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Abstract. Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmol-
ogy, providing essential information associated with various eye diseases. In order to investigate the dynamics of
the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting mem-
brane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological
operations including a two-step contrast enhancement technique, proving to be very robust when dealing with
low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure
neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is dem-
onstrated, and deformation results are presented for healthy and glaucomatous eyes. © 2015 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.11.116008]
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1 Introduction
Optical coherence tomography (OCT) is a powerful noninvasive
imaging technique that has become a standard clinical tool in
ophthalmology, providing a direct and accurate visualization
of the retina and its layered structure.1 This information helps
to detect and monitor a variety of retinal diseases such as
age-related macular degeneration, diabetic retinopathy, and reti-
nal detachments. OCT shows particular promise in detecting
glaucoma, the second leading cause of blindness worldwide,
which is a progressive neuropathy characterized by the thinning
of retinal nerve fiber layer and changes in the structural and
functional integrity of the optic nerve head (ONH).2

It has been recently demonstrated that tissue around the ONH
is deformed during cardiac pulsations,3 and that such movement
is different in healthy and glaucoma patients.4 As the vast major-
ity of research projects based on OCT rely on static images made
up of several averaged frames, these findings underline the rel-
evance of comprehensive dynamic studies for which the devel-
opment of novel imaging strategies as well as analysis methods
is also required.

An essential part of OCT data processing is segmentation,
and one of its most challenging problems is the design of a sys-
tem that works properly in clinical applications, i.e., the devel-
opment of robust methods capable of dealing with pathological
cases, where the structure of the retina can change drastically.

Several methods have been proposed to segment the vitreal-
retinal boundary on macular OCT images;5–7 however, those
models cannot simply be applied to the ONH region owing
to the significant anatomical differences. Nerve head geometries

vary considerably across the patient population, and appearance
variation is also introduced by the angle of the scan through the
ONH. This could be the reason why, to date, very little has been
reported on the automatic analysis of 2-D ONH images.

Nowadays, volumetric scanning centered at the ONH is
becoming more common; however, the segmentation method
employed in these cases is based on a three-dimensional
graph search approach that makes use of regional consecutive
B-scans, and the algorithm is trained on the planimetry from
color stereo photos to determine the rim and cup regions that
can be then colocalized on the fundus image and finally trans-
lated to the OCT scan.8,9 More recently, a study performed
with a software developed for retinal analysis of Straus OCT
macular images with computer-aided grading methodology,
OCTRIMA,10–12 has included the measurement of the cup-to-
disc ratio as complementary information extracted from the cen-
tral image of a volumetric scan.13 Notwithstanding such
advances, currently there are no commercial OCT devices
that allow image sequences of volumetric scans acquired and
saved at the velocity needed to perform dynamic studies.

Active contour algorithms are a good choice to achieve accu-
rate border delimitation from where the inner limiting mem-
brane (ILM) profile can be easily obtained.14,15 Although it is
possible to define a fixed rectangular initial contour that enclo-
ses the whole retina and the main parameters can be optimized
for a set of similar images, the number of iterations may vary
depending on the size and shape of the ONH, with a computa-
tion time in the order of tens of seconds for a single image,16,17

making this kind of method inappropriate for large image sets.
In order to investigate the pulsatile dynamics of the ONH and

surrounding tissue, it becomes necessary to have an image
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acquisition rate several times higher than the heart rate. OCT
images are inherently noisy, and if we add the fact that in
this case only a few consecutive B-scans can be merged for
the final image, the result is a collection of images with poor
quality, making most simple edge-detection algorithms unsuit-
able for accurate retinal identification. Furthermore, retinal
deformation is in the order of dozens of microns, making inac-
curate delineations a source of error for adequate assessment of
the dynamic behavior of the tissue.

To overcome such limitations, we have developed a simple
method for the automatic ILM segmentation in video rate OCT
ONH line scan images, based on morphological operations. The
resulting ILM profiles are then used to measure neuroretinal tis-
sue displacements due to blood-flow pulsatility.

2 Methods
The proposed approach consists of two stages: segmentation and
analysis. The first seeks to delineate the peripapillary retina and
the ONH accurately in low-signal OCT images, while the sec-
ond uses the segmented profiles to quantify retinal deformation.
All routines described in the following have been coded in
Matlab (The MathWorks, Inc.) and are available upon request.

2.1 Data Collection

In order to accurately measure displacements of the ocular fun-
dus during the cardiac cycle in real time, we made use of a SD-
OCT device (Spectralis OCT Plus, Heidelberg Engineering,
Germany), the software of which has been custom-modified
to record image series in real time, allowing the export of
raw images in linear scale. OCT line scans of the same region
of the ONH were acquired at 20 Hz for 20 s, during which sub-
jects were asked to look at a fixation light. Since the device is
equipped with an active eye tracker that halts acquisition to
avoid movement artifacts, subjects are allowed to blink if nec-
essary. Each time series has 401 images (496 × 768 pixels) of
high resolution (3.9 μm axial) acquired over a 15 deg field of
view (5 mm approx.) that covers cup, rim, and peripapillary
retina, scanned at 45 deg with respect to the fovea to disc
axis (Fig. 1). Volunteers covering the glaucoma spectrum, i.
e., from glaucoma suspects to advance glaucoma, were recruited
at the Maisonneuve-Rosemont Hospital’s Ophthalmology
Clinic. Institutional Review Board and Ethics Committee appro-
val was obtained for the study, and all participants gave their
informed consent. The research protocol follows the tenets of
the Declaration of Helsinki.

In order to optimize the parameters of our segmentation pipe-
line, we presented a set of 25 images that include healthy and
several stages of glaucomatous eyes randomly selected from the
database, with Spectralis quality scores ranging from 10 to 40, to
five observers. Images were segmented varying the values of the
main parameters of the algorithm, described below, and raters,
masked to parameters and values, were asked to choose the best
segmentations for each “unknown” parameter, and the most
voted values were selected and kept fixed for all images.

2.2 Preprocessing

As a first step, a 2-D median filter of size 7 × 7 pixels is applied
for rough speckle noise removal, then images are submitted to a
two-step contrast enhancement technique to suppress features
that may lead to erroneous boundary detection. First, intensity
exponentiation (I2) is applied to eliminate floaters near the cup
and attachment points in case of vitreopapillary detachments.
Afterwards, exponentiation ðI3Þ þ attenuation compensation
is required to compensate inhomogeneities due to retinal
blood vessels18 and to sharpen the edges (Fig. 2). In our particu-
lar case, since we have previously applied a median filter and
intensity exponentiation (I2) to the images, when the exponent
value is set to 3, the increment of speckle noise that could be
expected according to Ref. 14 is not observed, proving to
give the best results for edge detection.

2.3 Inner Limiting Membrane Segmentation

In order to separate the inner layer of the retina from the vitre-
ous, another median filter (7 × 7 pixels) is applied. As the image
has been previously submitted to contrast enhancement, a
threshold of 10% of the maximum intensity is enough to dis-
criminate between the retina and the remaining noise near
the edges and is then used to generate the corresponding binary
image. An increase of the threshold value results in the loss of
the vitreal–retinal boundary information in most cases. The next
step is to remove rough edges and bridges by morphological
closing with a squared structuring element of 3 pixels width
[Fig. 3(a)]. Pixel labeling of eight connected objects is then
used to remove the remaining spurious pixels in the vitreous,
usually corresponding to highly reflective floaters, by only
keeping objects with more than 1000 elements.

The ILM is set to the most anterior foreground pixel of each
A-scan. To exclude misallocated points at the edges of the cup,
distances in the axial direction between adjacent contour points
½cðxÞ� are calculated ½Δzi ¼ cðxi þ 1Þ − cðxiÞ�, and we search

Fig. 1 Time series typical images. (a) Fundus image showing the scanned line through the optic nerve
head (ONH), in this case at 45 deg. (b) Corresponding optical coherence tomography (OCT) image (two
averaged frames).
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for distances of jΔzj that are equal to or greater than 27 μm.
When a negative targeted value is followed by a positive one
and separated by maximum 10 points (transversal direction
x) then such interval is removed and replaced with a spline-inter-
polating curve. Figure 3(b) shows the final profile.

2.4 Deformation Analysis

In order to measure displacements of the neuroretinal tissue due
to pulsatility, in addition to segmentation, an analysis algorithm
has been developed to track the position of specific retinal
regions in time (frame to frame) and to quantify tissue deforma-
tion. For alignment, we have used the Matlab intensity-based
automatic image registration function with mean-squared
error metric and one-plus-evolutionary optimizer. The registra-
tion is limited to rigid transformations (translation and rotation),
taking as a reference the first image of the series.

Once the segmentation has been performed, the result is a set
of 401 ILM profiles per time series. With the purpose of

discarding the curves automatically where the ILM delineation
has failed, all the profiles are shifted vertically so that their min-
ima coincide [Fig. 4(a)], and the average and standard deviation
(S.D.) of the depth (z) values at each A-scan position are calcu-
lated. Outliers are then tagged in two steps. First, we identify
outlier pixels in each one of the profiles, defined as those points
located at a distance of 3 S.D. or more from the average value in
each A-scan. Next, the S.D. of the number of outlier pixels per
curve is determined, and profiles with more outliers than such S.
D. are discarded [Fig. 4(b)]. In general, the number of discarded
profiles per time series is usually between 0 and 10 but not
higher than 15.

The peripapillary retinal deformation can now be determined
from the time series by quantifying changes in the distance mea-
sured from the prelaminar tissue to a selected region on the
retina. Since the major blood vessels cross the optic nerve
through the retina on the nasal region, we have decided to inves-
tigate the temporal side, where vessels are less dense, selecting
three regions of 200 μm (T, T2, T3) starting at the Bruch’s

Fig. 3 Example of some segmentation steps. (a) Binary image after morphological closing, as the vitreal
floaters are not attached to the retina, they are removed after labeling. (b) Final ILM profile, the edge is
detected as the first nonzero pixel in each A-scan and interpolated with smoothing splines.

Fig. 2 Preprocessing example. (a) Original ONH image showing floaters in the vitreous. (b) Same image
after median filtering and contrast enhancement steps were applied.

Fig. 4 (a) Profiles resulting from segmentation of the whole time series plotted together after vertical shift.
Some of the profiles show inaccurate segmentation at the bottom of the cup or the peripapillary retina;
hence, two-step outlier identification is carried out. (b) Final profiles after outlier elimination process (10
profiles discarded).
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membrane opening, as shown in Fig. 5(a). As the bottom of the
cup of all profiles is already located at z ¼ 0, the distance that
we want to measure is simply zðxÞ, and deformation is then cal-
culated as the S.D. of such distances averaged within each
region [Fig. 5(b)]. It is important to emphasize that although
the deformation value obtained per time series could be on
the order of the axial resolution of the device, the actual
range of measured distances in the time series is between
five and ten times larger.

As a summary, Fig. 6 shows a flow diagram of the segmen-
tation and analysis algorithms proposed.

3 Results

3.1 Assessment of the Segmentation Algorithm

To evaluate the performance of the segmentation algorithm, we
compared our method with two other established methods: a
modified Canny filter19 (MCF) and a hierarchic approach20

(HA) briefly described below. For each method, the parameters
were chosen to give the best results.

MCF: the preprocessing steps include median filtering with a
squared mask of 13 pixels width and intensity normalization.
Then, the first derivative of a Gaussian function multiplied
by a Gaussian is used to create two convolution masks to esti-
mate the gradients in both directions (σx ¼ 0.2, σy ¼ 4), and
the resulting gradient image is thresholded with T ¼
0.2 � ðImax − IminÞ þ Imin, with Imax and Imin, the maximum
and minimum intensity values of the image being processed.
Next, linear interpolation is used in a 3 × 3 neighborhood to
find two pixels that straddle the gradient direction; the central
pixel is then defined as an edge point if its gradient magnitude is
greater than those of the interpolated points. Finally, the ILM is
set as the first nonzero pixel per A-scan.

HA: intensity normalization, median filtering with a
5 × 5 pixels mask, and image decomposition to a lower resolu-
tion with a 16-pixel block using the median constitute the pre-
processing. Then, an auxiliary matrix that contains the intensity
differences between adjacent depth positions in each A-scan is
calculated and employed to define two binary images. The first
one contains only the pixels with the highest difference value per
A-scan, while a threshold arbitrarily set at 0.03 is applied to the
auxiliary matrix to generate the second binary image. These two
images are used to identify the borders of the retina, and to cor-
rect erroneous recognition, a set of constrictions must be ful-
filled. The next steps consist on reducing the decomposition
area by half on each iteration to increase accuracy; the positions
of the layers determined in the previous iteration are connected
with linear interpolation and individual point matching. As final
steps, the layers are rescaled, a 5 × 5 median filter is applied to
remove points misallocated in shadowed areas, and interpolation
gives the resulting segmented profile.

Fig. 5 Deformation measurements: the green line in (a) sets the refer-
ence at the deepest point of the ONH, and the red arrow represents
the distance measured to determine retinal deformation. Three dis-
tance values are calculated per frame, corresponding to the regions
T, T2, and T3. (b) Deformation is defined as the standard deviation of
the zðxÞ values of all profiles in each one of the regions (red
rectangles).

Fig. 6 Schematic representation of the ILM segmentation and deformation analysis algorithms to mea-
sure peripapillary retinal deformation from video-rate OCT image series of the optic nerve.
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These three approaches were applied to 25 ONH OCT
images randomly chosen from the data set described in
Sec. 2.1, with Spectralis quality scores ranging from 11 to
35. In order to validate our algorithm quantitatively, as there
is no gold standard for ONH OCT images to compare with,
five specialists were asked to delineate the ILM manually for
the same set of images. Manual segmentation was performed
using a tablet equipped with a stylus. For each image, the aver-
age manually segmented ILM was calculated and used to com-
pare the accuracy of every specialist and automated method.
Absolute deviation from the mean trace for every A-scan of
all images is shown in Fig. 7 as violin plots.

Our algorithm shows variability comparable to the special-
ists’, highlighting its robust performance on low signal images.
On the other hand, MCF failed to segment the vitreal-retinal

boundary due to high speckle content on the images.
Notwithstanding HA showed a more robust performance to
noise than MCF, its border detection was considerably affected
by shadow effects that reduce visibility of some retinal regions.
Although MCF and HA show good results for high-quality
images (Q > 25), where a significant contrast at the vitreal-reti-
nal boundary is observed, its accuracy on low signal images is
not always satisfactory. Figure 8 shows some examples of the
segmented results along with the original images.

The time of analysis, together with satisfactory results, is of
crucial importance if we take into account that each time series
comprises hundreds of images. The average ILM segmentation
time for MCF, HA (dividing individual images on blocks of
16 × 16, 8 × 8, 4 × 4), and our algorithm is 9.4 s, 2.4 s, and
0.40 s, respectively, calculated over a set of 100 images
(496 × 768) analyzed in a PC (3.30 GHz Intel Core i3 processor,
4 GB of RAM).

3.2 Peripapillary Retinal Deformation

Results from 29 healthy and 12 glaucoma eyes with functional
trabeculectomy blebs were obtained using the proposed seg-
mentation and analysis algorithms. In this case, two time series
of the same eye were recorded per subject, at 45 deg (inferotem-
poral region) and 135 deg (superotemporal) with respect to the
fovea to disc axis. These particular angles were chosen as they
correspond to the areas of major insult in glaucoma. All eyes
were transformed to right-eye format.

Recorded time series were excluded due to fixation prob-
lems, poor quality images (Spectralis quality score < 10 for
most of the images), and large blood vessels governing the
movement of the neuroretinal tissue. The latter exclusion cri-
terion is vital as we could be measuring directly the pulsation
of the vessel instead of the tissue displacement due to choroidal
pulsatility, and includes time series where the ONH has a blood
vessel located at the base of the cup.

Fig. 7 Quantitative evaluation of the proposed segmentation algo-
rithm. A set of 25 ONH OCT images was manually segmented by
five specialists, and the average ILM was used as gold standard
for validation. The accuracy of segmentation was evaluated by the
absolute deviation from the gold standard of each A-scan for all
images. Results for each one of the automated methods are
shown as violin plots. The white dot represents the mean value of
each distribution.

Fig. 8 ILM automated segmentation results using different algorithms: a modified Canny filter (MCF),
hierarchic approach (HA), and the proposed method. The second column shows the average manual
ILM used as gold standard. Images shown have spectralis quality scores of 11, 15, 18, and 30 (from top to
bottom).
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For the sake of simplicity, peripapillary retinal deformation
values per eye at each one of the angles correspond to the aver-
age value calculated over the three regions defined along the
temporal side (T, T2, and T3) on the time series (see Fig. 5).
The healthy group shows higher average deformation for both
regions, 9.0� 3.6 μm inferotemporal and 8.8� 6.6 μm super-
otemporal, compared with 4.8� 1.8 μm and 6.9� 3.5 μm in
the glaucoma bleb group. However, statistical difference
was only found at the inferotemporal region (P ¼ 0.005) as
can be seen in Fig. 9. Group differences were analyzed with
the Mann–Whitney test. Mean group deformation values are
listed in Table 1.

This preliminary study shows that retinal displacement is
different for healthy and treated diseased eyes. A more compre-
hensive characterization could help us to understand how neuro-
retinal tissue deformation is related to glaucoma progression.

4 Discussion
Elevated intraocular pressure (IOP) remains the primary risk
factor for glaucoma. By definition, IOP is the normal force
per unit area exerted by the intraocular fluids on the tissues
that contain them. The mechanical response is a function of
the individual eye’s geometry, anatomy, and mechanical proper-
ties of the tissue, factors that contribute to determine the indi-
vidual’s susceptibility to IOP. Therefore, it is natural to consider
that biomechanics also plays an important role in glaucomatous
neuropathy, and the key challenge is then to understand how
ocular biomechanics are transduced into tissue damage.

The ONH is a region of special biomechanical interest
because it is a discontinuity in the corneo-scleral shell, and

such kind of discontinuities typically gives rise to stress or strain
concentrations in mechanical systems.21 Furthermore, recent
research based on finite element computational modeling has
led to the conclusion that the highest magnitudes of all
modes of strain (extension, compression, and shearing) occurred
within the neural tissue regions and not within the lamina cri-
brosa,22 as previously believed.

Although the results section presents a preliminary study to
show the potential use of our algorithm, it reveals that the actual
mechanical response of the neuroretinal tissue is different
between healthy and treated diseased eyes. Two of the factors
that may explain the finding that glaucomatous eyes with func-
tional trabeculectomy blebs show less deformation are that they
have significantly lower IOP as well as thinner retinal nerve
fiber layer than the normal group. Our results showed a statis-
tical difference at the inferotemporal side only, which can be
explained in part by the fact that the loss of neuroretinal rim
starts specifically at this region being the most affected during
the evolution of the glaucomatous neuropathy.23 Furthermore, in
the glaucoma eyes with blebs, the ocular pulse amplitude is sig-
nificantly lower than in healthy eyes;24 thus the driving force for
ONH deformation was reduced which may be contributing to
the smaller observed deformation. However, a more comprehen-
sive characterization needs to be done before reaching any major
conclusion. On the other hand, since the elasticity of the sclera is
one of the most important determinants of ONH stress and
strain,25 we have recently developed a noninvasive technique
to determine overall ocular rigidity using depth-enhanced
high-frequency OCT macular imaging26 that will be included
in a further study, where characterization of the retinal deforma-
tion at different stages of the glaucomatous neuropathy will be
carried out including a full workup of the eye under study.

The approach proposed in this paper has the potential to be
used as a new biomechanical descriptor of the eye, helping in the
understanding of the relationship between biomechanical prop-
erties of the neuroretinal tissue and the insult of the optic nerve,
not only in glaucoma but, in principle, in many other eye
pathologies.

5 Conclusion
We developed a fully automated algorithm to segment the peri-
papillary retina and the ONH in video rate OCT images using
morphological operations. We have demonstrated that our
approach is able to accurately segment the ILM, even when
images show a substantial amount of speckle noise or shadow-
ing which is typical of high acquisition rates, proving to be very
robust when dealing with low-signal images.

The experimental results showed that the algorithm detects
the ILM accurately in healthy eyes as well as in several stages
of glaucomatous pathology. While the focus of this work was on
the segmentation of the ONH, the proposed algorithm can be
directly applied to macular OCT images without any modifica-
tion. Furthermore, the advantages include easy implementation
and low computation time.

Additionally, we have developed an analysis algorithm that
uses the segmentation results to investigate the dynamics of the
neuroretinal tissue. As a preliminary study, peripapillary retinal
deformation of healthy and glaucomatous eyes with functional
trabeculectomy blebs has been characterized, with the first
cohort showing larger deformation at the inferotemporal region.
These findings could lead to a new way to identify patients with

Fig. 9 Comparison of retinal deformation values between healthy and
bleb eyes. Statistical difference was found only at the inferotemporal
region (P ¼ 0.005).

Table 1 Mean peripapillary retinal deformation per group.a

Group Age Inferotemporal Superotemporal

Healthy 71.6 (11.13) y.o. 9.0 ð3.6Þ μm 8.8 ð6.6Þ μm

Bleb 73.8 (10.72) 4.8 (1.8) 6.9 (3.5)

aValues shown are mean (SD).
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glaucoma and characterize their risk of aggressive ONH damage
using a standard clinical test.

We strongly believe that the powerful combination of video
rate OCT imaging and the proposed segmentation and analysis
algorithms is key to the further understanding of ocular biome-
chanics, and how it is transduced into tissue damage.
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