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Abstract. Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging
designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in
which it can completely affect the quality of the data acquired. Different methods have been developed to correct
motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant
subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The
issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the
six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating
in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving
average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation
of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings
elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric
populations, as well as help inform both the theory and practice of optical brain imaging analysis. © 2015 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.12.126003]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is an emerging
optical brain imaging technique that is becoming an increasingly
popular method for pediatric brain imaging.1 fNIRS measures
the hemodynamic changes that effectively reflect brain activities
occurring while people perform a wide range of mental tasks;2–6

it can provide both topographic3,4,7 and tomographic brain
images.6,8 Specifically, fNIRS monitors concentration variations
of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the
blood of the brain, through the skull, with absorption changes
of near-infrared light at wavelengths between 700 and 1000 nm.9

Similar to electroencephalography (EEG), fNIRS allows for
noninvasive observations of awake infants and children, but
unlike EEG, fNIRS provides complimentary hemodynamic
response data. Compared with functional magnetic resonance
imaging, fNIRS devices are usually portable, silent, and use
near-infrared light to detect brain activity.2 These aspects of
fNIRS technology make it a useful tool for researchers inter-
ested in child10–20 and infant21–27 development. Therefore, the
use of this method with pediatric populations has grown three-
fold in the past decade.

Motion artifacts caused by participants’ head, jaw, eyebrow,
or body movement can distort the data analysis.28,29 A major

impediment of interpreting fNIRS brain imaging data of child
participants is that children’s data typically have more motion
artifacts than the fNIRS data of adults. The field has put forth a
variety of methods for addressing the fNIRS motion artifact
problem in general.28–30 The most direct method is trial rejection
(for event-related design) or block rejection (for block design),
which excludes all the data sections that contain motion artifacts
from further analysis.31 Selb et al. compared several motion cor-
rection techniques on synthetic data and found trial rejection
was the best method for preserving the original shape of the
data. However, in the context of pediatric brain imaging, the
major problem with this method is that the entire data samples
tend to be relatively small, as children and infants have a short
attention span and experimental designs can be as short as a few
minutes. Thus, researchers have attempted methods that allow
them to retain more of the collected data. These methods can
be divided into two categories: the first category includes hard-
ware-based methods (which need additional sensor or special
optode setup), including short separation channel-based indepen-
dent component analysis,32 using specially designed collodion-
fixed fibers,31 accelerometer-based regression, or rescaling.33,34

The difficulty with these methods is that additional hardware
may further complicate and increase participant setup time,
which is always a problem with young participants. The second
category includes software-based methods, such as principal
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component analysis (PCA),35 spline interpolation,36 wavelet,37

correlation-based signal improvement (CBSI),38 and moving
average (MA), plus Kalman filter and recursive least-square
based methods for real-time preprocessing.34,39

There have been a few prior studies that have attempted to
explore the relative efficacy of different artifact correction
approaches using simulated adult fNIRS data. These studies
concluded that the wavelet method was best suited for the simu-
lated adult fNIRS data.28,29 Yet, it remains largely unknown
whether the same is true of real pediatric fNIRS data from chil-
dren subjects. Thus, in the present study, we aimed to improve
the field’s methodology for child fNIRS brain imaging by
directly comparing the efficacy of six software-based offline
motion correction methods on real fNIRS data acquired from
children (ages 6 to 12) completing a language task.

2 Methods

2.1 Participants

Twelve children (eight females, age range: 6.8 to 12.6 years,
mean age ¼ 9.9 years, SD ¼ 1.75) took part in the study.
Participants were excluded from the imaging analysis if they
did not complete all the necessary tasks or did not fit this study’s
inclusion criteria (see fNIRS analysis section below for more
details). Since this paper discusses signal qualities, we also
revealed the hair and skin color of all participants (Table 1,
for more info on participants see Arredondo et al.40) The
University of Michigan Institutional Medical Review Boards
reviewed and approved the study. Parents provided consent
and children provided assent to participate in the study.

2.2 Materials and Procedure

The children completed an auditory grammatical judgment lan-
guage task during the fNIRS data collection. The task was based

on the Test of Early Grammatical Impairment,41 and it included
three conditions: (1) control sentences with developmentally
atypical errors (e.g., “Yesterday he bake a cake”), (2) experimental
sentences with developmentally typical (optional infinitive) errors
(e.g., “He am tallest in class”), and (3) correct sentences with no
grammatical errors (e.g., “She is the prettiest cat.”). A total of 60
trials were presented; each condition had 20 trials, and no trials
were repeated. Children were instructed to respond by pressing
buttons in a button-box. If a sentence did not contain any mis-
takes, the children were instructed to use their right hand to
press the right button, and if the sentence contained mistakes, chil-
dren were instructed to use their left hand to press the left button.

The task was designed to be rapid event-related, and it was
randomized using OptSeq2.42 Jittered rest time in between trials
varied, and it totaled 90 s. Each sentence played for ∼4 s, which
was followed by a 2-s display of a question mark in the center of
the screen that allowed time for the participant to respond. The
children could respond any time between the start of the sen-
tence, which was then followed by an additional response time
period that presented a question mark in the middle of the
screen. A fixation cross was displayed in the center of the screen
between jittered rest periods. The approximate total time of the
task was 456 s (7.6 min). The task was presented using E-Prime
2 (Psychology Software Tools) on a 23-in. Philips 230E wide
LCD screen connected to a Dell Optiplex 780 desktop computer.
Sound was played via a Creative Inspire T12 2.0 multimedia
speaker system.

2.3 Functional Near-Infrared Spectroscopy
Recordings

We used a TechEN-CW6 system with 690 and 830 nm wave-
lengths. The setup included one emitter and three detectors
spaced 2.7 cm apart, yielding three data channels sampled at
10 Hz (Fig. 1). We examined brain activation in the left inferior
frontal gyri (a language-related area). The probe localization
was established and applied consistently for each participant
using the international 10–10 transcranial system positioning;43

Fz, Cz, and preauricular were measured for each participant and
the emitter was anchored at F7 (see Fig. 1). The probes were
mounted on the participants’ head using costume made caps
(foam). Two caps were built to fit the different head sizes of the
age range. Each cap was equipped with optode holders into

Table 1 Participants’ information (hair and skin colors).

Participant Hair color Skin tone

1 4 Medium

2 4 Light

3 1 Light

4 1 Light

5 4 Medium

6 2 Light

7 6 Light/medium

8 2 Light

9 1 Light

10 2 Light

11 6 Medium

12 4 Light

Hair color: 0, light blond; 1, dirty blond; 2, light brown; 3, medium
brown; 4, dark brown; 5, light black; and 6, dark black. Fig. 1 Measurement location and channel distribution.
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which the optodes were plugged in. An additional wrapping
band was used to secure the optodes in place.

2.4 Data Processing

Data processing was completed using Homer2 fNIRS process-
ing package44 and an fNIRS data analysis tool (fNIRSDAT, a
homemade software for general linear model (GLM) regres-
sion-based individual and group-level analysis) based on
MATLAB® (MathWorks, Natick, Massachusetts). In order to
understand the performance of different methods, we catego-
rized the motion artifacts in our data into four types: type A—
defined as a spike with a standard deviation of 50 that was over
the mean within a second; type B—a peak with a standard
deviation of 100 from the mean during a time portion ranging
from 1 to 5 s; type C—a gentle slope between 5 and 30 s with a
standard deviation of 300 from the mean; type D—a slow base-
line shifting longer than 30 s with a standard deviation of 500
from the mean.

The raw data were first converted into optical density change
(delta OD) using the optical density change calculation function
(hmrIntensity2OD in Homer2 software package) in Homer2.
We then slightly modified the motion artifact identification func-
tion (hmrMotionArtifactbyChannel in Homer2 software pack-
age) and applied it to the delta OD data to detect the number
of the type A motion artifact. The parameters were selected
as SDThresh ¼ 50, tMotion ¼ 1 (SDThresh, standard deviation
threshold; tMotion, motion artifact time period); these parame-
ters guaranteed the identification of the type A motion artifact
(50 standard deviations to the mean within 1 s). However, the
motion artifact identification function in Homer2 is only
designed for identification of type A motion artifact (sudden
move generated motion artifact). In this study, we also wanted
to study the effect of type B, C, and D correction. Therefore, we
used a home-made trend detection and detrending function
using an MA algorithm to track the trend in fNIRS signal at
different frequencies to identify type B, C, and D motion arti-
facts. This process also located the motion artifacts in the time
series, thus providing the prior information for PCA and spline
techniques.

We then applied five different motion correction techniques
(PCA, spline, MA, wavelet, as well as MA and wavelet) to the
delta OD series after the first round of the motion artifact detec-
tion process (except CBSI method; this method needs HbO and
HbR data for motion correction; therefore, a different processing
stream was applied for the CBSI method). Then, the motion arti-
fact detection process was applied again in order to count the
number of motion artifacts of different types. The motion
corrected delta OD data were further filtered with a third-
order Butterworth low-pass filter of ∼0.5 Hz to prevent the
physiological noise interference (e.g., cardiac noises) and high-
frequency measurement noises; the filter coefficients are auto-
matically designed by the MakeFilter function in MATLAB®

(coefficients: A: [1 −2.37 1.93 −0.53] B: [0.0029 0.0087
0.0087 0.0029]). Then the filtered OD data were converted to
HbO and HbR concentration data by the modified Beer-Lambert
law (MBLL) (differential path length factor is selected to be 6
for both 690 and 830 nm wavelengths). Finally, the HbO and
HbR data derived from previous steps went through a block
averaging process and were regressed with a GLM.45 A flow-
chart of the processing steps can be found in Fig. 2.

For CBSI method, we first applied a low-pass filter of
(∼0.5 Hz) followed by the MBLL conversion to the delta OD

data after the first round of motion detection process. The
derived HbO and HbR data were then passed through the CBSI
motion correction, and the processed HbO and HbR data were
sent to the block averaging process and GLM regression, as well
as converted back to delta OD data for the motion artifacts
counting process (see Fig. 2).

2.5 Motion Artifacts Correction Methods

The approach for evaluating the performance of motion correc-
tion methods with pediatric fNIRS data in this work was mod-
eled on Brigadoi et al. (2014), where they previously examined
adult fNIRS data. Below is a brief description of the motion arti-
facts correction methods.

2.5.1 Spline

We applied a channel-by-channel spline interpolation method
that is integrated with the Homer2 toolbox44 and developed
by Scholkmann and colleagues.36 The method uses a cubic
smoothing spline curve modeling motion artifacts. The reduc-
tion of motion artifacts is then achieved by subtracting the mod-
eled spline interpolation curve. The curve is created using the
csaps function in MATLAB software. To guide the curve’s
shape, this function used the smoothing parameter p ∈ ½0;1�,
which p increased from 0 to 1, thereby modifying the curve’s
shape from a straight line to a cubic spline. We used the inte-
grated version of the spline interpolation method in Homer 2
toolbox,44 and guided by prior work,28,29,36 we set the p to 0.99.

2.5.2 Principal component analysis

PCA converts a set of signals into a set of uncorrelated time
series retaining the variation. In the fNIRS context, PCA can
transform the observed time series to linearly uncorrelated

Fig. 2 Data processing flowchart.
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principal components. Each component is accounting for a cer-
tain portion of the variance in the data, ranging from large to
small. This process can be expressed as

EQ-TARGET;temp:intralink-;sec2.5;63;719Xpc ¼ w · X;

where X is the data matrix with dimension N × T, w is the
weight matrix with dimension N × N, Xpc is the transformed
N × T uncorrelated matrix, N is the number of fNIRS channels,
and T is the number of time points in the collected signal. Given
that the variance of motion artifacts is often much larger com-
pared with the more meaningful hemodynamic responses, we
usually remove a predefined portion of the variance in the trans-
formed signal matrix Xpc, then restored the pruned principle
components matrix to the signal using the weight matrix w,
to achieve motion correction. We used the integrated version
of the PCA method in Homer2 toolbox,44 by setting the param-
eter nSV to be 0.9.

2.5.3 Wavelet

Wavelet analysis decomposes signals at various frequencies
along time. This method was first applied to the fNIRS signal
for motion artifact correction purposes by Molavi and Dumont.37

Briefly, this method applies discrete wavelet transforms to
decompose the fNIRS signal collected from each channel at
multiple time-frequency locations. The time-frequency details
of the signal are estimated as wavelet coefficients. The wavelet
method assumes that the fNIRS signal linearly consists of
task-evoked hemodynamic responses and motion artifacts.
Therefore, the estimated wavelet coefficients are assumed to fol-
low a normal distribution, where motion artifact relevant coef-
ficients lie far from the center of the distribution. Thus, the
motion artifacts can be diminished by removing these outlier
coefficients then restoring the signal from the rest of the coef-
ficients. In this study, we used the wavelet filtering function in
Homer2 toolbox with Daubechies 5 wavelet,44 with the tuning
parameter iqr set to 1.5, following previous studies.28,29,37

2.5.4 Correlation-based signal improvement

Cui and colleagues originally developed the correlation-based
signal improvement (CBSI) algorithm for fNIRS signal motion
correction purposes.38 This method presumes that the observed
signal is a linear combination of the true hemodynamic responses,
motion artifacts, and other measurement noises. It also assumes
that the ratio between motion artifact amplitudes presented in
HbO and HbR equals to the ratio between the amplitudes of
the true HbO and HbR signals. Based on the assumptions made
above, the CBSI algorithm can estimate the true physiological
HbO and HbR signals according to the observed signal. In the
current study, we applied CBSI algorithm by using its inte-
grated version in Homer2 toolbox,44 which requires no input
parameters.29

2.5.5 Moving average

MA is a signal smoothing technique that captures the trend of
the signal. It is a type of low pass finite impulse response filter.
In this study, we applied the simple moving average (SMA)
algorithm to the fNIRS data collected from each channel.
The process can be described as

EQ-TARGET;temp:intralink-;sec2.5;326;752SMA ¼ Pðt−nÞþ · · · þPt−1 þ Pt þ Ptþ1þ · · · þPtþn

2nþ 1
;

where t is the time and n is the number of points included in the
MA. In this study, we chose n of 25 (5 s data). We first extracted
the low-frequency trend from the signal using the moving aver-
age algorithm, then subtracted the trend from the signal.

2.6 Metrics of Comparison

We defined five metrics in order to quantitatively evaluate the
performance of the different motion correction methods.

The first metric is defined as the amount variation of different
motion artifacts (the number of motion artifacts identified before
subtracted by the number of motion artifacts identified after).
The numbers of four kinds of motion artifacts, identified before
and after motion correction methods application, were calculated
and compared for data on both 690- and 830-nm wavelengths.

The second and third metrics are the R values and t values
generated during the GLM-based regression. The R value is
the residual of the GLM-based regression. It indicates the sim-
ilarity between the predesigned model and the recorded data.
Therefore, a smaller R value indicates a better performance
of a motion correction technique. A t value is the ratio between
the regression coefficient beta and the residual. An increasing
t value can be caused by either an increase of the beta
value or a decrease of the residual, thus also indicating a prom-
ising performance of a motion correction method. In the cur-
rent study, we expected the experimental conditions to have
the highest responses in the language-related cortical area.
Therefore, we only focused on the experimental condition rel-
evant t values.

The fourth and fifth metrics are the area under the averaged
hemodynamic response curve between 0 and 1.5 s, and the ratio
of the area under the curve between 1.5 and 3 s to the area under
the curve between 0 and 1.5 s. These two metrics are important
parameters of the block-averaged response. These are concepts
similar to those adopted in Ref. 29. However, the participants in
this study are children, not adults. Therefore, we assumed that
the time period it takes for a hemodynamic curve to reach its
peak is shorter than that of an adult; thus, we used 1.5 s instead
of 2 s.

3 Results
The quantity variations of different motion artifacts are
displayed in Fig. 3.

For type A motion artifacts, the motion correction methods
we applied, which produced the best results for both 690 and
830 nm wavelengths, were wavelet, CBSI, and the wavelet
and MA combination, while the MA and PCA methods pro-
duced poor results for both wavelengths. For type B motion
artifacts, the wavelet method alone, as well as the wavelet and
MA combination, attained the best results for both wavelengths.
For type C motion artifacts, the spline and wavelet and MA
combination each performed better than other methods for
both wavelengths. For type D motion artifacts, spline, MA,
and the wavelet and MA combination outperformed the other
methods for the 690 nm data, while all methods achieved the
same performance compared to each other in 830 nm data,
yet wavelet and CBSI performed better.

The GLM-based regression results are presented in Fig. 4.
The t values (averaged across three channels) of the HbO signal
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from all channels increased after we applied CBSI, wavelet, MA,
and the wavelet and MA combination, but decreased after we
applied PCA and spline. The t values of the HbR signal changed
in accordance with the HbO signal, but with a weaker magnitude.

The R values of both HbO and HbR decreased after we applied
wavelet, MA, CBSI, and the wavelet and MA combination.

Figure 5 shows the AUC0−1.5 results of the HbO and HbR
data. All of the methods we applied achieved similar

Fig. 3 The amount of variation of four types of motion artifacts after applying motion correction
techniques.

Fig. 4 General linear model regression derived t value and R value of three channels (three channels
regressed as one) before and after applying different motion correction techniques.

Journal of Biomedical Optics 126003-5 December 2015 • Vol. 20(12)

Hu et al.: Comparison of motion correction techniques applied to functional. . .



performances, except the spline and wavelet methods. Wavelet
performed better than the other methods with a 65% decrease in
HbO data and 64% increase in HbR data. Spline presented a less
promising performance, showing only a 46% decrease in HbO

data and a 46% increase in HbR data. The AUCratio results are
shown in Fig. 6. The MAmethod achieved the best performance
for both HbO and HbR data, while the spline and CBSI methods
performed worse than other methods for both HbO and
HbR data.

4 Discussion
The goal of the study was to examine the efficiency of standard
motion correction methods toward developmental fNIRS data.
Specifically, we compared the performances of six motion cor-
rection techniques on fNIRS data derived from children 6 to
12 years old. The motion correction techniques we selected
for comparison did not require extra equipment or a real-time
data acquisition environment. Importantly, we did not consider
the trial rejection method. The comparison metrics we selected
aimed to qualitatively and quantitatively compare the perfor-
mances of the motion correction abilities of these different
techniques.

Previous studies reported that spline interpolation can
achieve promising28,36,47 and less promising results.29 In theory,
the spline technique can reduce all four types of motion artifacts
equally. However, in our study, using this technique yielded

Fig. 5 AUC0−1.5 variation after applying different motion correction techniques.

Fig. 6 AUCratio before and after applying different motion correction
techniques.
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minimal improvement in the data, in comparison to the data
before motion correction techniques were applied in all metrics.
The reason for this is that the spline technique uses the preiden-
tified motion artifacts to subtract a generated cubic function.
However, the motion artifact shapes vary in fNIRS data, thus
causing unstable results. Vinette et al.47 tested the spline inter-
polation method on real long-term fNIRS data measured from
patients with epilepsy. Their results showed spline interpola-
tion method is good at reducing baseline shift motion arti-
facts. However, they also pointed out the limitations of the
spline interpolation method, requiring different parameters
for different participants and lower performance when brain
response signal and motion artifact overlapped. Thus, in our
study, the use of same parameters for all participants and pos-
sible overlapping between task evoked responses and motion
artifacts may lead to the less promising motion correction
results.

Cooper et al. showed that using PCA produced better results
than using no motion correction technique,28 and Brigadoi et al.
claimed the performance of PCA is variable depending on the
data set.29 In the current study, we examined a data set acquired
from children. The performance of the PCA technique in our
study was not promising. Our data show that PCA successfully
reduced type B, C, and D motion artifacts, but did not reduce
type A motion artifacts. Although the PCA technique per-
formed fairly well in the area under the curve (AUC)-related
metrics, the GLM-based regression-related metrics decreased
after applying PCA for both HbO and HbR. The reason for
this may be that the PCA technique is a multichannel approach;
thus, it requires that an artifact be presented in multiple chan-
nels (to be identified as a principal component), which is not
always the case. The basic assumption of the PCA technique,
that the components need to be independent, was violated. This
may have additionally contributed to the poor performance we
observed.

The CBSI technique performed well with our data. It
decreased the number of all motion artifacts, except type B.
The AUC0−1.5 and AUCratio metrics jointly showed an improve-
ment in both averaged HbO and HbR data. The GLM-related
metrics increased in t value, and also slightly decreased in
residual for both HbO and HbR data. However, the results of
CBSI can be unstable, especially because an assumption of

the CBSI method is that the HbO and HbR data are always neg-
atively correlated, which may not always be the case. According
to our data, in most cases, when the HbO signal increases, the
HbR signal decreases, but sometimes HbR increases or remains
unchanged. Furthermore, this is a reason why fNIRS researchers
have reported that the HbO signal is more reliable than the HbR
signal in fNIRS studies.48

In our study, the wavelet technique achieved a promising
result, as it greatly reduced type A and type B motion artifacts,
and barely reduced type C and type D motion artifacts. It also
achieved very good results in two AUC-related metrics, and
slightly increased the t value and R value for both HbO and
HbR data. An advantage of the wavelet technique is that it
does not require any prior motion artifact detection algorithm.
Wavelet decomposes the signal into components on different
time resolutions and then detects and fixes motion artifacts,
thus eliminating the need for detection algorithms. Finally,
the corrected component signals are restored to form the motion
corrected signal. Brigadoi et al.29 concluded that the wavelet
technique achieved the best results in their study. However,
according to our data, wavelet showed a weaker ability in reduc-
ing type C and type Dmotion artifacts. Therefore, we introduced
the MA technique to work jointly with the wavelet technique to
enhance the motion correction results.

Our data showed that using MA accomplished decent perfor-
mance on reducing type C and type D motion artifacts. It also
achieved good results for all other four metrics. The problem
with the MA method is that it has a weak ability to reduce
type A and type B motion artifacts. Therefore, the MA method
may not work independently when type A and type B motion
artifacts are significantly dominant in the data.

The wavelet and MA methods independently yielded some
of the best results in reducing type A/B and type C/D motion
artifacts. Due to this, we applied wavelet and MA combined
methods to our data to observe the cumulative results. As
expected, the wavelet and MA combination method attained
the best performance of reducing motion artifacts in our data.
The method greatly reduced all four kinds of motion artifacts
and acquired very good AUC-related metrics. The GLM regres-
sion t value for HbR signal we obtained was not as high as CBSI
method. The R value we obtained was the smallest among all
methods, indicating that this motion corrected data had the

Table 2 Methods’ performance summarization.

Methods

Metrics

Motion artifact reduction
General linear

model (GLM) t value GLM R value AUC0−1.5 AUC1.5−3∕AUC0−1.5Short term Long term

Wavelet
p

Principal component analysis
p

Spline
p

Moving average (MA)
p p

Correlation-based signal improvement

MA and wavelet
p p p p p p

Note:
p

indicates the good performance in certain category.
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smallest deviation from the modeled data. As stated above, the
reason for this is that the wavelet method and the MA method
can, respectively, handle high-frequency and low-frequency
noises. However, the disadvantage of using these combined
methods is that the motion correction process must be applied
two times, which may cause an over-reduction of the magnitude
of the signal and can lead to low regression coefficients and low
t values.

In general, the spline technique was fairly successful at reduc-
ing all types of motion artifacts, but leads to unsatisfied metrics.
This was possibly due to improper correction of motion artifacts.
The PCA method reduced different motion artifacts less success-
fully than other methods in this study, thus leading to less prom-
ising results in all metrics except AUC0−1.5. The reason for this
could be the absence of motion artifacts in the channels in our
study. If so, PCA could not catch the motion artifacts as a prin-
cipal component. CBSI demonstrated good results for reducing
type A and type C motion artifacts, wavelet reduced type A
and type B motion artifacts better than other methods, MA cor-
rected type C and type D motion artifacts better than other meth-
ods, and the combination of wavelet and MA effectively reduced
all types of motion artifacts. These latter four techniques achieved
similar results in AUC0−1.5, indicating they reduced the curve
from 0 to 1.5 s. MA and wavelet combination and MA performed
better than other methods for the AUCratio metric. Interestingly,
both MA and wavelet combination and MA achieved promising
results for t value and R value metrics. This indicates that type
C and type D motion artifacts affect GLM metrics more than
type A and type B motion artifacts. Table 2 provides a perfor-
mance summarization for all the methods applied in the cur-
rent study.

5 Conclusion
In this study, we applied six different techniques on fNIRS data
recorded from children completing a language task and com-
pared the performance of these techniques. We compared the
differences in amount of motion artifacts, AUC0−1.5, AUCratio,
GLM regression-based t values and R values before and after
motion correction application. Our data revealed that the MA
and wavelet combination produced the largest improvement
in the computed metrics. We also found that type C and type
D motion artifacts affect GLM-related metrics more than type
A and type B motion artifacts.
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