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Abstract. We present a dual-mode imaging system operating on visible and long-wave infrared wavelengths for
achieving the noncontact and nonobtrusive measurements of breathing rate and pattern, no matter whether the
subjects use the nose and mouth simultaneously, alternately, or individually when they breathe. The improved
classifiers in tandem with the biological characteristics outperformed the custom cascade classifiers using the
Viola–Jones algorithm for the cross-spectrum detection of face and nose as well as mouth. In terms of breathing
rate estimation, the results obtained by this system were verified to be consistent with those measured by refer-
ence method via the Bland–Altman plot with 95% limits of agreement from −2.998 to 2.391 and linear correlation
analysis with a correlation coefficient of 0.971, indicating that this method was acceptable for the quantitative
analysis of breathing. In addition, the breathing waveforms extracted by the dual-mode imaging system were
basically the same as the corresponding standard breathing sequences. Since the validation experiments were
conducted under challenging conditions, such as the significant positional and abrupt physiological variations,
we stated that this dual-mode imaging system utilizing the respective advantages of RGB and thermal cameras
was a promising breathing measurement tool for residential care and clinical applications. © The Authors. Published by
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1 Introduction
Breathing rate, along with blood oxygen saturation, heart rate,
and blood pressure, is considered as one of four main vital
physiological signs.1 The breathing rate is 12 to 18 breaths
per minute (bpm) for a healthy adult at rest,2 whereas it will
increase to the range of 35 to 40 bpm when this person is under-
going or has just done exercise.3 Alterations in the breathing
rate and pattern are known to occur with serious adverse events4

or early clues of the pathology processes.5 Some diseases such
as sleep disorders cause abnormal breathing rhythms such as
Kussmaul breathing.6 Moreover, the observation of breathing
plays a crucial role in many other applications and research,
including sport studies,7 quarantine, and security inspections.8,9

Current noninvasive breathing measurement approaches con-
tain electrical impedance tomography, respiratory inductance
plethysmography, capnography, tracheal sound measurement,
spirometers, respiratory belt transducer, and electrocardiogra-
phy-derived method.10–12 Nonetheless, the above devices carry
out breathing rate estimation in a contact way, which leads
to discomfort, stress, and even to soreness of a subject.12

Increasing daily and clinical demands for contactless and
unobtrusive yet accurate breathing measurement alternatives
in uncontrolled environments have spurred considerable interest
among researchers on the application of innovative tools for
breathing observation solutions. Doppler radar was used in
the noncontact and through-clothing breathing evaluation via

the measurement of chest wall motion.13 This method is yet
limited by the potential radiation and high sensitivity to motion
artifacts. A laser Doppler vibrometer determined the breathing
rate by the assessment of the chest wall displacements;14

however, its result will not be accurate when, for example,
improper measurement points are selected on the thoracic
surface. Min et al. developed an ultrasonic proximity sensing
approach to measure breathing signatures by means of calculat-
ing time intervals between the transmitted and received sound
waves during the abdominal wall fluctuation.15 The subjects
under this test are required to remain still and refrain any other
movements. In addition, owing to the mature image processing
techniques, visible imaging sensors have attracted much attention
for breathing evaluations.16,17 Shao et al. determined the breath-
ing patterns using the cameras in the visible region to track
the small shoulder movements associating with breathing.18

Although the random body movements can be corrected by the
motion-tracking algorithm, breathing rate estimation based on
visible imaging is by nature sensitive to the slight movements,
thus not being appropriate for the long-term monitoring.

Compared with the aforementioned active sensors, the pas-
sive thermal infrared imaging that records the emitted energy
from the objects does not need any harmful radiation and
light source.19 The principle of thermal imaging for breathing
estimation is based on the fact that the changes of temperature
around the nostrils and mouth will accompany the inhalation
and exhalation.20 Temperature variation is, in contrast to the
displacement change, more significant and thus more suitable
for deriving breathing signature. Despite many face recognition
algorithms in the visible band,21 locating and tracking face and
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facial tissues in the thermal band are highly challenging due to
the few geometric and textural details as well as the various
physiological changes in a thermal image. Basu et al. manually
selected the nasal area and it was afterward tracked by the corner
detection in conjunction with the registration process.22 The
hyperventilation was therefore successfully monitored by the
thresholding technique. Abbas et al. extracted the breathing
signals from manually-selected region in thermal images, and
the good performance of the proposed method had been
shown on the breathing measurements of eight adults and one
infant.23 Several investigators applied the template matching
method to track the predefined nasal tissues in thermal infrared
images.24,25 Some literature has attempted to automatically iden-
tify the nasal region. Fei and Pavlidis first determined the nasal
contour by the use of horizontal and vertical projection profiles
in spatial dimension, and subsequently, the nostril regions were
found by taking the temporal variances into account.2 A retained
boosted cascade classifier based on the temperature feature was
utilized to detect the nasal cavities,26 while the classification
accuracy seemed to be unacceptable for the purpose of breathing
measurement. The salient physical features of the human face in
a thermal image were used to segment the nasal region;27 how-
ever, it will not succeed when wearing glasses or conducting
open-mouth respiration. Moreover, the direct identifications of
facial tissues in thermal images are camera-dependent and
extremely interfered with by the abrupt physiological changes
such as perspiration. To face these challenges, the cross-
spectrum face and facial tissue recognitions may provide the
possibility to locate and track regions of interest exactly in
thermal images.

The objectives of the current study are to: (1) establish and
register the thermal and visible dual-mode imaging system;
(2) develop a cross-spectrum face and facial tissue recognition
algorithm for long-wave infrared and visible bands and obtain
the temperature variation signal; and (3) validate the dual-mode
imaging system and the proposed algorithm for breathing rate
and pattern measurements.

2 Methods
The thermal imager for breathing rate and pattern measurement
is based on the fact that the temperature around the nose and
mouth fluctuates throughout the inspiration and expiration
cycles. The disadvantage compared to the RGB image is that,
due to few geometric and textural facial details, the thermal
image is at present inadequate to design fast and reliable face

detection algorithms.28 Therefore, in this study, the visible im-
aging technique is adopted to aid in the automatic recognitions
of face and facial tissue in thermal images.

The steps of the development of a dual-mode imaging sys-
tem, image registration, detection of face, and its tissue in two
spectral domains, region of interest (ROI) tracking, computation
of breathing signal, and validation experiment are elaborated in
the following sections.

2.1 Thermal and Visible Dual-Mode Imaging
System

The experimental setup is shown in Fig. 1. A thermal imager
(MAG62, Magnity Electronics Co. Ltd., Shanghai, China)
with the resolution of 640 × 480 and the pixel pitch of
17 μm is stabilized on a tripod to prevent vibration during
the experiments. The spectral range and thermal sensitivity of
thermal imager are 7.5 to 14 μm and 0.5°C, respectively. An
RGB camera (USBFHD01M, RERVISION Co. Ltd., Shenzhen,
China) with the resolution of 640 × 480 is fixed on the top of
the thermal imager. These two cameras are parallel to each
other in such a way that the field of view is almost the same.
To connect a computer, a USB and patch cables are used for
RGB and thermal cameras, respectively. A custom-made image
acquisition software is executed to generate two trigger signals,
thus allowing the simultaneous acquisition of thermal and
visible videos. The recorded videos are then imported into
the MATLAB® R2014a (The Mathworks, Inc., Natick,
Massachusetts) for further analysis.

2.2 Image Registration

After establishing the dual-mode imaging system, the affine
transformation is required to register thermal and visible
images.29 The first step is to select the strongly correlated points
in the first frame of bimodal videos so as to define the control
point pairs, viz., the fixed points in the thermal image and the
moving points in the RGB image. Subsequently, these points are
adjusted by the cross-correlation to obtain the transformation
matrix. We align each frame from RGB video according to
EQ-TARGET;temp:intralink-;e001;326;131

Ivisr ¼ IvisT; where T ¼

2
64

s cos θ s sin θ 0

−s sin θ s cos θ 0

bx by 1

3
75; (1)

Fig. 1 Schematic illustration of experimental setup.

Journal of Biomedical Optics 036006-2 March 2017 • Vol. 22(3)

Hu et al.: Synergetic use of thermal and visible imaging techniques for contactless. . .



where Ivis is the original RGB image and its corresponding
transformed RGB image is Ivisr; T represents the transformation
matrix; s, θ, and b denote the scaling, rotation, and translation
vectors, respectively.

The row and column of the registered RGB images are
resized to be equal to those of thermal images.

2.3 Cross-Spectrum Face and Facial Tissue
Detection

The cascade object detector using the Viola–Jones algorithm30

coupled with the screening technique based on biological char-
acteristics was used to detect face and nose as well as mouth in
the RGB image, and subsequently, the linear coordinate map-
ping was conducted to determine the corresponding regions in
the thermal image.

The Haar-like features are extracted from the integral images
and afterward served as the input of the custom cascade classi-
fier. This algorithm can be summarized as follows.30

Let us assume that there is a dataset U ¼ fx1; : : : ; xNg,
and each data sample xi ∈ U carries a label variable
yi ∈ YðY ¼ f1;−1gÞ, where i ¼ 1; : : : ; N. Hence, the initial
distribution for the samples in training set can be represented
as D1ðiÞ ¼ 1∕N. For every weak classifier, ht ¼ U → Y,
the error of distribution Dt can be denoted as εt ¼
PDt

½hiðxiÞ� ≠ yi and therefore the weight of the weak classifier
as αt ¼ 0.5 ln½ð1 − εtÞ∕εt�, where t ¼ 1; : : : ; T. T is the number
of weak classifiers. The final strong classifier is

EQ-TARGET;temp:intralink-;e002;63;233HfinalðxÞ ¼ sign

�XT
t¼1

αthtðxÞ
�
; (2)

where Hfinal represents the final strong classifier.
When more than one region is considered as a face using

the custom Viola–Jones algorithm, we design the algorithm for
searching the facial tissues such as nose in these regions and the
region inclusive of facial contents is chosen as the real face.
Once the face position has been confirmed, the above procedure
will be repeated within the face region to detect the locations
of nose and mouth. Nevertheless, several potential nose and
mouth regions may be found by the custom cascade classifiers.
To solve this problem, the biological characteristic of nose
that locates on the center line of face is utilized [Fig. 2(a)].

The minimum distance between center lines of face and nose
candidate regions is calculated by

EQ-TARGET;temp:intralink-;e003;326;516nfinal ¼ arg min
n;n 0¼1;: : : ;k

����� xf1 þ xf2 − xn − xn 0

2

����
�
: (3)

In the equation, nfinal is the final nose region; xf1 and xf2 are the
horizontal ordinates of two corners of the face region’s top side;
xn and xn 0 are the horizontal ordinates of two corners of the top
side of the nose region; k is the number of nose candidate
regions.

If there still exist several nose candidate regions, Eq. (4) is
applied to find the largest nose candidate region as the real nose
region

EQ-TARGET;temp:intralink-;e004;326;381nfinal ¼ arg max
n;n 0¼1;: : : ;k

ðjxn − xn 0 jÞ: (4)

In the case of further screening of the mouth region, due to
the biological characteristics of facial tissues, the vertical
ordinate of mouth should be smaller than that of nose.
Simultaneously, the horizontal ordinate of mouth should be
near to that of mouth [Fig. 2(b)]. This step can be expressed by

EQ-TARGET;temp:intralink-;e005;326;287mfinal ¼ arg min
m;¼1;: : : ;i

�����
�
xn
yn

�
−
�

xm
ym þ αh

�����
2

�

subject to ym < yn;

(5)

where mfinal is the final mouth region; ðxn; ynÞ and ðxm; ymÞ are
the coordinates of the confirmed nose region and mouth
candidate regions, respectively; m denotes the number of
mouth candidate regions; h is the distance between the mouth
and nose; α ∈ ½0;1� is the arbitrary value defined by the priori
knowledge.

The algorithm of searching mouth is further refined by intro-
duction of Eq. (4) to eliminate the small interfering blocks near
to the center line.

Later, the corresponding positions of nose and mouth can
be automatically found in the thermal images via the linear
coordinate mapping.

Fig. 2 Illustrations of the further screening of (a) nose and (b) mouth regions.
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2.4 ROI Tracking

The Shi–Tomasi corner detection algorithm31 derived from
the Harris–Stephens method32 is applied to extract the interest
points from nose and mouth ROIs in the visible gray images.
For each pixel in input image, the covariance matrix M
corresponding to its neighborhood SðpÞ is

EQ-TARGET;temp:intralink-;e006;63;679M ¼
X

x;y∈SðpÞ
wðx; yÞ

�
I2x IxIy
IxIy I2y

�
; (6)

where wðx; yÞ represents the given feature window; Ix and Iy are
the differences of x and y directions, respectively.

The strongest key features Cs is calculated by

EQ-TARGET;temp:intralink-;e007;63;597CS ¼ ðði; jÞjmin½detðMÞ� ≥ kmax
i;j∈I

fmin½detðAÞ�gÞ; (7)

where M is the covariance matrix of the pixel to be detected;
A denotes the vector containing the covariance matrices in
input image Iði; jÞ preprocessed by a Gaussian filter, and k is
the empirical constant for tuning the threshold (here is 0.01).

Next, the ROI is tracked via the Kanade–Lucas–Tomasi
algorithm33,34

EQ-TARGET;temp:intralink-;e008;63;494εðXÞ ¼
ZZ
W

½Aðx − Δx; y − Δy; tÞ − Bðx; y; tþ τÞ�ωðXÞdX;

(8)

where ε is the sum of squared intensity difference between the
local image model A at the current time t and local image model
B at time tþ τ; Δx and Δy are the displacements in the x and y
directions, respectively; X is the vector including the displace-
ment and time variables; W is the given window and ω is the
weighting function (here is 1).

Based on the above equation, the tracking of ROI in video
sequences can be realized by the use of the displacement
ðΔx;ΔyÞ, which is determined by minimizing the ε.
Furthermore, the tracking procedure is refined by the forward-
backward error.35 This method invalidates the tracked points
if their errors exceed the setting value, thus enabling the selec-
tion of more reliable trajectories among the consecutive frames.
In this study, the threshold is set as 2 pixels. The cross-spectrum
ROI tracking is achieved by the linear coordinate mapping.

2.5 Extraction of Breathing Signature and Pattern

Because the shape of original ROI may change from the rectan-
gle to the polygon during the tracking operation, the equation
listed below is available to acquire the average pixel intensity
s̄ðkÞ within the ROI of thermal image

EQ-TARGET;temp:intralink-;e009;63;191s̄ðkÞ ¼ 1

n

X
i;j∈N

sði; j; kÞ; (9)

where sði; j; kÞ is the pixel intensity of thermal image at pixel
ði; jÞ and video frame k; N is the vector of pixel coordinates in
ROIs and n is its number.

The raw pixel intensities of ROIs in all the frames are
smoothed by the moving average filter with the data span of
5. The abrupt change in the breathing waveform can be elimi-
nated by the above smoothing method. The breathing rate and

pattern as a function of video frame can be therefore simply
estimated from the smoothed intensity data by computing the
number of the obvious peaks. Considering both the speed and
purposes of the analysis, it is not necessary to carry out the
unit conversion to make the breathing signature a function of
measurement time.

2.6 Validation of Proposed Method

To evaluate the performance of the cascade classifier using the
Viola–Jones algorithm in tandem with the biological character-
istic screening for the cross-spectrum face and facial tissue
detection, a total of 66 image pairs cross the two domains, col-
lected from 11 volunteers aged 23 to 28 under various breathing
conditions, were used for the validation experiment through
comparing the detection accuracy to that of the custom cascade
classifier.

A database of thermal and visible dual-mode videos is con-
structed to quantitatively and qualitatively verify the proposed
cross-modal breathing measurement method. The videos were
captured with the frame rate of 30 frames per second under
the uncontrolled illumination and room temperature. All volun-
teers involved in the experiments consented to be subjects, and
were instructed to breathe using the nose and mouth simultane-
ously, alternately, or individually. Moreover, in the current
work, the different breathing situations, such as the translations
and rotations of body and the variations of facial expression
when laughing, yawning, and speaking, were allowed (and even
encouraged) during the experiments to guarantee that there are
larger variations in the obtained videos. The distance between
the volunteer and cameras is about 150 cm.

For the quantitative validation, the volunteers were asked to
breathe at their own pace for 1 min, and this procedure was
repeated six times for each volunteer. At the same time, the
reference breathing rate was recorded by two dedicated and
qualified human observers. The Bland–Altman plot36,37 and
linear correlation analysis were used to check the effectiveness
of our approach.

In terms of qualitative testing, the volunteers were required to
complete two intended breathing sequences: (I) eupnea (normal
breathing) and tachypnea, followed by apnea and Kussmaul
breathing (deep breathing); and (II) Cheyne–Stokes respiration,38

which is an abnormal periodic breathing pattern containing the
progressively deeper and sometimes faster breathing, followed
by the gradual decrease and temporary apnea at the bottom of
Fig. 8. The recorded breathing sequences extracted using a dual-
mode imaging system were visually compared with the intended
breathing patterns.

3 Results and Discussion

3.1 Detection Accuracy of Face and Facial Tissue

Prior to the breathing signature extraction, the locations of face
and facial tissue should be determined in the RGB and thermal
images. We introduced the biological characteristics into the
classification framework, aiming to attain higher accuracy
than the custom cascade classifier using the Viola–Jones
algorithm. The detection accuracies of face and nose as well
as mouth are shown in Fig. 3. Overall, compared to the custom
cascade classifier, the modified classifier gave the relatively
good performance for face detection (98.46% versus 87.69%).
The accuracies had been remarkably improved for detection of
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nose and mouth separately from 47.69% to 95.38% and 0%
to 84.62%.

For breathing measurement, previous literature on detecting
the face and its tissue usually applied image processing and
analysis in thermal images directly. Pereira et al. segmented
the thermal image by the multilevel Otsu’s method and identi-
fied the largest area of the remaining regions in the binary image
as the real face region.12 The human anatomy and physiology
that limited the nose search window in the hottest region

were also utilized by them to locate the nose. However, this
algorithm will fail when the other large or hot objects appear
in the thermal image. Deepika et al. implemented the threshold-
ing operation in the green component of thermal images to
extract the nose region.39 This method cannot work if the subject
breathes through the mouth. Despite being advantageous over
the single mode imaging, the visible-thermal imaging system
had been scarcely reported for recognition of face and facial
tissue in breathing estimation applications,28,40 due in part to the
relatively complicated imaging architecture and data processing.
Although there exist more effective and efficient approaches
to find the face region in the face detection domain,41,42 the
proposed face and facial tissue detection method can achieve
the acceptable accuracy for breathing measurement using
triple coordinate calculation operations based on the traditional
algorithm, thus having met the objectives of the current study.
Consequently, considering the results and discussion mentioned
above, we state that the visible and thermal dual-mode imaging
framework and related algorithm in this study offer an alterna-
tive or complementary solution to face and nose as well as
mouth detection in breathing research.

3.2 Validation of Breathing Rate Measurement

Figure 4 shows the breathing signature processing interface for a
visible and thermal dual-mode imaging system. This screenshot
was one frame extracted from the short video series in the video,
which was an attempt to illustrate the robustness of our system
and the corresponding algorithms. As shown in the video, the
imaging system on visible and long-wave infrared wavelengths,
associated with the proposed object detection and tracking

Fig. 4 Screenshot of the breathing signature processing interface for visible and thermal dual-mode
imaging system. A short video illustrating the effectiveness of the presented system and algorithm is
demonstrated in Videos 1–3. (Video 1, 6 MB, MOV [URL: http://dx.doi.org/10.1117/1.JBO.22.3
.036006.1], Video 2, 3 MB, MOV [URL: http://dx.doi.org/10.1117/1.JBO.22.3.036006.2], and Video 3,
6 MB, MOV [URL: http://dx.doi.org/10.1117/1.JBO.22.3.036006.3].)

Fig. 3 Histogram of the detection accuracies of face and nose as well
as mouth using the Viola–Jones algorithm and the custom cascade
classifier coupled with biological characteristics. (Here, if a detected
object is not uniquely contained in a return result, it is considered to
be misclassified.)
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algorithms, was capable of following the ROIs regardless of the
actions of the other persons such as walking into the field of
view (Fig. 4). In addition, this system was robust against
the translations and rotations of body (e.g., head) within the
angle of 90 deg in the field of view, as well as the abrupt physio-
logical variations (e.g., yawning, swallowing, and speaking).
Hence, with the help of the RGB camera, the thermal imaging-
based breathing measurement device can detect and track
the nose and mouth accurately, thus being able to maximally
avoid the erroneous measurement of breathing signature.

To test the performance of breathing measurement with the
dual-mode imaging technique in a contactless and unobtrusive
manner, the statistical analysis approaches viz., linear correla-
tion analysis and Bland–Altman plot were used for the
validation of data from the small-scale pilot experiment. The
scatter plot and regression line of estimated and reference BR
are shown in Fig. 5. As shown in Fig. 5, most of the scatter
points were close to the line of perfect match (slope ¼ 1) and
within the 95% confidence intervals. By means of linear corre-
lation analysis, the strong relationship (R2 ¼ 0.971) between
the simultaneously acquired measured and reference BR was
found over the range from 9 to 42 bpm, indicating that the
proposed method was acceptable for BR estimation.

The corresponding Bland–Altman plot in respect to two tech-
niques is demonstrated in Fig. 6 with the mean of differences of
−0.304 bpm and limits of agreement of −2.998 and 2.391 bpm.
It could be observed that the majority of points were dispersed
around the line of perfect agreement (BRdifferences ¼ 0), and
the 12 points approximately located on this line and were con-
sidered to be fully consistent. There was one point (magenta) out
of the upper limits of agreement with the offset about 0.6 bpm.
By checking the original video, we inferred that the reason for
this might be that the testing subject conducted very significant
and frequent as well as irregular body motion during the experi-
ment. This is also illustrated in Video 3. Three points from two
subjects (one in dark yellow and the others in red) approxi-
mately fell on the lower limits of agreement, perhaps because
of the alternative use of mouth and nose and the changes of
facial expression when breathing. The distribution of points
in the Bland–Altman plot in Fig. 6 was to great extent similar
to that of scatter points in Fig. 5. In general, the result of the

Bland–Altman plot demonstrated the feasibility of using the
visible and thermal dual-mode imaging system in tandem with
the proposed algorithm for the contactless and unobtrusive BR
estimation.

A group of investigators measured the breathing rate by the
application of dual RGB cameras installed in a smartphone.17,43

They extracted the BR from the recorded chest movement sig-
nals, and the lower and upper limits of agreements were −0.850
and 0.802 bpm, respectively. In the other research, the ranges of
limits of agreement between −1.4 and 1.3 bpm were obtained
from the thermal image sequences, but the values had increased
from −3.7 to 3.9 bpm since the subjects followed the complex
breathing profile.12 The manually defined ROIs in the RGB and
infrared images were selected for prompt infection screening at
airports,8 and the limits of agreements varied between −1.0 and
0.9 bpm for the measurement of breathing rate. Compared to
the published literature, though limits of agreement covered a
relatively wider range, the dual-mode imaging system proved to
be more immune to various variations for BR extraction via add-
ing the camera operating at visible wavelengths. Notice that
the imaging system coupled with the proposed algorithm that
can minimize the BR measurement mistakes cannot eliminate
the errors caused by a variety of uncontrolled variations.

3.3 Validation of Breathing Pattern Measurement

The breathing pattern sequences (I) of three subjects, corre-
sponding to the use of nose-dominated, mouth-dominated,
and nose and mouth combined breathing manners, are shown
in Fig. 7. According to the labels in Fig. 7, it could be intuitively
observed that the waveforms from the dual-mode imaging
system successfully reproduced the predefined breathing
sequences, containing eupnea, tachypnea, apnea, and Kussmaul
breathing patterns. In fact, some noise events existing in the
extracted signature led to the distortion of waveforms, which
might in turn cause the misclassifications of breathing patterns.
These unwanted signatures mainly attributed to alternately
breathing through mouth and nose, for example, in the case
of nose-dominated breathing [Fig. 7(a)], the waveform in the
eupnea phase was largely affected by occasional open-mouth

Fig. 5 Correlation between the breathing rate measured from the
reference method and thermal-visible dual-mode imaging system.
(The different colors denote the different subjects.)

Fig. 6 Bland–Altman plot (N ¼ 56 measurement times) of the differ-
ence against average for breathing rate using the reference method
(BRref) and thermal-visible dual-mode imaging system (BRim). (The
different colors denote the different subjects and SD is the standard
deviation.)
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Fig. 7 Breathing pattern sequences containing the eupnea, tachypnea, apnea, and Kussmaul breath-
ings measured by the thermal-visible dual-mode imaging system: (a) nose-dominated breathing,
(b) mouth-dominated breathing, and (c) nose and mouth breathing.
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Fig. 8 Two typical examples of the intended breathing pattern of Cheyne–Stokes respiration measured
using the thermal-visible dual-mode imaging system. (The bottom is the standard Cheyne–Stokes
breathing profile.)
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breathing. Fortunately, we could still correctly classify the
different breathing patterns in the obtained sequences.

For the sake of further validating the reliability of the pro-
posed method to identify the breathing pattern, the more com-
plex breathing sequence (II), called Cheyne–Stokes respiration,
was applied in this study. Figure 8 exhibits the Cheyne–Stokes
respiration sequences of two subjects and the corresponding
standard profile. In Fig. 8, the top and middle subplots are
the breathing sequences of two subjects breathing through nose
and mouth simultaneously and mouth primarily, respectively.
Overall, the Cheyne–Stokes breathing sequences obtained
using the visible and thermal dual-mode imaging system were
basically consistent with the standard profile.

3.4 Failure Measurement Case Analysis

The validation experiments had demonstrated the robust perfor-
mance of our dual-mode imaging system for breathing rate and
pattern measurements. Nonetheless, this would be insufficient
when, for example, the tracked points of ROI were completely
obscured. Figure 9 displays two failed breathing measurement
cases resulting from losing the tracked points. In Fig. 9(a), the
subject pushed his glasses during the experiment, thus leading to
the failure of cross-spectrum ROI tracking. For the second case,
the targeted points were missing because of the out-of-plane
movement. The relevant improvement of the algorithm should
in the future be made to let the measurement continue after
losing the tracked points.

4 Conclusion
A dual-mode imaging system, on visible and long-wave infrared
wavelengths, has a capability of being used as a noncontact and

nonobtrusive measurement tool to estimate breathing rate and
pattern, instead of the conventional methods. The addition of
RGB images allowed the more accurate and faster detection
and tracking of face and facial tissue in thermal images.
Moreover, integrating the biological characteristics into the cus-
tom cascade classifier using the Viola–Jones algorithm yielded
the superior classifiers for detecting face, nose, and mouth with
classification accuracies of 98.46%, 95.38%, and 84.62%,
respectively. For breathing rate estimation, the dual-image
derived results were in agreement with those measured by the
reference method, regardless of whether the subjects used nose
and mouth simultaneously, alternately, or individually when
they breathed. Taking the open-mouth breathing into account
made the system highly adaptable for home care and clinical
applications. Through visual comparison, the different breathing
patterns could be clearly revealed by the extracted pixel inten-
sities of thermal images. Apart from the situations requiring
recovering the ROIs, the proposed system proved to be robust
against challenging conditions such as significant positioning
and abrupt physiological variations.
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