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Abstract. Retinal image quality assessment (RIQA) is an essential step in automated screening systems to
avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA
algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illu-
mination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of
considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to
evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used
along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination fea-
tures are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal
images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets
resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature
sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The
classification results show superior performance of the algorithm in comparison to other methods from literature.
Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for
automatic screening systems. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.9.096007]
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1 Introduction
The World Health Organization (WHO) estimated that in 2010
there were 285 million people worldwide with visual impair-
ments from which 39 million suffered blindness.1 Diabetic
retinopathy (DR) and glaucoma are among the dominant silent
ocular diseases causing the increasing, yet potentially avoidable,
vision problems. In 2010, there was an estimate of 932 and 60.53

million people worldwide with DR and glaucoma, respectively.
Silent diseases have mild slowly progressing early symptoms
that usually pass unnoticed by patients. Patients commonly
become aware of these silent diseases in their late stages after
severe vision damage has already occurred. In their early stages,
the medical treatment of silent ocular diseases is relatively sim-
ple and can help prevent disease progression. If left untreated,
pathological complications occur leading to severe visual
impairments requiring complex treatment procedures that are
mostly ineffective.4 Accordingly, the early detection and proper
treatment of silent ocular disease symptoms are necessary to
limit the growth of avoidable visual impairments worldwide.
For example, studies have shown that early detection of DR by
periodic screening reduces the risk of blindness by about 50%.5

Early disease detection requires frequent medical inspection
of millions of candidate patients such as those with family

history of glaucoma or patients of diabetes. A recent study
also found a strong relation between chronic kidney diseases
and ophthalmic diseases causing treatable visual impairments.
This study strongly recommended the eye screening of all
patients with reduced kidney functions.6 The manual screening
of such a large population has the drawback of producing an
enormous overhead on ophthalmologists. Moreover, manual
screening can be limited by the low ratio of ophthalmologists
to patients specifically in developing countries and rural
areas. Automatic retinal screening systems (ARSS) can help
overcome these limitations. ARSS capture and analyze the
retinal images without the need of human intervention. Based
on the automated diagnosis, a subject is advised to consult
an ophthalmologist if disease symptoms are detected.

Substantial research efforts were put into the development of
ARSS, however, their performance was found to be strongly
reliant on the quality of the processed retinal images.7,8

Generally, medically suitable retinal images are characterized
by two main aspects:

i. Clarity: Medically suitable retinal images should be
sharp, well-illuminated, and homogeneously illumi-
nated to facilitate the separation of retinal structures
and possible disease lesions by automatic systems.
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Ophthalmologists examining the retinal images also
require them to be of adequate clarity for reliable
diagnosis.

ii. Content: Retinal images must have an adequate field
definition including all the necessary retinal structures.9

A clear image having missing or incomplete retinal struc-
tures could result in an image that is unsuitable for medi-
cal diagnosis. Furthermore, nonretinal images (outliers)
should be correctly detected to avoid possible misdiagno-
sis if these images were further processed by ARSS.

Retinal images are acquired using digital fundus cameras that
capture the illumination reflected from the retinal surface.
Studies have shown that the percentage of retinal images unsuit-
able for ARSS is about 10% and 20.8% for dilated and nondi-
lated pupils, respectively.7 Medically unsuitable retinal images
can result from several factors including inadequate illumina-
tion, poor focus, naturally curved structure of the retina, varia-
tion of pupil dilation, and pigmentation among patients, along
with patient movement or blinking.10–12 The processing of poor
quality images could result in an image recapture request by the
ophthalmologist, which costs both money and time. In a worse
scenario, analysis of medically unsuitable retinal images by
the ARSS can cause a diseased eye to be falsely diagnosed
as healthy leading to delayed treatment. Consequently, retinal
image quality assessment (RIQA) is a crucial preliminarily
step to assure the reliability of ARSS.

In this work, an RIQA algorithm suitable for ARSS is pro-
posed that considers various clarity and content quality issues
in retinal images. The rest of this paper is organized as follows:
Section 2 gives a comprehensive survey of the previous work in
quality assessment considering both retinal image clarity and con-
tent. Section 3 summarizes the details of the datasets used for
the analysis and testing of the proposed algorithm. In Sec. 4,
the suggested feature sets addressing sharpness, illumination,
homogeneity, field definition, and outliers are introduced. Then
in Sec. 5, initially each of the five quality feature sets is individu-
ally validated. Next, all the feature sets are used to create an
overall quality feature vector that is tested using a dataset with
a wide range of quality issues. Section 6 includes the discussion
and analyses of each of the presented feature sets and the overall
quality algorithm. Finally, conclusions are drawn in Sec. 7.

2 Literature Review
In the field of retinal image processing, most research efforts
have been directed toward the development of segmentation,
enhancement, and disease diagnosis techniques. Recently, stud-
ies have shown that the performance of these algorithms signifi-
cantly relied on the quality of the processed retinal image.8 Poor
image clarity or missing retinal structures can render the image
inadequate for medical diagnosis. In this section, a survey and
categorization of clarity and content-based RIQA methods are
provided.

2.1 Retinal Image Clarity Assessment Review

Retinal image clarity assessment techniques can be generally
divided into spatial and transform-based depending on the
domain from which the quality features are calculated. Although
spatial RIQA techniques were more widely adopted in literature,
recently several transform-based algorithms have been intro-
duced and shown to be highly effective in RIQA.

2.1.1 Spatial retinal image quality assessment

Spatial RIQA techniques can be further divided into generic and
segmentation-based approaches. Generic RIQA approaches rely
on general features that do not take into account the retinal struc-
tures within the images. In the early literature, Lee and Wang13

compared the test image’s histogram to a template histogram
created from a group of high-quality retinal images for quality
assessment. Shortly after, Lalonde et al.14 argued that good qual-
ity retinal images do not necessarily have similar histograms and
proposed using template edge-histograms instead. Nevertheless,
both these approaches depended on templates created from a
small set of excellent retinal images, which do not sufficiently
consider the natural variance in retinal images. Recently, generic
approaches have evolved to use a combination of sharpness,
statistical, and textural features15–17 to evaluate image sharpness
and illumination.

Segmentation or structural-based RIQA approaches define
high-quality retinal images as those having adequately separable
anatomical structures. Among the distinct works is that pre-
sented by Niemeijer et al.18 who introduced image structure
clustering. Retinal images were segmented into five structural
clusters including dark and bright background regions, high
contrast regions, vessels, and the optic disc (OD). A feature vec-
tor was then constructed from these clusters to be used for retinal
image quality classification. More commonly, segmentation-
based approaches relied solely on blood vessel information
from either the entire image19–22 or the macular region.23–25

The latter approaches argued that macular vessels are more diag-
nostically important as well as being the first to be affected by
slight image degradation.24 Nevertheless, some retinal images
were found to be of sufficient quality although their macular
vessels were too thin or unobservable.26

Generic methods have the advantage of being simple while
giving reliable results. However, they have the disadvantages of
completely ignoring retinal structure information as well as
becoming computationally expensive when textural features
are employed.27 Segmentation methods are usually more com-
plex and can be prone to errors when dealing with poor quality
images.28 However, Fleming et al.29 have shown that both
generic and segmentation-based features were equally useful
for RIQA. Recently, hybrid techniques are being adopted in
literature that combine both generic and structural features for
RIQA.7,28,30 Moreover, an interesting emerging approach for
sharpness assessment compares retinal images to their blurred
versions based on the intuition that unsharp images will be
more similar to their blurred versions.9,16,31

2.1.2 Transform domain retinal image quality assessment

Wavelet transform (WT) has been successfully utilized in
several image processing applications including image compres-
sion, enhancement, segmentation, and face recognition. WT has
also been widely used in general image quality assessment,32–36

yet only limited work explored its application in RIQA.
Multiresolution analysis performed with WT has the advan-

tage of being localized in both time and frequency.37 WT
decomposes images into horizontal (H), vertical (V), and
diagonal (D) detail subbands along with an approximation
(A) subband. Detail subbands include the image high-frequency
information representing edges. The approximation subband
carries the low-frequency information of the image. Further
image decomposition can be performed by recursively applying
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WT to the approximation subband. Generally, there are two
types of WTs: Decimated wavelet transform (DecWT) and
undecimated or stationary wavelet transform (UWT). DecWT
is the shift-variant and is more widely used as it is very efficient
from the computational point of view.38 UWT is the shift-invari-
ant due to the elimination of the decimation step making it more
suitable for image enhancement algorithms.39 Although WT is
not yet widely deployed in RIQA, both DecWT and UWT have
been successfully applied in RIQA algorithms.

In the context of full-reference RIQA in which image quality
is assessed through a comparison to a high-quality reference
image, significant work was presented by Nirmala et al.40,41

Nirmala et al. introduced a wavelet weighed full-reference dis-
tortion measure relying on extensive analysis of the relation
between retinal structures and wavelet levels. In the context
of no-reference RIQA in which quality of the test image is
blindly assessed without the usage of any reference image, sev-
eral relevant researches were introduced in literature. Bartling
et al.42 assessed retinal image quality by considering its sharp-
ness and illumination. Image sharpness was evaluated by com-
puting the mean of the upper quartile values of the matrix
returned by the WT. This measure was calculated only for
the nonoverlapping 64 × 64 pixel image blocks found to have
relevant structural content. Katuwal et al.43 summed the detail
subband coefficients of three UWT levels for blood vessel
extraction. They assessed retinal image quality based on the
density and symmetry of the extracted blood vessel structure.
Veiga et al.26 used a wavelet-based focus measure defined as
the mean value of the sum of detail coefficients along with
moment and statistical measures. However, Veiga et al. per-
formed only one level of wavelet decomposition thus not
fully exploiting the WT multiresolution potential.

In the previous work by AbdelHamid et al.,44 decimated
wavelet-based sharpness and contrast measures were introduced
to evaluate retinal image quality. Proposed sharpness features
were extracted from five wavelet levels. The significance of
each level with respect to retinal image size and quality
grade was explored using two datasets of different resolutions
and blurring severity. In each case, the most relevant wavelet
level was used for feature computation. The wavelet-based
sharpness features were found to be efficient for RIQA regard-
less of image size or degree of blur. The algorithm’s short
execution time made it fairly eligible for real-time systems.
Nevertheless, only image sharpness was considered for quality
assessment.

2.2 Content Literature Review

Several RIQAworks considered retinal field definition and non-
retinal image differentiation alongside clarity issues. For field
definition evaluation, Fleming et al.23 presented a two-step algo-
rithm in which the vessel arcades, OD, and the fovea were ini-
tially detected. Then, several distances related to these structures
were measured to assess the image’s field of view (FOV). Other
algorithms relied only on validating the presence of the OD,43

fovea,9 or both30 in their expected locations. As for outlier detec-
tion, Giancardo et al.19 and Sevik et al.30 used RGB information
for the identification of outliers. Yin et al.31 used a two-stage
approach to detect outlier images in which a bag of words
approach first identified nonretinal images. Next, these nonre-
tinal images were rechecked by comparing them to a set of
retinal images using the structural similarity index measure.45

In this work, a no-reference RIQA algorithm intended for
automated DR screening systems is proposed. The introduced
algorithm evaluates five clarity and content features: sharpness,
illumination, homogeneity, field definition, and outliers.
Sharpness and illumination features are calculated from the
UWT detail and approximation subbands, respectively. For
homogeneity assessment, wavelet features are utilized in addi-
tion to features from the retinal saturation channel that is spe-
cifically designed for retinal images. Field definition and outlier
evaluation are performed using the proposed sharpness/illumi-
nation features and color information, respectively. All proposed
feature sets are separately validated using several datasets. Then,
all the features are combined into a larger quality feature vector
and used to classify a dataset having various quality degradation
issues into good and bad quality images. Finally, the overall
performance of the introduced RIQA algorithm is thoroughly
analyzed and compared to other algorithms from literature.

3 Materials
Many publicly available retinal image datasets are available,
however, only a few of them include quality information. In
this work, images from five different publicly available datasets
are used for the development and testing of the proposed quality
features. The datasets were captured using different camera set-
ups and are of varying resolutions and diverse quality problems.

i. DRIMDB:30 125 good, 69 bad, and 22 outlier images
annotated by an expert. Images were obtained with
a Canon CF-60UVi Fundus Camera at a 60 deg FOV
and a resolution of 760 × 570 pixels.

ii. DR1:9 1300 good and 1392 bad quality retinal images.
Three medical specialists annotated the dataset. Images
were captured using a TRC-50X with a 45 deg FOV at
a resolution of 640 × 480 pixels.

iii. DR2:9 466 good and 194 bad quality macula centered
images annotated by a medical expert. The dataset
also includes 260 nonmacula centered images. Images
were taken using TRC-NW8 with Nikon D90 camera.
All images have a resolution of 869 × 575 pixels.

iv. HRF:20 18 good and 18 bad quality retinal images cap-
tured using a Canon CR-1 fundus camera with a 45 deg
FOV. The dataset includes images with resolutions
varying from 3888 × 2592 to 5184 × 3456 pixels. The
HRF bad quality images reportedly only suffer from
blurring issues.

v. MESSIDOR:46 1200 medically suitable retinal images
captured using Topcon TRC NW6 with a 45 deg FOV.
Images have resolutions of 1440 × 960, 2240 × 1488,
and 2304 × 1536 pixels (provided by Messidor program
partners in Ref. 47).

4 Methods
The proposed RIQA algorithm exploits the multiresolution char-
acteristics of WT for the computation of several quality features
to assess the sharpness, illumination, homogeneity, and field
definition of the image. Furthermore, the retinal saturation
channel and color information are used to calculate image
homogeneity and outlier features, respectively. Finally, the five
quality feature sets are concatenated to create the final quality
feature vector that forms the input to a classifier for the overall
image quality assessment. Generally, the scale of the wavelet
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subbands depends on image resolution. In order to ensure res-
olution consistency when computing wavelet-based features,
images with different resolutions were resized to 432 ×
496 pixels. All image resizing in this work was performed
using bicubic interpolation. The presented RIQA algorithm is
summarized in Fig. 1 and will be thoroughly described in the
subsequent sections.

4.1 Sharpness

Medically suitable retinal images must include sharp retinal
structures to facilitate segmentation in automatic systems.
Generally, sharp structures are equivalent to high-frequency
image components. Wavelet decomposition can separate an
image’s high-frequency information into its detail subbands.
Thus, sharp retinal images would have more information content
within their wavelet detail subbands corresponding to larger
absolute wavelet coefficients compared to blurred images.
Figure 2 shows the level 3 detail subbands of sharp and blurred
retinal images. More retinal structure-related information
appears in the different detail subbands of the sharp image in
comparison to the amount of information within the blurred
image’s detail subbands.

In the previous work by AbdelHamid et al.,44 retinal quality
assessment was based on the intuition that good quality images
have sharp retinal blood vessels. Extensive analysis was made to
find the single wavelet level having the most relevant blood
vessel information. Sharpness quality evaluation was then per-
formed using features calculated solely from that single wavelet
level. However, the analysis demonstrated the dependence of
the relevant wavelet level on the amount of blurring within
the image.

In this work, a more generic approach for retinal image
sharpness assessment is adopted. Retinal images are decom-
posed into five wavelet levels (L1, L2, L3, L4, and L5) and all
levels are involved in the computation of the sharpness features.
Nirmala et al.41 have shown that there is a relation between reti-
nal structures and different wavelet levels. They showed that for
512 × 512 pixel images, blood vessel and OD information was

more relevant in the detail subbands of levels 2 to 4, whereas
information related to the macular region was more significant
in levels 1 to 3. Hence, considering L1 to L4 for sharpness fea-
tures computation has the advantage of taking into account
sharpness information of all the different retinal structures.
Level 5 has also been used for sharpness feature calculation
to investigate its relevance to retinal image sharpness assess-
ment. Another modification to our previous work is the use
of UWT, which preserves more image information than the
DecWT due to the absence of the decimation step.48

Sharpness RIQA algorithms commonly use only the green
channel for feature computation because of its high
contrast.7,17–19,28–30,43,49 However, observation of retinal images
has shown that retinal structures in the red channel of sharp
images were generally clearer than in those of blurred images.
In this work, the proposed sharpness feature set includes four
wavelet-based measures computed from both the red and
green detail subbands. The wavelet Shannon entropy,50 mean,
and interquartile range (IQR) were used to measure the informa-
tion content, expectation, and dispersion of the detail subband
coefficients, respectively. The three sharpness features are given
by the following equations:

EQ-TARGET;temp:intralink-;e001;326;510Entropysubband ¼ −
XN
i¼1

jCij2 logejCij2; (1)

EQ-TARGET;temp:intralink-;e002;326;462Meansubband ¼
1

N

XN
i¼1

jCij; (2)

EQ-TARGET;temp:intralink-;e003;326;418IQRsubband ¼ Q3 −Q1; (3)

whereN is the number of coefficients in the wavelet subband, Ci
is the wavelet coefficient having index i and subband is the hori-
zontal, vertical, or diagonal subband,Q1 is the first quartile, and
Q3 is the third quartile.

The fourth sharpness measure used is the difference in wave-
let entropies between the test image and its blurred version

Fig. 1 Proposed RIQA algorithm.
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(WEntropydiff ). Sharp images are generally more affected by
blurring than unsharp images. WEntropydiff separates sharp
from unsharp images by measuring the effect of blurring on
the test images. Gaussian filters are commonly used in RIQA
literature9,15,26 as a degradation function to produce blurring
effect. Several Gaussian filter sizes with different standard
deviations were tested to compare their effect on retinal image
sharpness starting by a 3 × 3 Gaussian filter then incrementally
increasing the filter size. In our final experiments, a Gaussian
filter of size 15 × 15 and standard deviation 7 was used to
get the blurred version of the test image as it achieved noticeable
blurring within the retinal images affecting both the thin and
thick blood vessels. Smaller filters were found to scarcely
cause any visually detectable blurring within the images.

The sharpness feature set includes the wavelet-based entropy,
mean, IQR, and WEntropydiff. All features were calculated from
levels 1 to 5 of both the red and green detail subbands. Further
feature selection will be performed in Sec. 5.1 based on perfor-
mance analysis of the sharpness feature set on two different
datasets.

4.2 Illumination

An increase or decrease in the overall image illumination could
affect the visibility of retinal structures and some disease lesions.
The contrast of the image is also decreased, which could neg-
atively affect the suitability of the image for medical diagnosis.
It has been shown by Foracchia et al.51 that illumination in reti-
nal images has low spectral frequency. Low-frequency informa-
tion of the multiresolution decomposed images can be found in
their approximation subbands. Most image details are separated
in the detail subbands of higher wavelet levels. Hence, the L4
approximation subband is almost void of sharpness information
consisting mainly of illumination information. In this paper, the
adequacy of using L4 RGB wavelet-based features for retinal
illumination assessment is explored.

Figure 3 shows examples of the RGB channels of well-
illuminated, over-illuminated, and under-illuminated retinal
images. The overall image illumination is seen to be directly
reflected in the exposure of each of the RGB channels. RGB
color information has been used before for retinal image

illumination evaluation by several researchers. Niemeijer
et al.18 created a feature set including information from five
histogram bins for each of the RGB channels. Yu et al.7 calcu-
lated seven statistical features (mean, variance, skewness,
kurtosis, and quartiles of cumulative density function) from
each of the RGB channels. The illumination feature set used
includes the mean and variance L4 approximation subband of
the RGB channels.

4.3 Homogeneity

The complexity of the retinal imaging setup along with the
naturally concave structure of the retina can result in nonuni-
formities in the illumination of retinal images. As a result,
the sharpness and visibility of the retinal structures can become
uneven across the image. This in turn would affect the reliability
of the image for medical diagnosis. Retinal image homogeneity
is commonly addressed in the literature using textural
features15,17,28,30 that are not adapted for retinal images and
can be computationally expensive.27

In this section, homogeneity measures specifically designed
for retinal images are introduced. Retinal images from DR2,
DRIMDB, and MESSIDOR datasets were inspected and ana-
lyzed in the process of the homogeneity features development.
All images used for the development of the homogeneity fea-
tures were excluded from any further homogeneity tests to
avoid classification bias.

4.3.1 Retinal saturation channel homogeneity features

Basically, the colors observed in retinal images depend on the
reflection of light from the different eye structures. The radiation
transport model (RTM)52,53 shows that light transmission and
reflection within the eye mainly depend on the concentration
of hemoglobin and melanin pigments within its structures.54

Red light is scarcely absorbed by either hemoglobin or melanin
and is reflected by layers beyond the retina. This results in the
usually over-illuminated, low-contrast red channel as well as the
reddish appearance of the retinal images. Blue light is strongly
absorbed by hemoglobin and melanin as well as by the eye
lens.55 This results in the commonly dark blue channel of retinal

Fig. 2 Level 3 green channel detail subbands of sharp (first row) and blurred (second row) retinal images
from DRIMDB.30 From left to right: color image, horizontal, vertical, diagonal subbands.
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images. Green light is also absorbed by both pigments but less
than the blue light. Specifically retinal structures containing
hemoglobin, such as blood vessels, absorb more green light
than the surrounding tissues resulting in the high vessel contrast
of the green channel.

The RTM directly explains the theory behind the well-known
notion of retinal images having overexposed red channels, high
contrast green channels, and dark blue channels. Based on this
theory, we propose a saturation channel specifically suitable for
retinal images. The proposed saturation channel was inspired by
the saturation channel of the HSV model (SHSV) and is referred
to as the retinal saturation channel (Sretina). By definition,
saturation is the colorfulness of a color relative to its own
brightness.56 In the HSV color model, saturation is calculated
as the most dominant of the RGB channels with respect to
the least prevailing color as given by the following equation:

EQ-TARGET;temp:intralink-;e004;63;225SHSV ¼ maximumðR;G;BÞ −minimumðR;G;BÞ
maximumðR;G;BÞ : (4)

The Sretina considers the findings of the RTM in creating a
saturation channel better suited for retinal images. Essentially,
the Sretina has two main modifications over SHSV:

1. Based on the RTM, red is the predominant color in
retinal images. Thus, the proposed saturation channel
is calculated as the colorfulness of the red channel.

2. In order to more precisely capture retinal image illu-
mination variations, the proposed retinal image satura-
tion channel is calculated as the colorfulness of red

with respect to both the green and blue channels.
These are accounted for in the Sretina equation as
ðR −GÞ∕R and ðR − BÞ∕R, respectively.

The equation of the newly proposed Sretina is then given by

EQ-TARGET;temp:intralink-;e005;326;349Sretina ¼
� ðR−GÞ

R � ðR−BÞ
R for R ≠ 0

0 for R ¼ 0
; (5)

where the R, G, B denote the red, green, and blue components of
the retinal image, respectively.

Figure 4 shows examples of retinal images of various homo-
geneities along with their Sretina channel and Sretina histogram.
Evenly illuminated retinal images as in Fig. 4 (rows 1 and 2)
resulted in Gaussian-like shaped Sretina distributions centered
within the middle region of the histogram. On the other hand,
for nonhomogeneous retinal images as in Fig. 4 (rows 3 and 4),
the distribution shape of the Sretina was altered as well as being
shifted leftward. The difference in histogram positioning
between the homogenous and nonhomogenous images is
accounted for by measuring the percentage of pixels in middle
range of the Sretina (Pmid). A seventy-five percent middle
intensity range was considered to take into consideration differ-
ent lightening conditions of homogeneous retinal images.
Furthermore, several Sretina features were used to evaluate the
images’ homogeneity due to depicted differences between the
Sretina histogram distributions of homogenous and nonhomoge-
nous retinal images.

The homogeneity feature set includes the Sretina mean, vari-
ance, quartiles, IQR, skewness, kurtosis, coefficient of variance

Fig. 3 Examples of retinal images of varying illumination from DR2:9 well-illuminated (first row), over-
illuminated (second row), and under-illuminated (third row). From left to right: color image, red channel,
green channel, blue channel.
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(CV), Pmid, energy, and entropy. More features will be added to
the homogeneity feature set in the next section.

4.3.2 Wavelet-based homogeneity features

Wavelet-based features are introduced in this section to comple-
ment the features derived from the Sretina channel to comprehen-
sively address retinal image homogeneity.

i. Difference between wavelet entropies of the red and
green channels

As explained by the RTM theory summarized in
Sec. 4.3.1, the green channel of retinal images typically
has higher contrast than the oversaturated red channel.
Higher green channel contrast is in turn equivalent to
higher information content which can be measured
by the wavelet entropy of the detail subbands. So
for well-illuminated retinal images, wavelet entropies
of the green channel’s detail subbands are commonly
larger than those of the red channel’s detail subbands.

However, illumination variations in retinal images are
more prominent in the red than the green channels as
shown in Fig. 5. Therefore, nonhomogenous retinal
images tend to show larger red channel wavelet entro-
pies than green channel wavelet entropies. Figure 6
shows examples of homogeneous and nonhomogeneous
images along with their green and red L3 wavelet entro-
pies. The difference between L3 red and green channel
wavelet entropies is added to the retinal image homo-
geneity feature set.

ii. WaveletEntropyL3/ WaveletEntropyL1 of green chan-
nel detail subbands

Nirmala et al.40 and AbdelHamid et al.44 have
observed that the information related to thick blood ves-
sels is more relevant in L3 detail subbands, whereas L1
has minimal information related to retinal structures.41

Consequently, for homogeneous retinal images, the
information content is significantly larger for L3 than for
L1 detail subbands. Nevertheless, abrupt illumination

Fig. 4 Examples of homogeneous retinal images from (row 1) MESSIDOR,46 (rows 2) DR2,9 and (rows 3
and 4) nonhomogeneous retinal images from DR2.9 From left to right: color image, Sretina channel, and
Sretina channel histogram.
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changes in nonhomogenous retinal images could result
in increased information content in L1 detail subbands.
Thus, homogenous retinal images tend to have higher
WaveletEntropyL3/WaveletEntropyL1 ratios than non-
homogeneous images. In Fig. 7, examples of retinal
images with varying homogeneities are given along with
their horizontal WaveletEntropyL3/WaveletEntropyL1
ratio. The WaveletEntropyL3/WaveletEntropyL1 ratio
calculated for the three detail subbands is also added
to homogeneity feature set.

The overall homogeneity feature set contains the Sretina fea-
tures (mean, variance, IQR, skewness, kurtosis, CV, Pmid,
energy, and entropy) along with the difference between red
and green L3 wavelet entropies and the WaveletEntropyL3/
WaveletEntropyL1 ratio.

4.4 Field Definition

Sharp and well-illuminated retinal images can be regarded as
medically unsuitable if they have missing or incomplete retinal
structures. Inadequate field definition can be caused by patient
movement, latent squint, or insufficient pupil dilation.23 In this

study, we are concerned with macula centered retinal images
captured at 45 deg FOV commonly recommended in DR
screening.9,23,24 Macula centered retinal images should have
the macula centered horizontally and vertically within the
image with the OD to its left or right for left and right eyes,
respectively.23 Such an orientation assures the diagnostically
important macular region is completely visible within the retinal
images. Figure 8 shows examples of macula and nonmacula
centered retinal images.

The proposed algorithm assesses an image’s field definition
by checking whether or not the OD is located in its expected
position. Initially, the middle region within the image is divided
into three blocks: left, center, and right as shown in Fig. 9.
A relatively large center region (50% of the image height) is
considered to take into account cases in which the OD is slightly
shifted upward or downward while adequate field definition is
still maintained. The algorithm evaluates the image’s field def-
inition by inspecting only these three blocks taking into account
the following two observations:

1. The OD has a vast number of thick vessels originating
from it. Thus, the block including the OD is expected

Fig. 5 Nonhomogeneous retinal (a) color image, (b) red channel, and (c) green channel from DR2.9

Fig. 6 Homogeneous (first row) and nonhomogenous (second row) retinal images from DR2.9 Then from
left to right: color image, green and red channel wavelet entropies of the L3 horizontal, vertical, and
diagonal subbands.

Journal of Biomedical Optics 096007-8 September 2016 • Vol. 21(9)

Abdel-Hamid et al.: Retinal image quality assessment based on image clarity and content



to have the highest sharpness information of the three
considered blocks.

2. The OD is distinguishable by its high intensity. Hence,
the block containing the OD is expected to have the
largest illumination among the three blocks.

Based on these two observations, four measures are proposed
for field definition validation

EQ-TARGET;temp:intralink-;e006;326;408Sharpmax ¼ maximumðSharpleft; SharprightÞ; (6)

EQ-TARGET;temp:intralink-;e007;326;386Illummax ¼ maximumðIllumleft; IllumrightÞ; (7)

EQ-TARGET;temp:intralink-;e008;326;360Sharpdiff ¼ Sharpmax − Sharpcenter; (8)

EQ-TARGET;temp:intralink-;e009;326;335Illumdiff ¼ Illummax − Illumcenter; (9)

where Sharpleft, Sharpcenter, and Sharpright are the sharpness
measures calculated for the left, center, and right blocks,
respectively. Illumleft, Illumcenter, and Illumright refer to the
illumination measures calculated for the left, center, and right
blocks, respectively.

Macula centered images are expected to have the macula
within their center block and the OD in one of the edge blocks
(left or right). Thus, based on the two former observations, mac-
ula centered images will be characterized by Sharpmax and
Illummax that are larger than Sharpcenter and Illumcenter, respec-
tively. Furthermore, the difference features exploit the fact that
the macula region, expected to be in the image’s center block,
has lower vessel concentration and darker illumination relative
to the block including the OD.

The field definition feature set includes the measures defined
by Eqs. (6)–(9). The sharpness and illumination features were
calculated using the L4 wavelet-based entropy and RGB fea-
tures described in Secs. 4.1 and 4.2, respectively.

Fig. 8 Retinal images with different field definition (a) macula centered, (b)–(d) nonmacula centered from
DR2.9

Fig. 7 Examples of (a) homogenous (from DR2)9 (b) nonhomogeneous sharp (from DR2)9 and (c) non-
homogenous blurred (from DRIMDB)30 retinal images with WaveletEntropyL3/WaveletEntropyL1 ratios
of (a) 37, (b) 11, and (c) 7.5.

Fig. 9 Regions of feature extraction in field definition evaluation
algorithm (image from DR19).
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4.5 Outliers

Outlier images can be captured during retinal image acquisition
due to incorrect camera focus or false patient positioning.30

They consist of nonretinal information making them irrelevant
for medical diagnosis. If outlier images are processed by ARSS,
they can be falsely classified as being medically suitable images
leading to unreliable or incorrect diagnosis. Generally, retinal
images are characterized by their unique coloration having a
dominating reddish-orange background along with some dark
red vessels and the yellowish OD. This characteristic dominat-
ing reddish-orange color of the retinal images can be explained
by the RTM model detailed in Sec. 4.3.1. On the other hand,
nonretinal images tend to have more generalized colorations
as shown in Fig. 10.

Color information from the RGB channels has been
commonly used to discriminate retinal from nonretinal
images.19,30 Nevertheless, several color models exist that sepa-
rate color and luminance information such as the CIELab and
HSV models. In the CIELab model, images are represented by
three color channels including image luminance, difference
between red and green as well as difference between yellow
and blue. In the HSV, image color, saturation, and value infor-
mation are separated into three different channels.

In this work, color information is also used to differentiate
between retinal and nonretinal images. Statistical features calcu-
lated from three different color models are compared for outlier
image detection. The mean, variance, skewness, kurtosis, and
energy calculated from the RGB channels, HSV hue and satu-
ration channels, and the CIELab color channels will be com-
pared in the next section to choose the color model more
suitable for outlier features calculation.

5 Results
In this section, the analyses and classification results of the pro-
posed RIQA measures are presented. Initially, each of the five
different feature sets (sharpness, illumination, homogeneity,
field definition, and outliers) are separately evaluated. Next,
the final quality feature vector is constructed and used to classify
the DR1 dataset which includes >2690 retinal images having
various quality issues. Finally, the overall quality results from
the proposed RIQA algorithm are compared to other algorithms
from the literature. Table 1 shows a summary of the datasets
used in the analysis of each of the individual feature sets and
the overall quality feature vector.

The field definition dataset was created using randomly
selected images from the already categorized macula centered
and nonmacula centered images within DR2. Furthermore,
three datasets were created for the evaluation of the sharpness,
illumination, and homogeneity feature sets. Bad quality images
in each of these datasets were chosen to convey degradations

related to the quality issue under consideration. Two experts
individually annotated each of the four created datasets for
sharpness, illumination, homogeneity, and field definition.
The interrater agreement between the two raters was measured
using Cohen Kappa’s coefficient.57 Kappa’s coefficient is a stat-
istical measure of interrater agreement for categorical items.
It is generally thought to be more robust than simple percentage
agreement since it takes into account the agreement occurring by
chance. Kappa’s coefficient was found to be 0.946, 0.967,
1.000, and 1.000 for the sharpness, illumination, homogeneity,
and field definition datasets, respectively. This indicates the high
level of reliability of the customized data sets. The sharpness
feature set was also tested on the HRF dataset, whereas the
outliers feature set was evaluated using DRIMDB.

Wavelet-based features were calculated using the
Daubechies4 (db4) UWT. All images were cropped to reduce
the size of the dark region surrounding the retinal region of inter-
est (ROI) within the image prior to feature calculation. Image
cropping has the advantage of decreasing the images’ size
and in turn the processing time by removing the irrelevant
nonretinal regions within the image.16 The cropping algorithm
employed is an adaptation of the method illustrated in Ref. 58.
First, a binary mask image is created through hard thresholding
then the ROI is determined by identifying the four corners of
this mask image. The computed boundaries are used to create
the cropped retinal image utilized for feature calculations.
Feature computations were performed using MATLAB software
(Mathworks, Inc., Natick, Massachusetts). All classification
results were obtained using fivefold cross validation in the

Fig. 10 Outlier images from DRIMDB.30

Table 1 Summary of the datasets used in testing the proposed
quality features.

Dataset
No. of good

images
No. of bad
images

Sharpness DRIMDB 18 18

HRF 18 18

Illuminationa DR1 60 60

Homogeneitya DR1 60 60

Field definition DR2 60 60

Outliers DRIMDB 194 22

Combined features DR1 1300 1392

aCreated dataset was used only for testing and were not included in
feature selection to avoid classification bias.
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Weka platform.59 For the analyses of the individual feature sets,
the k-nearest neighbor (kNN) classifier was utilized as it can
be easily tuned and provides consistent results. In all kNN
classification experiments within this work, the k parameter
was varied over the range from 1 to 10 and best classification
results were reported. Final tests on the DR1 dataset were per-
formed using the support vector machines (SVM) classifier
tuned to give optimal performance.

5.1 Sharpness Algorithm Classification Performance

In order to test the proposed sharpness algorithm, two datasets
of different resolutions and degree of blur were used. The first
dataset is a subset from DRIMDB and the second dataset is
HRF. Each of the datasets consists of 18 good quality and 18
bad quality images. Unlike the severely blurred DRIMDB
images, the unsharp images in the HRF dataset are only slightly
blurred with the main vessels still visibly clear. Images of the
DRIMDB and HRF datasets were resized to 448 × 512 pixels
and 960 × 1280 pixels, respectively. Image resizing was
performed to make them suitable for five-level wavelet
decomposition.

For the first dataset, classification using the complete sharp-
ness feature set resulted in an area under the receiver operating
characteristic curve (AUC) of 0.997. In further experiments,
only the wavelet entropy, mean, IQR, or WEntropydiff were
used for sharpness classification. AUCs higher than 0.99
were achieved when any of the four sharpness measures derived
from either the green, red, or both channels was separately used.
Moreover, the elimination of L5 sharpness features did not
degrade the results in any of the previous cases. The high clas-
sification performance can be attributed to the ability of the
wavelet-based features to easily separate sharp images from
severely blurred images.

The second dataset is considered more challenging since its
poor quality images are only slightly blurred. An AUC of 0.951
was achieved using the entire sharpness feature set. Several
observations can be made from further performed experiments
whose results are summarized in Tables 2 and 3. First, all red
channel sharpness features resulted in higher classification per-
formance than green channel features. Nevertheless, the best
results were achieved when both the red and green channels
were used for sharpness feature computations. Second, Table 2
shows that a slight improvement in classification results (AUC
of 0.954) is depicted upon the omission of L5 sharpness features
when both red and green channel features are combined. Third,
the comparison between absolute and WEntropydiff classifica-
tion results summarized in Table 3 shows an advantage to
using WEntropydiff .

Based on the experiments performed on the two sharpness
datasets, several modifications to the sharpness feature set

were made. Previous research has shown that L5 scarcely
had any sharpness-related information.41,44 Furthermore, experi-
ments have shown that the elimination of L5 sharpness features
had minimal effect on classification performance. Consequently,
only four-level wavelet decompositions will be employed in
sharpness computations. Moreover, absolute wavelet entropy
will be omitted from the sharpness vector as the WEntropydiff
performance was shown to be either equivalent or better than the
absolute wavelet entropy. The final quality feature vector will
thus include the wavelet-based mean, IQR, and WEntropydiff
sharpness features. All sharpness features are to be calculated
from both the red and green channels of L1 to L4 detail
subbands.

5.2 Illumination Algorithm Classification
Performance

A dataset consisting of 60 well-illuminated and 60 poorly illu-
minated images from DR1 was constructed to test the illumina-
tion algorithm. The poorly illuminated images had the overall
image exposure issues of being either over or under illuminated.
Images were resized to 432 × 496 pixels to make them suitable
for four-level wavelet decomposition. An AUC of 1 was
achieved for the proposed illumination feature vector. Table 4
shows classification results when utilizing separate and com-
bined color channels for feature computation. Higher results
were obtained by the green channel features followed by the
red then the blue. Superior performance was achieved when
all color channel features were combined. The final quality fea-
ture vector will contain the complete illumination feature set.

5.3 Homogeneity Algorithm Classification
Performance

In order to test the proposed homogeneity algorithm, a dataset
including 60 homogeneous and 60 nonhomogeneous retinal
images from DR1 was created. Homogeneity classification
results using the different proposed features are summarized
in Table 5. Classification with Sretina features, wavelet entropy
R–G, and WaveletEntropyL3/WaveletEntropyL1 resulted in
AUCs of 0.981, 0.899, and 0.982, respectively. The complete

Table 2 AUC for the HRF dataset using wavelet-based sharpness
features.

L1 to L5 L1 to L4

Red channel 0.932 0.930

Green channel 0.910 0.889

Both channels 0.951 0.954

Table 3 Comparison between the AUCs using wavelet entropy ver-
sus WEntropydiff (L1 to L4) for the HRF dataset.

Wavelet
entropy WEntropydiff

WEntropydiff and
wavelet entropy

Red channel 0.907 0.929 þ0.022 (þ2.40%)

Green channel 0.849 0.883 þ0.034 (þ4.00%)

Both channels 0.926 0.935 þ0.009 (þ0.97%)

Table 4 AUC for the illumination dataset using L4 wavelet illumina-
tion features.

R G B RG RGB

UWT RGB (L4) 0.917 0.946 0.891 0.980 1.000
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homogeneity feature set resulted in AUC of 0.999. All proposed
homogeneity features will be added to the final quality vector.

5.4 Field Definition Algorithm Classification
Performance

A dataset consisting of 60 macula centered and 60 nonmacula
centered retinal images was constructed from DR2 for assess-
ment of the proposed field definition features. All images
were resized to 432 × 496 pixels to make them suitable for
four-level wavelet decomposition. Results using the proposed
field definition features resulted in a perfect classification with
an AUC of 1.

5.5 Outlier Algorithm Classification Performance

In order to test the outlier detection algorithm, the DRIMDB
dataset was used, which includes 194 retinal images and 22
nonretinal images. The RGB channels, HSV model’s hue and
saturation channels, and CIELab model’s a (red–green) and b
(blue–yellow) channels were compared for feature computation.
As illustrated in Table 6, the lowest classification results were
attained by the RGB features giving an AUC of 0.968. The HSV
and CIELab features resulted in slightly higher AUCs of 0.993
and 0.991, respectively. Based on classification results, only
the outlier features derived from the HSV color space will be
included in the final quality vector.

5.6 Overall Quality Classification Results

In Sec. 5.1–5.5, each of the five different quality feature sets for
sharpness, illumination, homogeneity, field definition, and out-
lier assessment were separately tested and evaluated. Based on
performed analyses, the overall quality feature vector is com-
posed from features described in Table 7. In this section, the
DR1 dataset is used for the evaluation of the overall quality fea-
ture vector. It is important to note that images from the DR1
dataset were not utilized in any analysis that could affect or
bias the final classification results. The good quality images
within the DR1 demonstrate varying degrees of sharpness
and illumination. Moreover, the DR1 bad quality images suffer
from a wide range of quality issues including slight/severe blur,

over/under illumination, nonhomogeneity, nonmacula center-
ing, and nonretinal images.

Several preprocessing steps were performed on the DR1
dataset prior to feature extraction. Initially, a 5 × 5 median filter
was applied to all images for noise reduction. Next, unsharp
masking and contrast adjustment were utilized to enhance
the overall sharpness and contrast of the images, respectively.
Generally, retinal image enhancement is especially useful for
retinal images of borderline quality. Image enhancement
improves the quality of these images further differentiating them
from bad quality images. Furthermore, all images were resized
to 432 × 496 pixels to make them suitable for four-level wavelet
decomposition.

Table 8 compares classification results of the proposed RIQA
algorithm to other existing techniques. Two generic RIQA algo-
rithms were reimplemented by the authors for the sake of this
comparison. The first algorithm was introduced by Fasih et al.17

who combined the cumulative probability of blur detection
(CPBD) sharpness feature60 with run length matrix (RLM) tex-
ture features61 for quality assessment. Fasih et al. calculated their
features only from the OD and macular regions of the retinal
image. The second algorithm is the work of Davis et al.15

who computed spatial frequency along with CIELab statistical
and Haralick textural features62 from seven local regions cover-
ing the entire retinal image. Moreover, the results of the hybrid
approach by Pires et al.9 are also included in the comparison.
Pires et al. used the area occupied by retinal blood vessels,
visual word features along with quality assessment measures
estimated from comparing the test image to both blurred and
sharpened versions of itself.

Table 5 AUC for the homogeneity dataset using Sretina and wavelet
features.

Sretina channel
features

WTEntropy
R–G

WTEntropy
L3/L1

All homogeneity
features

0.981 0.899 0.982 0.999

Table 6 AUC for DRIMDB outlier classification using RGB, HSV, and
CIELab features.

RGB HSV CIELab

0.810 (R) 0.986 (H) 0.943 (a)

0.945 (RG) 0.965 (S) 0.986 (b)

0.968 (RGB) 0.993 (HS) 0.991 (ab)

Table 7 Overall quality feature vector description.

Channels WT levels Features

Sharpness RG L1 to L4
(HVD)

Mean, IQR, and
WEntropydiff

Illumination RGB L4 (A) Mean and variance

Homogeneity Sretina — Mean, variance, skewness,
kurtosis, CV, quartiles, IQR,
Pmid, energy, and entropy

RG L1 and L3 WaveletEntropyRedL3 and
WaveletEntropyGreenL3

(HVD) WaveletEntropyGreenL3/
WaveletEntropyGreenL1

Field definition RG L4 (HVD) Sharpmax and Sharpdiff

RGB L4 (A) Illummax and Illumdiff.

Outliers HS — Mean, variance, skewness,
kurtosis, and energy

Table 8 AUC results comparing proposed clarity and content RIQA
algorithm with other algorithms for DR1.

Proposed algorithm Fasih 201417 Pires 20129 Davis 200915

0.927 0.882 0.908 0.902
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An SVM classifier with an radial basis function (RBF) kernel
was used for the classification of the proposed and reimple-
mented algorithms. Generally, the performance of the SVM
classifier is dependent on its cost and gamma parameters. A
grid search strategy was performed to find the optimal classifier
parameters in each case. Among the previous works, best clas-
sification results were obtained by Pires et al.’s hybrid algorithm
achieving an AUC of 0.908. Nevertheless, the results of the pro-
posed RIQA algorithm exceed all the methods in comparison
with an AUC of 0.927.

6 Discussion
A no-reference RIQA algorithm was proposed that relied on
both clarity (sharpness, illumination, and homogeneity) and
content (field definition and outliers) evaluation. Wavelet-
based sharpness and illumination features were calculated from
the detail and approximation subbands, respectively. The pro-
posed Sretina channel specifically created for retinal images was
used along with two wavelet-based features for homogeneity
assessment. Moreover, the wavelet-based sharpness and illumi-
nation features were utilized to assure that images have an
adequate field definition while color information differentiated
between retinal and nonretinal images.

6.1 Sharpness Algorithm Analysis

Wavelet decomposition has the advantage of separating image
details of different frequencies in subsequent wavelet levels.
Generally, wavelet-based sharpness features were shown to
have the advantages of being simple, computationally in-
expensive, and considering structural information while giving
reliable results for datasets of varying resolutions and degree
of blur.

Several wavelet-based features were computed from the red
and green image channels for sharpness assessment. The green
channel is often used solely for RIQA due to its high blood
vessel contrast. However, the visibility of the retinal structures
within the red channel can also be affected by the image’s over-
all sharpness. Furthermore, the OD is generally more prominent
in the red channel than in the green channel of retinal images.63

Hence, combining the red and green channels for sharpness
assessment allows for better consideration of the different retinal
structures. In this work, it was shown that both green and red
channels were relevant to retinal image sharpness assessment
and that their combination can improve the classification per-
formance. The usefulness of the retinal images’ red channel
has been previously depicted in segmentation and enhance-
ment algorithms. In OD segmentation, the red channel has
been used either separately63 or alongside the green channel64

since the OD boundary is more apparent in the red channel.
In retinal image enhancement, information from the red
channel was used along with the green channel to improve
results.65

Generic RIQA algorithms commonly use a combination of
sharpness, textural, and statistical features. Spatial frequency15

and CPBD17 are among the sharpness features used in generic
methods. Classification of the sharpness dataset drawn from
DRIMDB using spatial frequency and CPBD resulted in
AUCs of 0.948 and 0.81, respectively. Wavelet-based sharpness
features were shown in Sec. 5.1 to give an AUC higher than 0.99
for the same dataset showing the superiority of the wavelet-
based sharpness measures.

Earlier research has shown that there is a relation between the
different wavelet levels and the various retinal structures.41 In
order to study the wavelet level significance for the different
wavelet-based sharpness features, the proposed features were
computed from individual levels and results are summarized
in Table 9. Classifications were performed by the kNN classifier
using features calculated from both the red and green channels
of the HRF dataset resized to 960 × 1280 pixels. In the given
case, results show that L3 features produced the highest results
for wavelet entropy, whereas L4 features gave the highest results
for mean and IQR. Consequently, the wavelet level significance
is found to be feature dependent. The approach adopted in this
work combines sharpness features from different wavelet levels
instead of finding the most relevant levels. For each of the three
sharpness features, best results were achieved when L1 to L4
were combined. Hence, combining sharpness features from sev-
eral wavelet levels was found to give more consistent classifi-
cation performance than relying on a single-wavelet level for
the feature calculation.

6.2 Illumination and Homogeneity Algorithms
Analysis

Modern theories on color vision explain that the human eye
views color in a two-stage process described by the trichromatic
and opponent theories.66 The trichromatic theory states that the
retina has three types of cones sensitive to red, green, and blue.
The opponent theory indicates that somewhere between the
optic nerve and the brain, this color information is translated
into distinctions between light and dark, red and green, as
well as blue and yellow. RGB and CIELab color models are
the closest to trichromatic and opponent theories, respectively.
Nevertheless, other models such as HSV and HSI also separate
the image color and illumination information.

In this work, RGB illumination features were computed from
the approximation wavelet subbands since the image’s illumi-
nation component resides within its wavelet approximation
subband.67 The utilization of the RGB model for retinal illumi-
nation feature calculation is compared to using the luminance
information of the CIELab, HSV, and HSI models. For the pre-
viously created illumination dataset, the mean and variance were
computed from the four color models. Classification results
using kNN are summarized in Table 10. Initially, only the illu-
mination channels were used for classification resulting in
AUCs of 0.953, 0.932, and 0.944 for the CIELab, HSV, and
HSI color models, respectively. Next, the color and saturation
channel features were added resulting in an increase in AUCs
by approximately 4% to 6% for the different color models to
become 0.992, 0.987, and 0.99 for the CIELab, HSV, and
HSI color models, respectively. Hence, it is demonstrated that
utilizing all color channels improves the illumination classifier

Table 9 AUC for sharpness classification using different individual
and combined wavelet levels on the HRF dataset.

L1 L2 L3 L4 L1 to L4

WTEntropy 0.596 0.910 0.920 0.889 0.926

Mean 0.784 0.880 0.904 0.923 0.938

IQR 0.821 0.849 0.914 0.920 0.951
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performance for all the color models. The proposed wavelet-
based illumination features achieve an AUC of 1 hence demon-
strating competitive performance as compared to other color
models.

Retinal image homogeneity was assessed using a combina-
tion of measures that were especially customized for retinal
images. The proposed Sretina channel was inspired by the satu-
ration channel of the HSV model (SHSV) along with the RTM.
The previously created homogeneity dataset was used to com-
pare the homogeneity features computed from Sretina, SHSV, and
SHSI channels. Table 11 summarizes the results performed by the
kNN classifier in which an AUC of 0.981 was achieved by the
proposed Sretina features, which is 5% and 9% higher than the
AUCs from SHSV and SHSI, respectively. These results indicate
the efficiency of the proposed Sretina channel for retinal image
homogeneity assessment as compared to saturation channels
from different color models.

The most previous work in RIQA did not discriminate
between overall image illumination and homogeneity. Instead,
various statistical and textural features were combined to con-
sider different retinal image luminance aspects. For example,
Yu et al.7 used seven RGB histogram features (mean, variance,
kurtosis, skewness, and quartiles of cumulative distribution
function) to measure the retinal image brightness, contrast, and
homogeneity. They also added entropy, spatial frequency, and
five Haralick features to measure image complexity and texture.
Davis et al.15 used the kurtosis, skewness, and mean of the three
CIELab channels for complete characterization of retinal image
luminance. In order to compare retinal image luminance assess-
ment algorithms, the illumination and homogeneity datasets
were combined. Table 12 compares the kNN classifier results
of the proposed illumination and homogeneity features to the
measures suggested by Yu et al.7 and Davis et al.15. AUCs of
0.985, 0.933, and 0.943 were achieved for the proposed features,
the RGB features,7 and the CIELab features,15 respectively. The
AUC of the algorithm by Yu et al.7 was increased by ∼4% to
become 0.975 when texture and complexity features were
added. Nevertheless, the introduced features achieved the high-
est classification results with an AUC of 0.985. Overall, analy-
ses summarized in Tables 10–12 show that the newly proposed
illumination and homogeneity features are of high relevance to
retinal image luminance assessment.

Studies have shown that retinal structures captured within
color images as well as the phenotype and prevalence of
some ocular diseases varied with ethnicity.68,69 For example,
pigmentation variations among ethnic groups can affect the
observed ocular image.70 Giancardo et al.71 have noticed that
color retinal images of Caucasians have a strong red component
whereas those of African Americans had a much stronger blue
component. This could have an effect on the proposed retinal
saturation channel when dealing with different ethnic groups.
A possible solution to this issue could be the introduction of
a parameterized saturation channel that could be adjusted
according to the ethnic group under consideration. In conclu-
sion, the study of the effect of ethnicity on retinal image process-
ing techniques is essential to ensure reliability of ARSS for
heterogeneous population screening.

6.3 Field Definition and Outliers Algorithms Analysis

RIQA algorithms usually classify retinal images into good or
bad quality images relying solely on image clarity features
assuming processed images to be retinal and having adequate
field definition. In real systems, such an assumption cannot
be made in which images with inadequate content can be
captured. Fleming et al.23 have observed that ∼50% of medi-
cally unsuitable retinal images fail due to inadequate field def-
inition. Further processing of images with inadequate content
by automatic RIQA systems could result in misdiagnosis.
Thus, validating retinal image content along with its clarity
is an indispensable step in RIQA specifically in automated
systems.

Macula-centered retinal images are commonly considered in
field definition assessment algorithms targeting DR screening
systems.9,23,24 The macula is the part of the retina responsible
for detailed central vision. DR signs thus become more serious
if located near the center of the macula.72 Hence, the macula and
surrounding regions are specifically important in the diagnosis
of DR. In this study, we were concerned with macula centered
retinal images for DR screening. Nevertheless, RIQA is an
application specific task.22 Different considerations in the
RIQA algorithm might be necessary if different FOV or retinal
diseases were of interest.

The introduced field definition assessment algorithm oper-
ates by checking that the OD is in its expected position. It is
based on the observations that the OD has a density of thick
vessels as well as being overly illuminated. Therefore, the intro-
duced algorithm exploits the proposed wavelet-based sharpness
and illumination features. Comparing L3 and L4 for field def-
inition feature calculation resulted in AUCs of 0.991 and 1,
respectively. Thus both levels were found closely significant
for field definition assessment. Finally, image color information
was employed to differentiate between retinal and nonretinal
image. Comparison between features calculated from the

Table 10 AUC for the illumination dataset using the RGB, CIELab,
HSV, and HSI color models.

RGB CIELab HSV HSI

0.946 (G) 0.953 (L) 0.932 (V) 0.944 (I)

0.980 (RG) 0.992 (Lab) 0.981 (SV) 0.945 (SI)

1.000 (RGB) 0.987 (HSV) 0.990 (HSI)

Table 11 AUC for the homogeneity dataset using different saturation
channels.

Sretina SHSV SHSI

0.981 0.930 0.890

Table 12 Comparison between luminance features based on AUC
for combined illumination and homogeneity datasets.

Proposed Yu 20127 Davis 200915

0.985 0.933 (RGB features only) 0.943
0.975 (all features)
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RGB, CIELab, and HSV has shown that generally color infor-
mation is adequate for outlier detection.

6.4 Overall RIQA Algorithm Analysis

In this work, RIQAwas performed based on the combination of
five quality feature sets used to evaluate image sharpness,
illumination, homogeneity, field definition, and outliers. The
proposed quality algorithm relies on the computation of several
transform and statistical-based features. Generally, transform-
based approaches have the advantage of being consistent
with the human visual system73 stating that the eye processes
high- and low-frequencies through different optical paths.74

Furthermore, both transform and statistical-based features have
the advantage of being computationally inexpensive while
giving reliable results.

Initially each of the five feature sets was separately evaluated
using custom datasets. Classification results showed the effi-
ciency of the presented features in which all the feature sets
achieved AUCs greater than 0.99 (with the only exception of
the sharpness features applied to the slightly blurred HRF data-
set giving a maximum AUC of 0.954). Finally, all proposed
clarity and content RIQA features were combined for the clas-
sification of the DR1 dataset achieving an AUC of 0.927 which
is between ∼2% to 4.5% higher than other RIQA algorithms
from the literature.

The overall RIQA algorithm required ∼2.5 s for preprocess-
ing and overall feature calculation of a single 432 × 496 pixels
image using MATLAB. Several methods can be adopted to fur-
ther reduce the overall processing time of the algorithm. The
implementation of the algorithm using more efficient program-
ming languages can help enhance the run time. Parallel process-
ing of the feature computations as well as feature selection
algorithms can also reduce the execution time. Furthermore,
the DecWT can be used for image decomposition instead of
UWT.

DecWT is characterized by its subsampling nature resulting
in halving of image size with each level of decomposition.
As a result, DecWT has the advantages of being fast and storage
efficient. However, DecWT is shift variant such that any modi-
fication of its coefficients results in the appearance of a large
number of artifacts in the reconstructed image.75 UWT was
designed to overcome the DecWT limitation by avoiding
image shrinking with multilevel decomposition leading to the
preservation of more relevant image information.48 Furthermore,
UWT is shift invariant, making it more suitable for wavelet-
based image enhancement and denoising than DecWT.39

The advantages of UWT over DecWT come with the trade-
off of increased processing time. Comparison between UWT

and DecWT timing performance for the proposed algorithm
is summarized in Table 13. DecWT is shown to be more
than five times faster than UWT for wavelet decomposition
and fifteen times faster in sharpness wavelet entropy calculation.
Overall, the preprocessing and final quality feature vector com-
putation was found to be approximately four times faster when
DecWT was used instead of UWT for image decomposition.
Furthermore, classification performance was similar whether
DecWT or UWT was used for image decomposition (AUC of
0.927 in both cases for RBF kernel in SVM). Thus, the proposed
wavelet-based features are shown to be equally efficient when
calculated from either the decimated or undecimated wavelet
decompositions. In conclusion, for the proposed RIQA algo-
rithm, DecWT is more suitable for real-time systems as it is
more computationally efficient.

7 Conclusions
Avoidable visual impairments and blindness can be limited if
early disease symptoms are detected and properly treated.
Accordingly, periodic screening of candidate patients is essen-
tial for early disease diagnosis. Automatic screening systems
can help reduce the resulting work load on ophthalmologists.
Substantial research efforts were invested for the development
of automatic screening systems, yet their performance was
found dependent on the quality of the processed images.
Consequently, the development of RIQA algorithms suitable for
automatic real time systems is becoming of crucial importance.

In this work, a no-reference transform-based RIQA algo-
rithm was proposed that is suitable for ARSS. The algorithm
comprehensively addresses five main quality issues in retinal
images using computationally inexpensive features. Wavelet-
based features were used to assess the sharpness, illumination,
homogeneity, and field definition of retinal images.
Furthermore, the retinal saturation channel was designed to
efficiently discriminate between homogeneous and nonhomo-
geneous retinal images. Nonretinal images were excluded based
on color information. Extensive analyses were performed on
each of the five quality feature sets demonstrating their effi-
ciency in the evaluation of their respective quality issues. The
final RIQA algorithm uses the concatenated feature sets for
overall quality evaluation. Classification results demonstrated
superior performance of the presented algorithm compared to
other RIQA methods from literature.

Generally, transform-based RIQA algorithms combine the
advantages of both generic and segmentation approaches by
considering the retina’s structural information while remaining
computationally inexpensive. Transform-based algorithms were
recently introduced in the field of RIQA and shown to have great
potential for such applications. The analyses performed in this
work demonstrate the ability of features derived from the wave-
let transform to effectively assess different retinal image-related
quality aspects. This suggests that transform-based techniques
are highly suitable for real-time RIQA systems.

Future work includes the development of an automatic image
enhancement algorithm as a subsequent step to the quality
evaluation. Specific quality issues within the retinal image
are to be automatically enhanced based on the comprehensive
assessment performed by the introduced RIQA algorithm.
Both the proposed RIQA algorithm along with the enhancement
procedure are to be integrated within a real-time ARSS.

Table 13 Timing comparisona in seconds between UWT and DecWT
in RIQA.

UWT (s) DecWT (s)

Four level WT decomposition per channel 0.140 0.024

Four level WTEntropy calculation per channel 0.110 0.007

Proposed RIQA algorithm 2.500 0.600

aAll timings are calculated as averages from multiple runs using the
same hardware.
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