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Abstract. A method to detect generic objects by training with a few image
samples is proposed. A new feature, namely locally adaptive steering
(LAS), is proposed to represent local principal gradient orientation infor-
mation. A voting space is then constructed in terms of cells that represent
query image coordinates and ranges of feature values at corresponding
pixel positions. Cell sizes are trained in voting spaces to estimate the tol-
erance of object appearance at each pixel location. After that, two detec-
tion steps are adopted to locate instances of object class in a given target
image. At the first step, patches of objects are recognized by densely vot-
ing in voting spaces. Then, the refined hypotheses step is carried out to
accurately locate multiple instances of object class. The new approach is
training the voting spaces based on a few samples of the object. Our
approach is more efficient than traditional template matching approaches.
Compared with the state-of-the-art approaches, our experiments confirm
that the proposed method has a better performance in both efficiency and
effectiveness. © The Authors. Published by SPIE under a Creative Commons Attribution
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1 Introduction
Object detection from a target image has attracted increasing
research attention because of a wide range of emerging
new applications, such as those on smart mobile phones.
Traditionally, pattern recognition methods are used to train
a classifier with a large number, possibly thousands, of image
samples.1–10 An object in a sample image is a composite of
many visual patches or parts recognized by some sparse fea-
ture analysis methods. In the detection process, sparse fea-
tures are to be extracted in a testing image and a trained
classifier is used to locate objects in a testing image.
Unfortunately, in most real applications there are always
insufficient training samples for robust object detection.
Most likely, we may just have a few samples about the object
we are interested in, such as the situations in passport control
at airports, image retrieval from the Web, and object detec-
tion from video or images without preprocessed indexes. In
these cases, the template matching approach based on a small
number of samples often has been used.

Designing a robust template matching method remains a
significant effort.11 Most template matching approaches use
query image to locate instances of the object by densely sam-
pling local features. Shechtman and Irani provided a single-
sample method12 that uses a template image to find instances
of the template in a target image (or a video). The similarity
between the template and a target patch is computed by a
local self-similarity descriptor. In Refs. 13 and 14, one sam-
ple, representing human behavior or action, is used to query
videos. Based on this training-free idea, Seo and Milanfar
proposed the locally adaptive regression kernels (LARK)
feature as the descriptor to match with the object in a target
image using only one template.15 This LARK feature, which
is constructed by local kernels, is robust and stable, but this
LARK feature brings overfitting problem and results in low

computational efficiency.In Ref. 16, the authors constructed
an inverted location index (ILI) strategy to detect the instance
of an object class in a target image or video. This ILI struc-
ture saves the feature locations of one sample and indexes
feature values according to the locations to locate the object
in target image. But this ILI structure just processes one sam-
ple. In order to improve the efficiency and accuracy based on
a small number of training samples, these methods have to
run a few times on each of those samples.

Different from the dense feature like LARK, key-point
sampled local features, such as scale invariant feature trans-
form (SIFT)17 and speeded up robust features (SURF),18

always obtain a good performance in the case of using thou-
sands of samples to train classifiers. And these key-point fea-
tures are always in a high-dimensional feature space. If one
has thousands of samples and needs to learn classifiers such
as support vector machine (SVM),3,8 key-point features have
obtained good performance. Previous works15,19–21 pointed
out that the densely sampled local features always give better
results in classification tasks than that of key-point sampled
local features like SIFT17 and SURF.18

Recently, some interesting researches based on few sam-
ples have emerged. Pishchulin et al. proposed a person detec-
tion model from a few training samples.22 Their work employs
a rendering-based reshaping method in order to generate thou-
sands of synthetic training samples from only a few persons
and views. However, the samples are not well organized and
their method is not applicable on generic object detection. In
Ref. 23, a new object detection model is proposed named the
fan shape model (FSM). FSM uses a few samples very effi-
ciently, which handles some of the samples to train out the
tolerance of object shape and makes one sample the template.
However, FSMmethod is not scalable in terms of samples and
is only for contour matching.
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In this paper, we propose a novel approach for generic
object detection based on few samples. First, a new type
of feature at each pixel is considered, called locally adaptive
steering (LAS) feature, which is designed for a majority vot-
ing strategy. The LAS feature at 1 pixel can describe the local
gradient information in the neighborhood, which consists of
the dominant orientation energy, the orthogonal dominant
orientation energy, and the dominant orientation angle.
Then, for each member of this feature, a cell is constructed
at each pixel of the template image, whose length is the range
of the feature member value. The cells for all pixels construct
a voting space. Since this feature is in three dimensions, three
voting spaces are to be constructed. We use a few samples to
train these voting spaces, which represent the tolerance of
appearance of an object class at each pixel location.

Our idea of using a LAS feature is motivated by earlier
work on adaptive kernel regression24 and the work of LARK
feature.15 In Ref. 24, to perform denoising, interpolating, and
deblurring efficiently, localized nonlinear filters are derived
that adapt themselves to the underlying local structure of the
image. LARK feature can describe the local structure very
well. After densely extracting LARK features from template
and target images, matrix cosine similarity is used to measure
the similarity between query image and a patch from target
image. This method is resilient to noises and distortions, but
the computation of LARK features is time-consuming with
heavy memory usage. Our LAS feature simplifies the com-
putation of LARK and saves the memory. Moreover, LAS
feature also exactly captures the local structure of a specific
object class.

Our voting strategy is inspired by the technology of
Hough transformation. Many works25–30 have contributed
to model spatial information at locations of local features
or parts as opposite to the object center by Hough voting.
The Hough paradigm starts with feature extraction and
each feature casts votes for possible object positions.4

There are two differences from Hough voting. The first
one is each cell size of the voting spaces is trained out by
samples. But each cell size of the Hough voting space is
all fixed. Our trained space can tolerate more deformation.
The second one is our voting strategy is based on template
matching. Previous Hough voting is based on a trained code-
book with thousands of samples.

This paper is structured as follows. Section 2 gives an
overview of our method. In Sec. 3, we propose LAS feature.
Section 4 describes the concept of voting space and the train-
ing processing. Section 5 introduces the procedure of object
matching in voting spaces. Section 6 gives the experimental
results and compares our method with the state-of-the-art
methods. This paper is extended from an early conference
paper31 with improved algorithms and comprehensive exper-
imental results.

2 Overview of Our Approach
An overview of our method is shown in Fig. 1. In the training
processing, for each dimension of LAS feature, a voting
space is constructed by image coordinates ðx; yÞ and corre-
sponding value ranges of the feature member. Each cell in the
voting space is formed by the corresponding pixel position
and its value range of this feature member, which is trained
by several samples. Since the voting space is three dimen-
sional (3-D), for simplicity we use a 3-D box to represent
a cell. The longer the box is, the higher the cell length.
The different sizes of boxes mean the different tolerances
of object appearance changes at corresponding pixels. In
Fig. 1, LAS feature ðL; S; θÞ is specially designed for object
matching in voting spaces, where L, S, and θ represent the
dominant orientation energy, the orthogonal dominant orien-
tation energy, and the dominant orientation angle, respec-
tively, in the neighborhood at each location. Thanks to the
merit of voting, only a few samples (2 to 10 samples in
this paper) are enough to train cells.

In the detection process, by randomly choosing one sam-
ple image as the query Q, the instances of an object class are
located in target image T, which is always larger than Q.
First, the patches Ti extracted from T by a sliding window
are detected by densely voting in the trained voting spaces.
Each component of LAS feature of Ti andQ is voted in each
voting space to obtain a value of similarity. If the values of
similarity of all LAS features are larger than the correspond-
ing thresholds, then Ti is a similar patch ofQ. Then a refined
hypotheses step is used to accurately locate the multiple
instances by computing the histogram distance correspond-
ing to the feature θ. The refined step is just processing the
similar patches that are obtained in the voting step. If
the histogram distance of θ between a similar patch and
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Fig. 1 The overview of our method. In the trained voting spaces, ðx; yÞ means the query image coordinates. Each bin in the spaces is corre-
sponding to the pixel cell.
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Q is small enough, then the similar patch is the object
instance.

3 Locally Adaptive Steering Feature
The basic idea of our LAS is to obtain the locally dominant
gradient orientation of image. For gray image, we compute
the gradient directly. If the image is RGB, the locally dom-
inant gradient orientation is almost the same on each chan-
nel. To reduce the computation cost of transforming RGB to
gray image, we just use the first channel of RGB. The dom-
inant orientation of the local gradient field is the singular
vector corresponding to the smallest singular value of the
local gradient matrix.24,32 (The proof of transformation
invariance of singular value decomposition (SVD) can be
reviewed by interested readers from Ref. 24.) For each
pixel ði; jÞ, one can get the local gradient field shown in
Fig. 2(a). The local gradient field is a patch in the gradient
map around the pixel ði; jÞ. Here, the size is set as
3 × 3 pixels. The dominant orientation means the principal
gradient orientation in this gradient field. To estimate the
dominant orientation, we compute the horizontal and
orthogonal gradients of the image. Then, the matrix
GFði; jÞ is concatenated column-like as follows:

GFði; jÞ ¼

2
6666664

gxði − 1; j − 1Þ gyði − 1; j − 1Þ
..
. ..

.

gxði; jÞ gyði; jÞ
..
. ..

.

gxðiþ 1; jþ 1Þ gyðiþ 1; jþ 1Þ

3
7777775
; (1)

where gxði; jÞ and gyði; jÞ are, respectively, gradients of
the x and y directions at the pixel ði; jÞ. The principal direc-
tion is computed by SVD decomposition GFði; jÞ ¼
Uði;jÞΛði;jÞVT

ði;jÞ, where Λði;jÞ is a diagonal 2 × 2 matrix
given by

Λði;jÞ ¼
�
λ1 0

0 λ2

�
: (2)

The eigenvalues λ1 and λ2 represent the gradient energies
on the principal and minor directions, respectively. Our LAS
feature at each pixel is denoted as ðLði;jÞ; Sði;jÞ; θði;jÞÞ. We
define a measure Lði;jÞ to describe the dominant orientation
energy as follows:

Lði;jÞ ¼ 2 ·
λ1 þ ξ 0

λ2 þ ξ 0 ; ξ 0 ≥ q0; (3)

where ξ 0 is the tunable threshold that can eliminate the effect
of noise. The parameter q0 is a tunable threshold. The mea-
sure Sði;jÞ describes the orthogonal direction energy with
respect to Lði;jÞ.

Sði;jÞ ¼ 2 ·
λ2 þ ξ 0

λ1 þ ξ 0 : (4)

The measure θði;jÞ is the rotation angle of Lði;jÞ, which
represents the dominant orientation angle.

θði;jÞ ¼ arctanðv1∕v2Þ; (5)

where ½v1; v2�T is the second column of Vði;jÞ.
The LAS feature can describe the local gradient distribu-

tion information (see Fig. 2). L, S, and θ are from the com-
putation of the local gradient field, which can yield
invariance to brightness change, contrast change, and
white noise as shown in Fig. 3. The results of Fig. 3 are
from the computation of LAS feature under different corre-
sponding conditions. Due to the SVD decomposition of local
gradients, the conditions of Fig. 3 on each pixel do not
change the dominant orientation energy enormously. One
can find the proof details of the tolerance of white noises,
brightness change, and contrast change from Ref. 24.

Some studies15,19–21 have already pointed out that the
densely sampled local features always give better results
in classification tasks than that of key-point sampled local
features, such as SIFT17 and SURF.18 These key-point

i
S

i
L

iθ

θ

(a) (b)

L S

Original Image

Fig. 2 (a) Locally adaptive steering (LAS) feature at some pixels. The red dots mean the positions of pixels. The ellipse means the dominant
orientation in the local gradient patch around the corresponding pixel. (b) The components of LAS feature in an image. L, S, and θ are
shown as a matrix, respectively.
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sampled features are always in a high-dimensional feature
space in which no dense clusters exist.15 Comparing to
the histogram of gradient (HOG) feature,27 our LAS feature
has smaller memory usage. Each location of the HOG feature
is 32 dimensions histogram, while our LAS feature is just
three dimensions. In Ref. 33, the authors also proposed dom-
inant orientation feature. But this dominant orientation is a
set of representative bins of the HOG.33 Our dominant gra-
dient orientation is computed by the SVD decomposition of
the local gradient values, which have more local shape infor-
mation. Comparing to the LARK feature,15 our LAS feature
has 27 times smaller memory usage, for the LARK feature is
81 dimensions at each pixel location. In Ref. 24, the authors
mentioned these three parameters, but no one has used them
as features. Next, we train the voting spaces based on this
LAS feature to obtain three voting spaces.

So why can the LAS deal with only a few image samples
well? That is because our LAS feature contains more local
gradient information than other dense features like LARK15

and HOG.27 There are three components of our LAS feature
Lði;jÞ, Si;j, and θi;j, which represent the dominant orientation
energy, the orthogonal direction energy of dominant orien-
tation, and the dominant orientation angle, respectively. For

LARK,15 there is only gradient energy information, which
cannot reflect the energy variations. For HOG,27 there are
just values of region gradient intensity in different gradient
orientations, which cannot reflect dominant orientation
energy and angle.

4 Training Voting Spaces
The template image coordinates and the value ranges of the
LAS feature component at the corresponding locations form
the voting spaces (denoted as ΔL, ΔS, and ΔΘ, respectively,
for three components of LAS feature). To match the template
image and the patch from the target image (testing image)
accurately, the cell length should be trained to reflect the tol-
erance of appearances at each pixel location. Several samples
(2 to 10 samples in this paper) are enough to train the cells in
each voting space.

Assume the query samples asQ ¼ fQ1; Q2; : : : ; Qng and
n is the cardinality of Q. We use Eqs. (3) to (5) to compute
the LAS feature matrices of nðn ≥ 2Þ samples and obtain
L ¼ fL1; L2; : : : ; Lng, S ¼ fS1; S2; : : : ; Sng, and Θ ¼
fθ1; θ2; : : : ; θng. We want to get the tolerance at each loca-
tion from the matrices Li, Si, and θi for (i ¼ 1; 2; : : : ; n).
Because our LAS feature is from local gradients at each loca-
tion, each value in matrices Li, Si, and θi reflects the local
edge orientation. To reflect the variation range of samples at
each location, we define the cell sizes ΔL, ΔS, and Δθ as
follows:

ΔLðj;kÞ ¼ max
i¼1;2;: : : ;n

Li
ðj;kÞ − min

i¼1;2;: : : ;n
Li
ðj;kÞ; (6)

ΔSðj;kÞ ¼ max
i¼1;2;: : : ;n

Siðj;kÞ − min
i¼1;2;: : : ;n

Siðj;kÞ; (7)

Δθðj;kÞ ¼ max
i¼1;2;: : : ;n

θiðj;kÞ − min
i¼1;2;: : : ;n

θiðj;kÞ; (8)

where ðj; kÞ is the pixel position in the template.
Our definition of cell size is not the only choice. However,

this definition is very simple and effective. Different from
traditional training scheme, our training method, based on
LAS feature, is not computationally expensive.
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Fig. 3 Robustness of the LAS feature in different conditions. The sigma of Gaussian noise is 4.
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Fig. 4 Voting results comparison between Q and different patches
from T. The thresholds τL ¼ 0.7812, τS ¼ 0.7793, and τθ ¼ 0.7704
are computed by Eqs. (15) to (17). The patch T j is the similar one
and the voted result is bounded by the red box.
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5 Object Detection
A query image Q is randomly selected from the sample
images. And the target image T is divided into a set of over-
lapping patches T ¼ fT1; T2; · · · ; TNTg by a sliding win-
dow with the same size as the query image Q, where NT

is the number of patches in T .
In our object matching scheme, there are two steps to

search similar patches in T . First step is voting in the trained
voting spaces (see Fig. 5). To combine the votes from three
voting spaces, we use a joint voting strategy to detect similar
patches from T . After the first step, one can get some similar
patches T 0 ¼ fT 0

1; T
0
2; · · · ; T

0
NT 0 g (T 0 ⊂ T and N 0

T is the
cardinality of T 0). Then a refined hypotheses step follows.
In this step, the histogram distance of the LAS feature
between Q and T 0

i ði ¼ 1; 2; · · · ; NT 0 Þ is used to measure
integral similarity, which can precisely locate the instances
of the query Q.

5.1 Voting in Trained Spaces

We associate each patch in T with a hypothesis as
follows:

H1∶T1 is similar to Q,
H2∶T2 is similar to Q,
HNT∶TNT is similar to Q.

Because there are three components with respect to the
LAS feature, we have three estimated conditional densities
pðHijLQÞ, pðHijSQÞ, and pðHijθQÞ. These conditional den-
sities are defined as the results of voting. Specifically,

pðHijLQÞ ¼
KðLQ; LTi

Þ
kQk ; (9)

pðHijSQÞ ¼
KðSQ; STi

Þ
kQk ; (10)

pðHijθQÞ ¼
KðθQ; θTi

Þ
kQk ; (11)

where kQk is the number of pixels of the image Q, and
Kð:; :Þ is a map: R2 × R2 → Zþ, which counts the votes in
the corresponding space.

To compute the function Kð:; :Þ, we define three variables
ΔLð∈ ΔLÞ, ΔSð∈ ΔSÞ, and Δθð∈ ΔΘÞ as ΔL ¼ jLQ − LTi

j,
ΔS ¼ jSQ − STi

j, and Δθ ¼ jθQ − θTi
j, where j:j means to

take absolute value of the elements in the matrix. In our
framework, the functions KðLQ; LTi

Þ, KðSQ; STi
Þ, and

KðθQ; θTi
Þ are defined as

KðLQ; LTi
Þ ¼

X
j;k

sgnðΔLðj;kÞ − ΔLðj;kÞÞ; (12)

KðSQ; STi
Þ ¼

X
j;k

sgnðΔSðj;kÞ − ΔSðj;kÞÞ; (13)

KðθQ; θTi
Þ ¼

X
j;k

sgnðΔθðj;kÞ − Δθðj;kÞÞ; (14)

where ΔLðj;kÞ, ΔSðj;kÞ, and Δθðj;kÞ are the trained cell matri-
ces in the previous section. For the component L of LAS
feature, if ΔLðj;kÞ ≥ ΔLðj;kÞ, then sgnðΔLðj;kÞ − ΔLðj;kÞÞ ¼
1 at the pixel location ðj; kÞ. This means a vote added to
the result of KðLQ; LTi

Þ. From Eqs. (12) to (14) of function
Kð:; :Þ, we can find that the estimated conditional densities in
Eqs. (9) to (11) represent, for each LAS component, the ratio
of votes at the size of the query image Q.

The estimated conditional densities pðHijLQÞ, pðHijSQÞ,
and pðHijθQÞ between Q and each element of T are com-
puted after voting. So how can we discriminate the similar
patches from these densities?

Our answer is organizing the samples to train the density
thresholds between Q and the set Q. In Ref. 15, the authors
use a tunable threshold to detect possible objects presented in
the target image and nonmaxima suppression strategy to
locate the objects in a similarity potential map. But in our
scenario, we make use of several samples sufficient to obtain
the thresholds, written as τL, τS, and τθ, off-line. These three

(a)
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(c) Histogram Distance:
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Fig. 5 (a) The query, target, and training samples. (b) Voting results in
the target image. (c) Refined hypotheses step.
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thresholds must contain two properties. The first one is that
these thresholds reflect the tolerance of the cells. The second
one is that the thresholds must be different when the query
image changes. Here, the computation formulas of τL, τS,
and τθ are the following:

τL ¼ min
i¼1;: : : ;n

KðLQ; LQi
Þ

kQk ; (15)

τS ¼ min
i¼1;: : : ;n

KðSQ; SQi
Þ

kQk ; (16)

τθ ¼ min
i¼1;: : : ;n

KðθQ; θQi
Þ

kQk ; (17)

where Qi ∈ Q. In previous section, we showed that the vot-
ing spaces are trained by the sample setQ, so the tolerance of
the cells is reflected in τL, τS, and τθ. When the query image
changes, we can see from Eqs. (15) to (17) that τL, τS, and τθ
are also changed. It is worth noting that the min function is
just one of the alternative functions in Eqs. (15) to (17).
One can choose mean function, median function, even
max function, or so on. The reason that we choose min func-
tion is that our samples in the experiment are without rota-
tion, strong noises, and brightness change. Other functions to
handle more complex cases need further research. In our
experiments, we just use Eqs. (15) to (17) to compute the
thresholds.

Next, we use the estimated conditional densities and
trained thresholds to obtain the similar patches. For the
LAS feature containing three components, our work is to
combine these three components to detect the similar patches
T 0
j. So we define a map FkðQ;HiÞ∶ð0; 1Þ → f0; 1g (k ¼ 1,

2, 3) and the combination FðQ;HiÞ ¼
Q

3
k¼1 Fk, where

F1ðQ;HiÞ ¼
�
1 pðHijLQÞ ≥ τL;
0 otherwise;

(18)

F2ðQ;HiÞ ¼
�
1 pðHijSQÞ ≥ τS;
0 otherwise;

(19)

F3ðQ;HiÞ ¼
�
1 pðHijθQÞ ≥ τθ.
0 otherwise:

(20)

For each Ti ∈ T , if FkðQ;HiÞ ¼ 1, ∀ k ¼ 1, 2, 3, then
FðQ;HiÞ ¼ 1. In Fig. 4, we show the voting results between
Q and the elements in T . The densities in the red bounding
box are all larger than the thresholds. So Tj is the patch sim-
ilar to Q. We compute the combination function F for all
Tiði ¼ 1; 2; · · · ; NTÞ and put patches whose function values
equal to 1 into the set T 0. In Fig. 5, we draw the graphical
illustration of the detection process.

5.2 Refined Hypotheses Step

After the density voting step, we obtain the similar patch set
T 0. The refined step just a process of this set T 0, which is
obtained from the voting. However, the first step is just a
local voting method at each pixel location. It is not enough

to describe the integral information of the object. The con-
struction of LAS feature shows that θ is related to the ori-
entation of the local edge, which is mentioned in Ref. 24.
To use the contour information sufficiently, we compute
the histogram distance between θQ and θT 0

i
. For the features

θQ and θT 0
i
, after being quantized here in the bin of 10 deg,

one can calculate the histograms denoted as hQ and hT
0
i ,

respectively. The distance between hQ and hT
0
i is defined as

χ2ðhQ; hT 0
i Þ ¼

XM
m¼1

ðhQm − h
T 0
i

m Þ2

hQm þ h
T 0
i

m

; (21)

whereM is the number of bins of the histogram. We also use
a few samples to train the threshold of histogram distance,
which can be written as τh. More specifically,

τh ¼ max
j¼1;: : : ;n

XM
m¼1

ðhQm − h
Qj
m Þ2

hQm þ h
Qj
m

: (22)

The more similar two histograms are, the smaller χ2 is. So
we use the max function to compute the τh. If χ2ðhQ; hT 0

i Þ ≤
τh is satisfied, T 0

i will be the instance of the query Q. It is
efficient to use the χ2 distance [see Fig. 5(c)]. The reason is
that the histogram distance between Q and T 0

i reflects the
integral difference.

In fact, besides using the histogram distance of θ, we can
also use the histogram distance of L and S. But in experi-
ments, we find that using the histogram distance of L or
S cannot enhance the precision of detection result, and θ
is better than L and S. The reason is that the feature θ
more precisely describes the contour information of an
object.

Previous works3,34–38 have already shown that the histo-
gram is a popular representation for feature description. That
is because the histogram encodes the distribution of spatially
unordered image measurements in a region.36 The χ2 dis-
tance is used to compare the distance between two histo-
grams in Ref. 3. So, we use this quadratic-χ measurement
to discriminant histogram distance.

6 Experimental Results
The experiments consist of three parts using car detection,
face detection, and generic object detection, respectively.
To handle object variations on scale and rotation in the target
image, we use the strategies provided in Ref. 15, which con-
struct a multiscale pyramid of the target image and generate
rotated templates (from Q) in 30-deg steps. The receiver
operating characteristic (ROC) curves are drawn to describe
the performance of object detection methods. We use the def-
inition in Ref. 15 that Recall and Precision are computed as

Recall ¼ TP

nP
; Precision ¼ TP

TPþ FP
; (23)

where TP is the number of true positive, FP is the number of
false positive, and nP is the total number of positive in the
test data set. And 1 − Precision ¼ FP∕ðTPþ FPÞ. In the fol-
lowing experimental results on each data set, we will present
Recall versus 1 − Precision curves.
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6.1 Car Detection

Now, we show the performance of our method on the
University of Illinois at Urbana-Champaign (UIUC) car
data set.39 The UIUC car data set contains the learning
and test sets. The learning set consists of 550 positive car
images and 500 noncar images. The test set consists of
two parts: 170 gray-scale images containing 200 side
views of cars of size 100 × 40 and 108 gray-scale images
containing 139 cars.

In Fig. 6, we show some detected examples of UIUC car
on the single-scale test set with the trained parameters
τL ¼ 0.7042, τS ¼ 0.7031, τθ ¼ 0.6852, and τh ¼ 251.5.
The query image and training samples are of size 100 × 40.

To demonstrate the performance improvement of our
method, we compare our method to some state-of-the-art
works15,39–41 (see Fig. 7). Seo et al.15 proposed the LARK
features that detect instances of the same object class and
get the best accuracy detection, resulting in template match-
ing methods. This method is referred to as LARK. In Ref. 39,
the authors used a sparse, part-based representation and gave
an automatically learning method to detect instances of the
object class. Wu et al.41 showed a method based on the per-
pixel figure-ground assignment around a neighborhood of
the edgelet on the feature response. Their method needs
to learn the ensemble classifier with a cascade decision strat-
egy from the base classifier pool.41 In Ref. 40, the authors
introduced a conditional model for simultaneous part-
based detection and segmentation of objects of a given
class, which needs a training set of images with segmentation
masks for the object of interest. However, these works39,40,41

are all based on the training methods, which need hundreds
or thousands of samples.

From Fig. 7, it can be observed that our method is better
than the methods in Refs. 15 and 39 and the recall is lower
than that in Refs. 40 and 41, which need hundreds or thou-
sands of samples. The precision of our method can be
improved more if the detected results are combined by

querying the object using the training samples one by
one. But this is not our main point. Our focus is that detecting
the instances of an object by one query using our method is
competitive to or better than that of the one-query method
executing several times. Compared with the LARK method,
because we organize the training samples reasonably, our
detection results have more appearance tolerance of the
object. Although we just have few samples in hand, the
detection result of our method is better than that of the pre-
vious works,39 which need hundreds or thousands of
samples.

The comparisons of detected equal-error rates (EER)15 are
shown in Tables 1 and 2. One can also find that our proposed
method is competitive to or better than those state-of-the-art
methods. Here, we compare our method to the state-of-the-
art training-based methods3,39–41 and the one-query method

Query

Training Cell 
Samples

Fig. 6 The detection results of UIUC car on the single-scale test set.
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Fig. 7 Comparison of receiver operating characteristic (ROC) curves
between our method and the methods in Refs. 15, 39, 40, and 41 on
the UIUC single-scale test set.
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(LARK). The EER on the single- and multiscale test sets are
shown in Tables 1 and 2, respectively. From Table 1, it can be
found that the EER of our method is higher than that of meth-
ods in Refs. 15 and 39, and lower than that of the methods in
Refs. 3, 40, and 41. In Table 2, the EER of our method is
higher than that of the methods in Refs. 15 and 39 and
lower than that of the methods in Refs. 3 and 40. As our
strategy is based on few samples, the prior knowledge of
the object class is limited. However, the EER of our method
also reaches 92.15 and 91.34%, respectively, which are

competitive to the methods in Refs. 3, 40, and 41. These
methods always need thousands of samples to train classi-
fiers. But our method, whose training processing is much
simpler than that of these methods, just needs several sam-
ples. Compared to these three methods, our method is also
competitive.

6.2 Face Detection

In this section, we demonstrate the performance of our
method to face detection on Massachusetts Institute of
Technology—Carnegie Mellon University (MIT-CMU)
face data set42 and Caltech face data set.11,16 The several
training samples in our face detection experiments are all
chosen from Fundação Educacional Inaciana (FEI) face
data set.43 Since we just have few samples in hand, in this
section the comparison is only made to the template match-
ing method. As mentioned before, in the template matching
methods, the LARK method15 shows good performance. So
we take it as our baseline object detector.

First, we show the detection results of our strategy on
MIT-CMU face data set. There are 45 images with 157 fron-
tal faces of various sizes in our test set. The query image and
training samples are all adjusted to the size 60 × 60. The
scale of faces in the data set between the largest and smallest
is from 0.4 to 2.0. One can see some of the results in Fig. 8.
Although the target image is blurry or contains a cartoon
human face, our detection method can localize the faces.
Especially in Fig. 9, we detect 56 faces correctly among
57 faces and the precision rate is higher than the results
in Refs. 15 and 44.

To make a fair comparison, we use the union LARK
detection results from several images. For example, if
there are six training samples, LARK processes them one
by one as the query image. For each target image, we record
the true positives of six queries and get the total number of
true positives without repeat. In this way, this union multi-
samples detection result of LARK can be compared with our
method fairly. In Fig. 10, we show the comparison between
our method and LARK.15 The curve of our method is the

Table 1 Detection equal-error rates on the single-scale UIUC car test
set.

Ref. 39 77.08%

Ref. 15 88.12%

Ref. 40 94.0%

Ref. 3 98.5%

Ref. 41 97.5%

Our method 92.15%

Table 2 Detection equal-error rates on the multiscale UIUC car test
set.

Ref. 39 44.08%

Ref. 15 77.66%

Ref. 40 93.5%

Ref. 3 98.6%

Our method 91.34%

Training Cell 
Samples

Query

Fig. 8 Detection results on MIT-CMU face data set. Even though the image is blurry, our method also localizes the object. τL ¼ 0.7745,
τS ¼ 0.7688, τθ ¼ 0.7911, and τh ¼ 488.6.
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average of five query images with the same training samples.
One can find that our method is superior to the LARK.

Next, we perform our method on the Caltech11,16 face data
set, which contains 435 frontal faces in file “Faces” with
almost the same scale.

The proposed method on three data sets achieves higher
accuracy and a lower false alarm rate than that of the
union LARK. The organization of the several training samples
is more efficient than the one-by-one detection strategy. We
draw ROC curves with respect to different query images
from the same training samples and to the same query
image on different training samples [see Figs. 11(a) and
11(b)] on MIT-CMU face data set. Figure 11 demonstrates
that our detection strategy can achieve consistent precisions
for both different training samples and different query images.
This means our method is robust on different training samples
and query images. In fact, we also obtained the same result on
other data sets used in this paper. To describe the result clearly,
we give the ROC curve on the MIT-CMU face data set.

From above, it can be seen that our detection strategy is
consistent and robust on different query images and training

samples. This is because our detection method has two steps,
voting step (VS) and refined hypotheses step (RHS), which
measure the object locally and integrally, respectively. Here,
we show how these two steps affect our detection results. We
compare the detection results of VS + RHS, VS and RHS on
the Caltech data set (see Fig. 12). Each curve is drawn and
averaged with the same seven query images and three train-
ing samples. One can see that the combination of both steps
can get a higher precision rate than that of using each step
alone, and that the voting strategy along has a higher accu-
racy than RHS. A similar conclusion can be drawn with other
data sets, which are not shown here.

6.3 Generic Object Detection

We have already shown the detection results of our proposed
method on the car and face data set. In this section, we use
our strategy to some general real-world images containing
hearts, flowers, and footballs. To the best of our knowledge,
there does not exist a data set for object detection based on a
few samples. So we download some real-world images from
Google as our data set. One can find these images from our
website http://cvlab.uestc.edu.cn/xupei. There are 34 images
of red hearts with 49 positive samples and 40 images of sun-
flowers with 101 positive samples. In all of these data sets,
the scale is from 0.2 to 1.8.

The detection examples can be found in Fig. 13. In the
real world, the red-heart shape can be found with complex
display. So, our detection results contain some false alarms.

Training Cell 
Samples

Query

Fig. 9 There are 57 faces in the target image, and our method detects
56 faces with five false alarm. τL ¼ 0.7812, τS ¼ 0.7793, τθ ¼ 0.7704,
and τh ¼ 475.1.
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Fig. 10 Comparison between our proposed method and the union
locally adaptive regression kernels (LARK) on MIT-CMU data set.
The ROC curve of our proposed method is the average on six
query images.
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Fig. 11 ROC curves on MIT-CMU face data set. In (a), we show ROC
curves of different query images from the same training samples. In
(b), the ROC curves are drawn with the same query image on different
training samples.
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6.4 Time Efficiency Comparison and Feature
Comparison

Now we compare the efficiency between our proposed
scheme and the detection scheme.15 For these two methods,
there are the same two steps: feature construction and object
detection. We compare the time efficiency of these two steps
between our strategy and LARK. To formalize the efficiency,
tcLAS and tcLARK are, respectively, defined as the evaluation
time of the feature construction. tdLAS and t

d
LARK are the evalu-

ation times of the detection step. Here, we define ρcLAP and
ρcLARK to describe the time efficiency of LAS and LARK fea-
tures, respectively, where

ρcLAS ¼
tcLAS

tcLAS þ tcLARK
; (24)

ρcLARK ¼ tcLARK
tcLAS þ tcLARK

; (25)

with a similar definition for ρdLAS and ρdLARK as

ρdLAS ¼
tdLAS

tdLAS þ tdLARK
; (26)

ρdLARK ¼ tdLARK
tdLAS þ tdLARK

: (27)

One can find the comparison results of LAS and LARK
features in Table 3. In the experiment, we evaluate 10 testing
times (each testing contains 30 images) to record the evalu-
ation time of the two steps in both our method and the
LARK, respectively. In Table 3, we can see that the construc-
tion time for LARK feature is more ∼30% than that of our
LAS feature. This is because the LAS feature just needs to
compute the gradients and SVD decomposition to get three
parameters. But for LARK feature, after SVD decomposi-
tion, the local kernel must be computed and then the princi-
pal component analysis (PCA) method is used to reduce the
dimension. The superiority of our LAS feature is not just
saving memory, but also cutting down the computing
steps for each pixel. In Table 3, one can find that ρdLAS is
also lower ∼20%% than ρdLARK (blue). Our detection step
is based on the idea of voting. In Ref. 15, the matrix cosine
similarity for each Ti and Q is computed. Then, the salience
map is constructed which is very time-consuming. In our
method, the time of the training step can be ignored. In
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Fig. 12 Comparison of different steps on the Caltech data set. The
green curve represents the results that combine both steps. The
red curve just uses the voting step. The black curve is using only
refined hypotheses step.
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Fig. 13 Detection results on general object detection.
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the experiments, we find that the consuming time of the
training step is <7% of the whole running time for detecting
objects in a target image.

We further compare the performance with some art local
features on Shechtman and Irani’s test set.12 We use our LAS
feature to compare with gradient location-orientation-histo-
gram (GLOH),45 LARK,15 Shape Context,46 SIFT,17 and
Commission Internationale de L’Eclairage (CIE).12 The
ROC curves can be seen in Fig. 14. Compared to previous
works, our LAS feature is much better than SIFT, Shape
Context, and GLOH in the case of a few samples.
Comparing to CIE and LARK, our LAS feature is compa-
rable or even better.

7 Conclusion and Future Work
In this paper, we proposed a generic objects detection
method based on few samples. We used the local principal
gradient orientation variation information, namely LAS, as
our feature. The voting spaces are trained based on a few
samples. Our detection method contains two steps. The
first step is adopting a combination densely voting method
in trained voting spaces to detect similar patches in target
image. Through the construction of a voting space, the ad-
vantage of our approach is resilient to local deformation of
appearance. Then, a refined hypotheses step is used to locate
object accurately.

Compared with the state-of-the-art methods, our experi-
ments confirm the effectiveness and efficiency of our

method. Our LAS feature has more efficiency and memory
saving than that of LARK. Besides, the strategy we proposed
in this paper gives a method of object detection when the
samples are limited. Previous template matching method
is to detect objects using samples one by one, while our
method is to organize several samples to detect objects
once. In the future, we will extend our work to the problem
of multiple-object detection and improve the efficiency
further.
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