

Changes in HbO and HbR can be calculated by solving a set
of linear equations based on the modified Beer-Lambert Law
(MBLL):7

ΔODλ ¼ εHbO;λ ·DPFλ · d ·ΔHbOþ εHbR;λ ·DPFλ · d ·ΔHbR;
(2)

where ΔHbO and ΔHbR represent changes in concentration of
HbO and HbR, respectively, and εHbO;λ and εHbR;λ are the molar
extinction coefficients that specify how strongly HbO and HbR
absorb light at a given wavelength. The product DPFλ · d is the
mean optical path length, where d is the source-detector sepa-
ration distance and DPFλ is the wavelength-dependent differen-
tial path length factor. DPFλ effectively scales the linear distance
between the source and detector optodes to account for the
increased distance that light travels due to scattering and absorp-
tion effects within the tissue.

Unlike TD or FD, CW-NIRS cannot be used to determine
DPFλ. Typically, the assumed DPFλ values used in CW-NIRS
analysis are obtained from prior studies of healthy subjects
and range from three to six.2,8 However, DPFλ can vary between
subjects due to differences in the anatomical structure and tissue
composition of the brain. Morphological changes in the brain
induced by aging or neurological disorders can affect the optical
properties of brain tissue, altering DPFλ values.9 Furthermore,
DPFλ used in the MBLL is assumed constant for a specific
wavelength and cannot account for partial volume effects that
arise from assuming global changes in the concentrations of
HbO and HbR in a brain volume consisting of multiple layers
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of tissue.10 Studies have shown that skull thickness and the cer-
ebrospinal fluid (CSF) in the head can affect the mean optical
path length and hence DPFλ values.11,12 The reason this is a
problem is that systematic errors in DPFλ lead to systematic
errors in the quantification of cerebral oxygenation levels. In
this work, we propose a method for calculating changes in
the concentration of HbO and HbR while continuously cor-
recting for systematic errors in DPFλ.

2 Theoretical Formalism
CW-NIRS is an increasingly important tool for clinical monitor-
ing and for diagnosis of neurological disorders. However, DPFλ
values cannot be known in advance in such patients. Efforts have
been made to estimate mean optical path lengths in infants13

as well as in patients undergoing cardiopulmonary bypass.14

Having knowledge of DPFλ values significantly improves
the accuracy of calculated cerebral hemodynamics, which are
important in the clinical evaluation of patients with stroke or
brain injury.15,16

When inaccurate DPFλ values are used in the MBLL, the
calculated concentration changes in ΔHbO and ΔHbR become
inaccurate in two ways. The first type of inaccuracy is a loss of
the absolute scale on the results; the second type of inac-
curacy is called cross talk, which is when ΔHbO become con-
taminated by ΔHbR and vice versa. From a mathematical
perspective, the errors C in ΔHbO and ΔHbR are given by:

CΔHbO ¼ ΔHbO − ΔHbO� (3)

CΔHbR ¼ ΔHbR − ΔHbR�; (4)

where ΔHbO and ΔHbR represent solutions obtained from
using inaccurate DPFλ values, and the exact solutions that
would have been obtained from using the correct DPFλ values
areΔHbR� andΔHbR�. Scale errors arise when theDPFλ values
are systematically too high or too low due to a multiplicative
scale factor S and cross-talk errors arise when the DPFλ values
are shifted relative to one another due to an offset term ΔDPFλ:

DPF�λ ¼ SðDPFλ − ΔDPFλÞ: (5)

Pure scale errors result when S ≠ 1 and pure cross talk errors
occur when S ¼ 1 and ΔDPFλ ≠ 0 for all but one of the wave-
lengths. In NIRS spectroscopic calculations involving multiple
wavelengths, the errors C in ΔHbO and ΔHbR can be computed
as:

C ¼
�
CΔHbO
CΔHbR

�
¼ ½A† − A�†�Y; (6)

where Y is a vector containing ΔODλ measurements and A† and
A�† are the Moore–Penrose pseudoinverses. The matrix A con-
taining inaccurate path lengths is defined as:

A ¼

2
66664

Lλ1 0 : : : 0

0 Lλ2
..
.

..

. . .
.

0

0 : : : 0 LλN

3
77775

2
66664

εΔHbO;λ1 εΔHbR;λ1
εΔHbO;λ2 εΔHbR;λ2

..

. ..
.

εΔHbO;λN εΔHbR;λ2

3
77775 ¼ LE;

(7)

which is composed of a diagonal path length matrix L and a
matrix of extinction coefficients E. The accurate model matrix
A� is composed of scalar factor S, a diagonal matrix (Lþ ΔL)
and the matrix E, where ΔL contains the offset terms for all
but the N’th mean optical path length. The scalar factor and
offset terms fully account for the inaccurately assumed DPFλ
values:

A� ¼ SðLþ ΔLÞE; (8)

ΔL ¼

2
66664

ΔLλ1 0 · · · 0

0 ΔLλ2
..
.

..

. . .
.

0

0 · · · 0 ΔLλN

3
77775; (9)

where ΔLλN ¼ 0 so that the scale error and cross-talk error
effects are separable. The objective of the present work is to
reduce the cross talk errors in ΔHbO and ΔHbR using an algo-
rithm that can continuously correct for offsets in DPFλ during
CW-NIRS spectroscopic calculations. Scale factor errors cannot
be corrected by the proposed method.

Several methods based on numerical and analytical
approaches are already available for calculating DPFλ in
simulation. These methods typically rely on modeling light
transport in the head using the radiative transport equation
(RTE). The diffusion equation, which is derived from the P1

approximation to the RTE17,18 can accurately describe photon
transport in a highly scattering medium. However, in a low
scattering media like CSF, the diffusion approximation does
not hold. Analytical solutions to the diffusion equation,
which can be obtained for simple geometries19 are difficult to
solve in complex geometries like the head. Instead, numerical
approaches like the finite element method (FEM) are preferred.
Another numerical approach is the FEM based Monte Carlo
(MC) technique.20–22 Although computationally expensive,23

FEM based MC has the advantage that it can handle complex
geometries like the head and can be used to solve the full RTE.
The major disadvantages of simulation approaches to calculat-
ing DPFλ values are inaccuracies in FEM representations of
head anatomy and a lack of knowledge of the true optical prop-
erties in the mesh elements. Therefore, DPFλ values obtained
from simulation methods are likely to be different from the
actual values, which can lead to cross-talk error in the calculated
ΔHbO and ΔHbR.10,22,24 This motivates the need for experi-
mental methods of calculating relative DPFλ values from
CW-NIRS data.

In the present work, we focus on calculating relative
offsets in differential path length factors (DPFλ) at wavelengths
of 690, 785, and 830 nm with respect to a DPFλ value at 808 nm
that is held fixed (ΔDPF808 ¼ 0). We apply the extended
Kalman filter (EKF) to calculate the ΔDPFλ values and the
changes in concentration of HbO and HbR. Since ΔDPFλ is
a relative correction, the calculated ΔHbO and ΔHbR are cor-
rected relative to one another but not corrected to absolute
scales. The absolute accuracies of the calculated ΔHbO and
ΔHbR values are determined by the a priori value of DPFλ
at 808 nm.
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3 Dynamic State Estimation Using the EKF
Algorithm

The EKF algorithm operates on a state-space dynamical system
that consists of an observation model and a process model. In
our case, the observation model is based on the MBLL and is
derived by relating ΔODλ to the state variables ΔDPFλ, ΔHbO,
and ΔHbR. The subscripts j and k are introduced in the equa-
tions below to specify the source-detector pair and the discrete
time step, respectively. The MBLL-based observation model in
matrix form is:

Yj;k ¼ Hj;kXj;k þ vj;k: (10)

In Eq. (10), Xj;k is a vector containing state variables that we
want to calculate using the EKF algorithm:

Xj;k ¼

2
66664

ΔHbOj;k

ΔHbRj;k

ΔDPFλ1;j;k
ΔDPFλ2;j;k
ΔDPFλ3;j;k

3
77775: (11)

The measurement transition matrix Hj;k determines the
dynamic characteristics of the model and is formed from
the coefficients of ΔHbO and ΔHbR in the MBLL equation
[Eq. (2)] with the addition of ΔDPFλi ;j;k terms that correspond
to the relative changes in the differential path length factor at
wavelength λi for source-detector pair j and time step k.
ΔDPFλi;j;k is updated at each time step for λi (i ¼ 690, 785,
830) and serves as a correction term for the assumed DPFλi ;j.
Three additional rows are also included in Hj;k so that we
can specify statistical priors on ΔDPFλi ;j;k:

Hj;k ¼

2
666666664

ðDPFλ690;j þ ΔDPFλ690;j;kÞdjελ690;HbO ðDPFλ690;j þ ΔDPFλ690;j;kÞdjελ690;HbR 0 0 0

ðDPFλ785j þ ΔDPFλ785;j;kÞdjελ785;HbO ðDPFλ785;j þ ΔDPFλ785;j;kÞdjελ785;HbR 0 0 0

ðDPFλ830;j þ ΔDPFλ830;j;kÞdjελ830;HbO ðDPFλ830;j þ ΔDPFλ830;j;kÞdjελ830;HbR 0 0 0

DPFλ808jdjελ808;HbO DPFλ808;jdjελ808;HbR 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3
777777775
: (12)

We assume that the expected values of ΔDPFλi;j;k are zero. These priors are incorporated in the measurement
vector Yj;k along with ΔODλi;j;k obtained for i ¼ 690, 785, 808, 830:

Yj;k ¼

2
666666664

ΔODλ690;j;k

ΔODλ785;j;k

ΔODλ830;j;k

ΔODλ808;j;k

0

0

0

3
777777775
: (13)

The observation model [Eq. (10)] contains an observation noise term vj;k, which is assumed to be zero mean white
Gaussian noise (WGN) with covariance Rj:

Rj ¼

2
666666666664

σ2ΔOD;λ690 0 : : : 0

0 σ2ΔOD;λ785

σ2ΔOD;λ830
..
.

σ2ΔOD;λ808
..
.

σ2ΔDPF;R
σ2ΔDPF;R 0

0 : : : 0 σ2ΔDPF;R

3
777777777775

: (14)

The process model describes the dynamics of the state var-
iables and is assumed to be stochastic:

Xj;kþ1 ¼ FjXj;k þ wj;k (15)

Equation (15) contains an innovation term, also known as
process noise, defined in vector wj;k, that is assumed to be
drawn from a zero mean multivariate normal distribution
with covariance Qj:

Qj ¼

2
66666664

σ2ΔHbO 0 · · · 0

0 σ2ΔHbR
..
.

..

.
σ2ΔDPF;Q

σ2ΔDPF;Q 0

0 · · · 0 σ2ΔDPF;Q

3
77777775
:

(16)
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The state transition matrix Fj in Eq. (15) is used to describe
the relationship between the state variables X at time step k and
kþ 1. In our process model, Fj is a 5 by 5 identity matrix.

The input and output state transition matrices Fj and Hj,
along with the output vector Yj;k are used in the EKF algorithm
to estimate the state variables in Xj;k. The EKF performs state
estimation through an iterative prediction-correction scheme. In
the prediction step, the most recent estimated state variables
X̂j;k−1 and error covariance matrix Pj;k−1 are projected forward
in time to compute a predicted or a prior estimate X̂−

j;k at the
current time step k:

X̂−
j;k ¼ FjX̂j;k−1: (17)

The predicted error covariance matrix is given by:

P−
j;k ¼ F 0

jPj;k−1F 0T
j þQj; (18)

where F 0
j is the Jacobian matrix of partial derivatives of Fj with

respect to each of the state variables, and Qj is the process noise
covariance matrix.

In the correction stage, a posterior estimate of the states X̂j;k
is calculated based on a linear combination of the prior estimate
X̂−

j;k and a weighted difference between the predicted measure-
ment HjX̂

−
j;k and the actual measurement Yj;k:

X̂j;k ¼ X̂−
j;k þKj;kðYj;k −HjX̂

−
j;kÞ: (19)

The optimal Kalman gain weighting matrix,Kj;k, is given by:

Kj;k ¼ P−
j;kH

0
j
TðH 0

jP
−
j;k−1H

0
j
T þ RjÞ−1; (20)

where H 0
j is the Jacobian matrix obtained from Hj. A posterior

error covariance matrix, Pj;k is calculated using the predicted
error covariance matrix P−

j;k:

Pj;k ¼ ðI −Kk;jH 0
jÞP−

j;k: (21)

The computed X̂j;k and Pj;k are then used in the next predic-
tor step.

4 Methods

4.1 NIRS Spectroscopic Calculation with EKF Using
Simulated ΔODλ

NIRS ΔODλ data was generated at 690, 785, 808, and 830 nm
with a 25 Hz sampling rate using the forward equation of MBLL
from assumed known sequences of ΔHbO and ΔHbR. Large
errors were introduced in the DPFλ values with respect to the
assumed known value of 6. We also introduced WGN such
that the signal-to-noise ratio (SNR) was 40 dB. Source-detector
separation distance for each of the four wavelengths was
assumed to be 35 mm.

In order to use the EKF, we need to have knowledge of the
variance of the measurement noise and the process noise entries
in matrices Rj and Qj, respectively. Measurement noise vari-
ance for the simulated data was already known from the statis-
tics of the WGN. In the case of the measurement noise variance
prior σ2ΔDPF;R for ΔDPFλ, we specified an upper bound of 1.31
for its value. This prior was established heuristically based on
the reported standard deviation of DPF values obtained exper-
imentally from over the somatosensory motor region.25 We then

estimated the process noise variances of the state variables. The
process noise variances σ2ΔHbO and σ2ΔHbR were calculated from
the difference between the original ΔHbO and ΔHbR sequences
and their moving averages. The moving average filter had a span
of three points. The process noise variance of ΔDPFλ, σ2ΔDPF;Q,
was obtained by calculating the variance of the errors introduced
in DPFλ. We initialized the error covariance matrix Pj;0 and the
state variables Xj;0 to zero. We then applied the EKF on the
simulated ΔODλ data and compared the estimated time series
of ΔHbO and ΔHbR with the known sequences. A weighted
least squares approach (WLSQ)26 was also used to estimate
ΔHbO and ΔHbR for comparison with the solutions from
EKF. In the WLSQmethod, the measurement data was weighted
by the inverse of the measurement noise variances:

W ¼

2
666664

σ2ΔOD;λ690 0 · · · 0

0 σ2ΔOD;λ785
..
.

..

.
σ2ΔOD;λ830 0

0 · · · 0 σ2ΔOD;λ808

3
777775

−1

; (22)

where the diagonal entries of the weighting matrix W corre-
spond to the measurement noise variances for the simulated
data at 690 nm, 785 nm, 830 nm and 808 nm.

4.2 Tuning the EKF Parameters Using Simulated
ΔODλ

Inaccurate process noise variance specification can affect the
convergence properties and accuracy of the EKF state estimates.
In our EKF model, the parameters that required tuning were the
process noise variances σ2ΔHbO, σ

2
ΔHbR, and σ2ΔDPF;Q. We esti-

mated σ2ΔHbO or σ2ΔHbR by calculating the variance of the residual
obtained by subtracting low pass filtered ΔHbO and ΔHbR
sequences from the original sequences as described in the pre-
vious section. Estimating σ2ΔDPF;Q is more challenging. In order
to determine σ2ΔDPF;Q, we picked nine test values on a logarith-
mic scale for σ2ΔDPF;Q ranging from 10−12 to 100 for use in the
EKF with simulated NIRS data. The simulated data had errors in
DPFλ of 1.5 at 690 nm, −1.5 at 785 nm, 2.9 at 830 nm, and zero
error at 808 nm so that the inaccuracies introduced are only due
to cross talk. For each test value of σ2ΔDPF;Q, we calculated the
mean residual sum squared (RSS) error in the estimates of
ΔHbO and ΔHbR as percentages of the sum-squared total
(SST). We then determined the tuned value for σ2ΔDPF;Q as
the one that produced the minimum combined percent error.

4.3 Application of the EKF Algorithm to NIRS
Measurements

With the tuned EKF parameters, we ran the algorithm on actual
NIRS measurements collected from three human subjects. The
data were obtained from an Institutional Review Board (IRB)
approved study in which each subject was fitted with a quad-
source optode emitting light at wavelengths of 690, 785, 808,
and 830 nm. The source optode was positioned on the scalp
in a region over the left superior frontal lobe near position
F3 on the electroencephalogram (EEG) 10 to 20 system. Data
were analyzed from two detectors separated by 33 mm from
the source optode. Subjects were asked to breathe normally
for the first minute of the experiment to establish a baseline
for processing the NIRS data in spectroscopic calculations.
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Subjects were then asked to breathe normally for 2 min followed
by 1 min of deep breathing. This cycle of events were repeated
for 8 min. The data sampling rate was 25 Hz and noisy channels
were eliminated from the study if their SNR levels were less than
0 dB. Low frequency drifts in the data were removed by fitting a
5th order polynomial to data segments with a time span of 300 s.
The SNR was calculated as the ratio of the variances of low to
high pass filtered ΔODλ. Low pass filtering was carried out by
using a 4th order Butterworth filter with cutoff frequency at
2 Hz. The data was filtered both in the forward and reverse direc-
tion to compensate for phase lags introduced by the filter. The
high pass filtered signal containing the noise components was
obtained by subtracting data smoothed with a moving average
filter having a time span of three points from the original
detrended data.

NIRS data can also be contaminated by motion artifacts and
various methods exist to remove these artifacts.27 In our case, we
applied Chauvenet’s criterion28 to reject data segments that con-
tained motion related signal variations. A deviation ratio (DR) at
each time point was calculated by dividing the ΔODλ signal
deviations from their moving averages by the standard deviation
of signal deviations. Signal deviations were calculated as the
difference between the raw data and its smoothed version
obtained by applying a moving average filter with a span of
30 points (1.2 s duration). Data with a DR greater than the stan-
dard Chauvenet’s criterion threshold were eliminated and the
discontinuous data segments then spliced together. The resulting
motion corrected ΔODλ signals were used as input data in the
EKF algorithm. We then comparedΔHbO andΔHbR calculated
using the EKF with values obtained using the WLSQ method.
Results were forward and reverse filtered between 0 and 2.5 Hz
with a 4th order Butterworth low-pass filter to remove high fre-
quency noise components.

4.4 Residual Error Analysis in EKF and WLSQ

We directly quantified the percent cross-talk error in ΔHbO
and ΔHbR calculated from the simulated data using EKF
and WLSQ in three frequency bands that are known to contain
physiologically relevant spectral peaks.29 The frequency bands
we designated were low frequency oscillations (LF) between
0.04 and 0.15 Hz, high frequency oscillations (HF) between
0.15 and 0.4 Hz, and cardiac oscillations (CARDIAC) be-
tween 0.4 and 2.0 Hz. First the calculated hemodynamics
and the known simulation sequences were band pass filtered
in forward and reverse directions in the LF, HF and
CARDIAC frequency bands with 4th order Butterworth filters.
These filtered signals were then subtracted from one another to
give ΔHbO and ΔHbR residuals. The percentages cross-talk
error in ΔHbO and ΔHbR for EKF and WLSQ were then cal-
culated as the ratio of the standard deviations of the residuals
and the known sequences in each frequency band.

In case of experimental data, we analyzed the autocorrelation
structure of the residuals obtained from the EKF and WLSQ
results by calculating the fraction of points outside the 95% con-
fidence interval of the autocorrelation function. For a sample of
uncorrelated residuals, one would expect that, on average, 5% of
the sample autocorrelation function will lie outside this confi-
dence interval. The first 10 s of lags were not included in the
calculation to remove the contribution of the main lobe of the
autocorrelation function.

We also performed cross-correlations between the residuals
in the LF, HF, and CARDIAC bands. For both the EKF and

WSLQ method, we band pass filtered the corresponding resid-
uals at each wavelength in the three frequency bands. We then
cross-correlated the filtered residuals from all combinations of
wavelength pairs resulting in a total of six combinations of
wavelength pairs at each frequency band. These coefficients
were then squared and averaged over all wavelength pairs for
each source-detector pair resulting in mean squared cross-cor-
relation coefficients. These coefficients were compared to direct
measures of cross-talk error in simulation and then used as a
proxy for cross talk error in the experimental NIRS data.

In order to statistically evaluate the performance of the pro-
posed EKF algorithm, we conducted ANOVA on the EKF and
WLSQ mean squared cross-correlation coefficients. First, we
applied the Fisher Z-transformation30 to the EKF and WLSQ
mean squared correlation coefficients to obtain normally distrib-
uted random variables. These transformed variables were then
used as input for the ANOVA with the factors of wavelength
pair, subject, and algorithm (i.e., EKF or WLSQ).

It is not possible to obtain direct measurements of cross-talk
error from experimental CW-NIRS data. Instead we computed
the mean percent signal deviations between the EKF and WLSQ
solutions for the ΔHbO and ΔHbR sequences to quantify the
magnitude of the differences in the EKF solutions. ΔHbO
and ΔHbR sequences from EKF and WLSQ were first filtered
in the LF, HF, and CARDIAC bands. Each filtered sequence was
then split into short segments having a span of 30 points (1.2 s
duration). A residual sequence was then obtained by subtracting
each EKF segment from the corresponding WLSQ segment.
The percent signal deviation in ΔHbO or ΔHbR was then cal-
culated from the ratio of standard deviations of the residual
sequences and the WLSQ segments. Finally, the mean percent
signal deviations in ΔHbO and ΔHbR were computed by aver-
aging all the percent signal deviations calculated from the short
segments.

5 Results
The EKF and WLSQ solutions for the simulated NIRS data are
shown in Fig. 1. The solutions are displayed after low-pass fil-
tering with a 2.5 Hz cutoff frequency using a Butterworth filter
of order 4. The filter was applied both in the forward and reverse
direction to compensate for phase lags introduced by the filter.
Figure 1(a) shows the EKF and WLSQ solutions for ΔHbO,
which agree closely with the known ΔHbO sequence as evi-
denced by R2 statistics of 0.99 for EKF and 0.96 for WLSQ.
The residual errors between the known ΔHbO sequence and
the solution obtained using EKF and WLSQ are shown in
Fig. 1(b). Similarly, Fig. 1(c) and 1(d) shows ΔHbR computed
from EKF and WLSQ and their corresponding residual errors in
ΔHbR. It is evident in Fig. 1(c) thatΔHbR calculated using EKF
agrees almost perfectly with the known sequence (R2 ¼ 0.99).
In case of WLSQ, there are large discrepancies between the
calculated ΔHbR and the known sequence (R2 ¼ 0.66). We
can observe from the residual error plots for EKF that the mag-
nitude of the error decreases rapidly during the first 2 s. This is
approximately the amount of time it takes for the ΔDPFλ values
to converge to the known values in the simulation [Fig. 1(e)]. In
case of WLSQ, the residual errors do not decrease over time
[Fig. 1(b) and 1(d)]; they tend to show some degree of serial
correlation and contain oscillatory components.

In the simulated data, we had explicit prior knowledge of the
measurement noise variance σ2ΔOD;λi based on the simulated
WGN that was introduced inΔODλ. The process noise variances
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σ2ΔHbO and σ2ΔHbR were found to be approximately
1 × 10−12 ðμMÞ2. Results from tuning the process noise vari-
ance in ΔDPFλ are shown in Fig. 2. A minimum value in the
percent mean RSS error occurs at σ2ΔDPF;Q ¼ 1 × 10−6. This
value of σ2ΔDPF;Q was used in the EKF applied to both the simu-
lated and experimental NIRS data.

Figure 3(a) shows the percent cross-talk error in the solutions
obtained from EKF and WLSQ. The percent cross-talk error in
ΔHbO is significantly smaller in EKF relative to that found for
WLSQ across all frequency bands (paired t-test, p < 0.05).
Although the cross-talk error in ΔHbR is slightly higher for
EKF in the HF and CARDIAC band, the corresponding values
in WLSQ are much higher at 45.9% and 35.1%, respectively.

Figure 3(b) shows the mean of the sum squared cross corre-
lation coefficients obtained for the LF, HF, and CARDIAC fre-
quency bands for EKF and WLSQ applied to simulated NIRS
data. We can observe that the EKF has reduced mean sum
squared cross-correlation coefficient values in the LF band
relative to WLSQ. In case of the HF and CARDIAC bands,
the mean squared cross-correlation coefficient values for EKF
and WLSQ are comparable.

(a)

(c) (d)

(e)

(b)

Fig. 1 EKF andWLSQ solutions for simulated NIRS data: (a)ΔHbO calculated using EKF andWLSQ and the true known sequence; (b) residual errors in
ΔHbO for EKF and WLSQ; (c) ΔHbR calculated using EKF and WLSQ; (d) residual errors for ΔHbR; (e) ΔDPFλ terms calculated using EKF. The true
ΔDPFλ errors are shown in dotted lines.

Fig. 2 Percent mean RSS error between known ΔHbO and ΔHbR and
the solutions computed using EKF for nine evaluated levels of σ2ΔDPF;Q.
The minimum RSS error corresponds to a process noise variance of
1 × 10−6.
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The results from EKF and WLSQ applied to experimental
NIRS data segments are shown in Fig. 4. ΔHbO and ΔHbR
computed using EKF agree closely with the WLSQ results
[Fig. 4(a) and 4(b)]. Figure 4(c) shows the ΔDPFλ values calcu-
lated for wavelengths of 690, 785, and 830 nm. Large deviations
in the ΔDPFλ values occur between 125 and 140 s. During this
time interval, the difference between the EKF and WLSQ sol-
ution for ΔHbO and ΔHbR is also large [Fig. 4(d)]. The R2 val-
ues for the plotted time interval are 0.97 for ΔHbO and 0.98
for ΔHbR.

Figure 5 shows ΔHbO and ΔHbR results in the LF, HF and
CARDIAC bands for EKF and WLSQ. The differences between
the EKF and WLSQ solutions are also plotted.

Figure 6 shows the residuals obtained for WLSQ and EKF
and their autocorrelation sequences for subject 3. The WLSQ
and EKF residuals shown in Fig. 6(a) and 6(b) appears to con-
tain physiological signal components such as cardiac oscilla-
tions in the EKF residuals. There also appear to be low
frequency components in both the WLSQ and EKF residuals.
The autocorrelation structures shown in Fig. 6(c) and 6(d)
shows reduced serial correlation at larger lags in EKF com-
pared to WLSQ. The autocorrelation values for the 690 nm
residual appear to be substantially smaller in EKF compared
to WLSQ.

Table 1 summarizes the mean percentages of points in the
autocorrelation functions for WLSQ and EKF that fall outside

(a) (b)

Fig. 3 Simulated NIRS data residual analysis: (a) percent cross-talk error in ΔHbO and ΔHbR solution obtained using EKF ad WLSQ. Error bars show
standard error; (b) mean sum squared cross-correlation coefficients for LF, HF, and CARDIAC filtered residuals for EKF and WLSQ.

(a)

(c) (d)

(b)

Fig. 4 EKF andWLSQ results obtained for experimental NIRS data collected from subject 3 (a)ΔHbO estimated usingWLSQ and EKF (b) corresponding
ΔHbR estimated using WLSQ and EKF; (c) EKF estimates of ΔDPFλ at 690, 785, and 830 nm; (d) difference between WLSQ and EKF hemodynamic
signals.
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(a)

(d) (e) (f)

(b) (c)

Fig. 5 Band pass filtered ΔHbO (upper row) and ΔHbR (lower row) sequences from EKF and WLSQ for subject 3: (a) and (d) LF (0.04 to 0.15 Hz);
(b) and (e) HF (0.15 to 0.4 Hz); (c) and (f) CARDIAC (0.4 to 2.0 Hz).

(a)

(c)

(b)

(d)

Fig. 6 (a) WLSQ residuals for wavelengths 690, 758, 808, and 830 nm; (b) EKF residuals for the four wavelengths; (c) autocorrelation coefficients for
residuals from WLSQ with the 95% confidence interval shown in solid gray lines (d) autocorrelation coefficient of residuals from EKF with the 95%
confidence interval shown in solid gray lines.
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of the 95% confidence intervals. The percentages of points out-
side the confidence bounds for EKF are consistently smaller
than for WLSQ.

Figure 7 compares the mean squared cross-correlation coef-
ficient values obtained in the analysis of EKF and WLSQ resid-
uals. All three subjects have smaller mean squared correlation
coefficient values for EKF relative to those found for WLSQ
(see Table 2 for ANOVA). The lowest mean squared cross-cor-
relation coefficients were found for the HF band in EKF.

ANOVA results are summarized in the Table 2. Algorithm
(EKF versus WLSQ) contributes significantly (p < 0.001) in all
three frequency bands. Therefore, we can reject the null hypoth-
esis that the mean squared cross-correlation coefficient values
found for EKF and WLSQ are the same at those frequency
bands. It is interesting to note that the wavelength factor also
contributes significantly to the variability in the mean squared
cross-correlation coefficient values indicating that the EKF cor-
rections vary significantly with wavelength.

Figure 8 shows the mean percent deviations between EKF
and WLSQ solutions in the LF, HF and CARDIAC frequency
bands. For each frequency band, the mean percent deviations in
ΔHbO and ΔHbR are significantly different from zero (two-
tailed t-test: p < 0.001). The mean deviation over all frequency
bands was found to be 4.04% for ΔHbO and 4.92% for ΔHbR.
In the LF band, the mean percent deviations are comparable for
both ΔHbO and ΔHbR. The mean percent signal deviation is

Table 1 Mean percentages of points that fall outside of the 95% con-
fidence intervals for the EKF and WLSQ autocorrelation functions.

Wavelength (nm) WLSQ (%) EKF (%)

690 39.6 4.1

785 41.9 34.4

808 41.1 29.2

830 38.4 21.7

Fig. 7 Mean squared cross-correlation coefficients of residuals from the
analysis of experimental data from three subjects. Results are shown for
LF, HF and CARDIAC frequency bands with standard error bars.

Table 2 NOVA of mean squared cross-correlation values shown in
Fig. 7.

Factor Sum Sq. d.f. Mean Sq. F P-value

LF (0.04–0.15 Hz)

Wavelength 6.060 5 1.212 7.39 <0.001

Subject 0.027 2 0.013 0.08 0.9217

Algorithm 2.400 1 2.400 14.63 <0.001

Error 10.34 63 0.164

Total 18.82 71

LF (0.04–0.15 Hz)

Wavelength 6.499 5 1.299 10.90 <0.001

Subject 0.269 2 0.134 1.13 0.3289

Algorithm 1.415 1 1.415 11.87 <0.001

Error 7.512 63 0.119

Total 15.697 71

CARDIAC (0.4–2.0 Hz)

Wavelength 5.329 5 1.065 12.83 <0.001

Subject 0.002 2 0.001 0.01 0.9863

Algorithm 2.699 1 2.699 32.49 <0.001

Error 5.234 63 0.083

Total 13.27 71

Fig. 8 Mean percent deviations between EKF and WLSQ solutions fil-
tered in the LF, HF, and CARDIAC frequency bands shown with 95%
confidence intervals from a paired t-test.
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smaller in ΔHbO compared to ΔHbR in the HF and CARDIAC
bands (p < 0.05).

6 Discussion and Conclusion
The proposed EKF algorithm is able to calculate ΔHbO and
ΔHbR from simulated NIRS data by continuously updating
ΔDPFλ values. We observed in simulation that the residual
errors in ΔHbO and ΔHbR decrease rapidly within the first
2 s as the EKF tracked the errors introduced in DPFλ. In the
analysis of experimental data, we observed reduced autocorre-
lation of residuals for EKF compared to WLSQ. We believe that
the superior performance of EKF is achieved due to weighting of
the state variable innovations by the optimal Kalman gain at
each time step. The application of the Kalman gain in this way
helps to minimize the posterior error covariance over time. In
WLSQ, the measurement data is weighted by constant factors
over all time steps; so even though the solution is optimal in
the least squares sense, WLSQ lacks the flexibility of EKF to
account for time variation in DPFλ. As a result, EKF outper-
forms WLSQ in the estimation of ΔHbO and ΔHbR.

We observed reduced cross-correlations in the residuals in
wavelength pairs for EKF in the LF, HF and CARDIAC
bands compared to WLSQ, which is consistent with the reduc-
tion of cross-talk error. Convergence of the EKF state estimates
to the true states is dependent on prior knowledge of the process
noise and measurement noise variance statistics. In the proposed
method, we demonstrate how to obtain prior estimates of those
statistics based on minimizing the residual error in EKF.

We also quantified the differences in the hemodynamic
signals calculated using EKF and WLSQ in physiologically
relevant frequency bands. We found significant differences in
the ΔHbR sequences in the LF and HF bands. The average
of differences between EKF and WLSQ solutions across all fre-
quency bands was 3.75% for ΔHbO and 4.57% for ΔHbR. We
believe that this difference is due to a reduction of cross-talk
error in ΔHbO and ΔHbR obtained using EKF. This is sup-
ported by the observation that the EKF solution obtained
from simulated NIRS data had reduced cross-talk error relative
to the WLSQ solutions. In the simulation, the errors in ΔHbO
and ΔHbR from the known sequences were significantly lower
in the EKF results compared to the WLSQ results.

The proposed EKF method offers several advantages over
other methods that may be used to calculate DPFλ. Unlike
other studies where DPFλ is estimated based on the assumption
that it is constant over time,2,25,31 the proposed EKF algorithm
continuously updates DPFλ and it can account for variation in
DPFλ due to differences in anatomical structure and tissue com-
position of the brain. In cases where relative calibration of
ΔHbO and ΔHbR is desired, the proposed method eliminates
the need to measure DPFλ using TD or FD instruments or apply-
ing simulation techniques discussed in Sec. 2.

The proposed EKF algorithm has potential applications in
the clinical investigation of brain injury. A number of recent
studies have used NIRS to monitor patients during stroke reha-
bilitation and recovery.32–34 A limitation in these studies is the
inability to accurately quantify cerebral hemodynamics in a
region of interest. In the above referenced stroke studies,
DPFλ is assumed to be constant over time and the studies
did not account for possible variation due to the stroke.
However, DPFλ could deviate substantially in stroke because
of the high absorption coefficient of hemoglobin. As a result,
the calculated ΔHbO and ΔHbR may not have accurately

reflected the hemodynamics in those patients. The proposed
algorithm could also be applied to other clinical diagnostic
applications of NIRS such as breast cancer detection.35 The opti-
cal properties of cancerous tissue are different from those of
healthy tissue in the breast. Accurate assessment of hemo-
dynamic changes in breast tissue also relies on using accurate
estimates of DPF in the NIRS spectroscopic calculations.
Further investigation is required to determine if the proposed
EKF algorithm is able to correct path length errors in NIRS
applications in stroke, cancer, and other clinical conditions.
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