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Abstract. As a successful case of combining deep learning with photonics, the research on optical machine
learning has recently undergone rapid development. Among various optical classification frameworks,
diffractive networks have been shown to have unique advantages in all-optical reasoning. As an important
property of light, the orbital angular momentum (OAM) of light shows orthogonality and mode-infinity,
which can enhance the ability of parallel classification in information processing. However, there have been
few all-optical diffractive networks under the OAM mode encoding. Here, we report a strategy of OAM-encoded
diffractive deep neural network (OAM-encoded D?NN) that encodes the spatial information of objects into the
OAM spectrum of the diffracted light to perform all-optical object classification. We demonstrated three different
OAM-encoded D?NNs to realize (1) single detector OAM-encoded D?NN for single task classification,
(2) single detector OAM-encoded D?NN for multitask classification, and (3) multidetector OAM-encoded
D?NN for repeatable multitask classification. We provide a feasible way to improve the performance of
all-optical object classification and open up promising research directions for D?’NN by proposing OAM-
encoded D?NN.
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1 Introduction based on deep learning with different implementation schemes
has been increasingly applied to various tasks," such as vowel
recognition,” image classification,'"'*"" mathematical opera-
tions,” and matrix operations.'*™?

A diffractive deep neural network (D?NN) is a series of
successive diffractive layers designed in a computer using error
backpropagation and stochastic gradient descent methods."
Unlike machine vision systems that use conventional optics,
the diffractive layer of D*NN consists of a series of two-dimen-
sional passive pixel arrays. Each pixel point on the diffractive
layer is a parameter that can be learned by the computer and can
be used for independent complex-valued tuning of the light
field. Based on its capabilities in optical information processing,
*Address all correspondence to Shuai Feng, fengshuai75 @ 163.com; Xiaoyong Hu, D’NN has been applied to image recognition,' ™ optical logic
xiaoyonghu @ pku.edu.cn operations,” ™ terahertz pulse shaping,* phase retrieval,” and
These authors contributed equally to this work. image reconstruction,‘s"“’*‘s etc.

The exponential growth of information and data processing has
led to bottlenecks in the continuous improvement of perfor-
mance for traditional electronic hardware processors. To
address this problem, all-optical computing using photons as
information carriers has become a promising solution.*®
Compared with traditional electronic hardware computing, op-
tical computing offers several advantages, including ultrafast
computing speed,”® ultralow energy consumption,’ and signifi-
cant potential for parallel computing.'®"" In recent years, with
the rapid development of deep learning,'” optical computing
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Diffractive networks performed in passive optical elements
have the advantages of fast processing speed and low energy
consumption, while also enabling flexible utilization of various
degrees of freedom of light in the network. For example, when
using broadband light instead of monochromatic light to illumi-
nate the diffractive networks, spectrally encoded machine vision
applications,"”*® parallel computing, snapshot multispectral
imaging,” and spatially controlled wavelength multiplexing/
demultiplexing® can be accomplished. In addition, the linear
transformation of polarization multiplexing can be achieved by
using the polarization properties of light in diffractive networks
instead of being based on birefringence or polarization-sensitive
materials,” which fully demonstrates the classification and com-
putational potential of diffractive networks in complex-valued
matrix vector operations. So far, the phase, amplitude, polariza-
tion, and wavelength of light have been applied in different
diffractive networks to perform the specific required computa-
tional tasks.

As another important property of light, the orbital angular
momentum (OAM) modes carried by vortex beams (VBs)
are widely used in various fields by virtue of the unique proper-
ties brought about by their wavefront structure.’'™ In terms of
the combination of the D?’NN with OAM modes, multiplexing/
demultiplexing of OAM modes,’"" optical logic gates,* holog-
raphy,**% and spectral detection® have been reported in recent
years. These works show the great potential of D?NN in han-
dling complex OAM modes. Since parallel object classification
requires multiple independent channels as carriers for informa-
tion processing, the orthogonality and near-infinite mode of the
OAM can present significant pattern differentiation and recog-
nition robustness during propagation, which is well suited for
application in all-optical parallel classification. However, the
near-infinite OAM mode has not yet been utilized in D*NN to
achieve advanced all-optical classification.

Here, we report on the strategy of OAM-encoded diffractive
deep neural networks (OAM-encoded D*NNs) which encodes
the spatial information of objects into OAM modes of light
by using deep-learning-trained diffractive layers to perform
recognition and classification in vortex light multiplexed by
different OAM modes. We use a VB that multiplexes 10 OAM
modes with different topological charges while maintaining
equal weights. And the beam is used to illuminate handwritten
digits, which then pass through five diffractive layers of D?NN.
The modulated vortex light is obtained at the output, and its
OAM spectrum is analyzed. The normalized intensity distribu-
tion of each OAM in the OAM spectrum is assigned to a
digit/class.

(1) First, we demonstrate a single detector OAM-encoded
D?NN for a single task classification. We achieve a blind accu-
racy of 85.43% for the Mixed National Institute of Standards
and Technology (MNIST) data set.”” For comparison, the spec-
trally encoded single-pixel machine vision without image
reconstruction achieved blind test accuracy of 84.02% for the
same data sets.” (2) In addition, we show a single detector
OAM-encoded D>NN for multitask classification. To evaluate
the discriminative criteria for multi-object classification, we
propose the self-defined MNIST array data set and MNIST
repeatable array data set (see Sec. 4.4). Most of the previous
multitask classification works were performed on several differ-
ent data sets for parallel recognition.'** However, their accura-
cies were calculated separately and independently for each data
set; few of them were computed in parallel on the same data set.
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The MNIST array data set and MNIST repeatable array data set
will give some digits as a digit array for classification each time.
When any one or more digits in the input are inferred incor-
rectly, we assume that the digit array is judged incorrectly.
So, there are a large number of cases where the correct inference
of just one digit in an array is attributed to misclassification. We
achieved a blind test accuracy of 64.13% for the MNIST array
data set. In fact, there are 45 inferred categories in the MNIST
array data set, which is significantly larger than the 10 categories
in the MNIST data set. (3) Moreover, we design a multidetector
OAM-encoded D?>NN for repeatable multitask classification.
By measuring multiple OAM spectra of beams and comparing
their intensities, we achieve parallel classification for two-digit,
three-digit, and four-digit MNIST repeatable array data sets.
Although using the MNIST array data set and the MNIST
repeatable array data set instead of the MNIST data set
undoubtedly increases the difficulty of judgment, the advan-
tages of advanced parallel classification are highlighted by
the process of promoting a single task into multiple tasks.

As shown in Table 1, this work achieves a breakthrough in
parallel classification by utilizing the OAM degree of freedom
compared to other existing D?NN designs. We believe that
OAM-encoded D?NNs provide a powerful framework to further
improve the capability of all-optical parallel classification and
OAM-based machine vision tasks. In the near future, the devel-
opment of OAM mode multiplexing/demultiplexing technology
may enable the application of OAM combs consisting of
hundreds of OAM modes.®” The advancement will be possible
to introduce more OAM modes into the OAM-encoded D*NN,
and thus break through to a higher degree of parallelism for
solving more complex multitasking parallel classifications.

2 Results
2.1 Design of OAM-Encoded D*NNs

In this paper, we demonstrate an approach to incorporate OAM
into D2NN, which encode the spatial information of objects into
the OAM modes of light. Our approach is based on the Fresnel
scalar diffraction theory, and we propose three different variants
of OAM-encoded D>NNs, as shown in Fig. 1. The schematic
diagram illustrates the OAM-encoded D°NN structures and
highlights the similarities and differences between the proposed
OAM-encoded D?>NNs. The similarity among the proposed
OAM-encoded D?>NNss is that they are all composed of five
diffractive layers, with a constant spacing of 1.55 mm between
the input layer and the diffractive layer, as well as between the
diffractive layers and between the diffractive layer and the out-
put layer. The distance is determined by the qualifying condi-
tions of the Fresnel scalar diffraction theory. The number of
diffractive units per layer is 200 x 200. These diffractive net-
works are trained to run independently without being coupled
to other networks, although they have the same number of layers
and neurons. At the input, an OAM mode is generated by using
a Laguerre-Gaussian (LG) beam operating at 1550 nm, with
a waist radius of 34. Ten OAM modes with m € [-5, +35] are
selected, each corresponding to one of the 10 categories of
handwritten digits in the MNIST data set. The +1 to +5
OAM modes represent digits 0 to 4, while the —1 to —5
OAM modes represent digits 5 to 9. A VB multiplexes 10
OAM modes with equal weights to illuminate handwritten
digits. The equation we employed for multiplexing LG beams
carrying different OAM modes can be expressed as follows:
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Table 1 Comparison with other D?NN using more than three degrees of freedom.

Degree of Parallel Single
Reference freedom Footprint Function Performance classification detector
This work OAM 164.3 pm x 164.3 um Image recognition Accuracy: 85.49% Yes Yes
11 — 8 cmx8cm Image recognition Accuracy: 93.39% No No
15 Wavelength 8cmx8cm Image recognition Accuracy: 91.29% (84.02%)- No Yes
38 Wavelength 6 cmx6cm Image recognition Accuracy: 87.74% No Yes
39 Wavelength 0.8 mm x 0.8 mm Image recognition Accuracies of four tasks are Yes No
92.8%, 83.0%, 81.0%, and
90.4%, respectively
48 Wavelength 88.2 ym x 88.2 um Multispectral imaging Filter transmission efficiency: >79% — —
49 Wavelength 5cmx5cm Spectral filters Process optical waves over — —
a continuous, wide range of
frequencies
16 Polarization 11.2 umx11.2 um Image recognition Accuracy: 93.75% Yes No
50 Polarization 244 x 242 Linear transformations Perform multiple complex-valued, — —
arbitrary linear transformations using
polarization multiplexing
42 OAM 3cmx 3cm Logic operation Proposed an OAM logical operation — —
61 OAM 3cmx 3cm Optical communication The diffraction efficiency and mode — —
conversion purity: >96%.
The bit error rates: <10~
64 OAM 25 umx2.5 uym  Holography 10 multiplexed OAM modes — —
among five spatial depths in
deep multiplexing holography
66 OAM 1004 x 1004 Spectral detection Optical operations/electronic — —

operations: ~10°

aAccuracy without reconstructed image is shown in parentheses.

Smutiple 0aM (7 @5 2) = foami (7, @, 2) + foama (7, 9, 2) + ...
+ foamm(7: @, 2), ()

where foamm (7, @,z) represents the input OAM beams and
m represents the topological charge of the OAM beams. After
irradiating the digits, due to the different transmission light
distribution of different digits, each OAM mode will generate
independent post-transmission complex amplitude information
and encode the spatial position information of the digits into the
OAM mode information.

The first scheme with the OAM-encoded D?NN demonstrated
encoding of a single digit using the OAM mode, then transmit-
ting it through diffractive layers. The results showed that the
OAM beam generated in the output plane corresponded to the
handwritten digit input, as shown in Fig. 1(a). The OAM-
encoded D’NN was then used for parallel image recognition.
As shown in Fig. 1(b), two different categories of digits were
positioned in separate spatial locations, encoded with the
OAM mode, and transmitted simultaneously through the diffrac-
tive networks. The result was an independent multiplexed OAM
beam at the output, with the OAM modes corresponding to the
two initial input digit categories. However, using a single detec-
tor for parallel detection resulted in an inability to distinguish
between identical digits, as the single detector OAM-encoded
D?NN lacked the ability to detect sequential information.
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To address this issue, a multidetector OAM-encoded D?NN
was used to discriminate repeating digits [see Fig. 1(c)].
Compared to the single detector OAM-encoded D?NN, the abil-
ity of the multiple detectors to encode sequential information
between repeating digits allows them to recognize the same
digits while further increasing the parallel classification power
of the diffractive network.

2.2 Single Detector OAM-Encoded D*>NN for
Single Task Classification

Here is a demonstration of the recognition of an OAM encoded
digit “1” using the single detector (not a single-pixel detector)
OAM-encoded D?>NN. A multiplexed OAM beam is used to il-
luminate the MNIST handwritten digit “1” and then passes
through the diffractive layers, resulting in a modulated OAM
beam at the output receiver plane [see Fig. 2(b)]. The optical
field distribution of the input OAM-encoded digit “1” in each
layer after modulation by the trained diffractive networks is
shown in Fig. 2(a). It can be seen that the input digit “1” exhibits
a residual, which is caused by the uneven distribution of light
intensity in the mixed OAM beam. By our comparison, this type
of irradiation does not affect the accuracy of the blind test rec-
ognition. After the modulation of the diffractive layers, a second-
order OAM beam is reconstructed at the output, which can show
that our diffractive network is able to perform the given task
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%

Fig. 1 Schematic diagrams of the three types of the OAM-
encoded D?NN. The OAM beams illuminating the digits are
multiplexed by 10 OAM modes ranging from -5 to +5 in equal
proportions. The red numbers represent the topological charges
of the OAM modes, while the black numbers in brackets corre-
spond to the assumed digits associated with the OAM modes.
The digit inputs are illuminated by the multiplexed OAM beams,
and the predicted OAM beams are obtained in the output plane
after modulation by the OAM-encoded D?NNs. The right side of
the output plane shows the OAM spectra of the OAM beams.
Three different configurations of OAM-encoded D?NNs have
been described below: (a) single detector OAM-encoded
D2NN for single-task classification, (b) single detector OAM-
encoded D?NN for multitask classification, and (c) multidetector
OAM-encoded D?NN for multitask classification.

relatively well. Although the output light contains non-single
OAM modes due to modulation limitations and diffraction
effects, the classification can still be inferred from the intensity
distributions among different OAM modes. We obtained the
normalized intensity distribution of each OAM mode by analyz-
ing the OAM spectra of the OAM beams at the output (see
Sec. 4.3). The category of the inferred digit is determined by
the highest normalized intensity of the OAM mode. As shown
in Fig. 2(c), the intensity of the OAM mode with m = +2, cor-
responding to the digit “1,” is 79.37%, which is significantly
higher than that of other OAM modes, demonstrating effective
filtering of the vortex light with other OAM modes.

During the training process, the single-detector OAM-
encoded D?NN reduces the loss value by continuously updating
and adjusting the phase and amplitude distribution of the dif-
fractive layers. The loss and accuracy functions for both the
training and testing phases are shown in Fig. 2(d), where the
dashed lines represent the results of each recognition, and the
solid lines represent the average of the results of the three rec-
ognitions. From the mean curves, it can be seen that the single-
detector OAM-encoded D>NN experiences a sharp drop in the
loss function at the beginning of the iterative process and then
stabilizes after a few iterations. In addition, the test accuracy is
slightly higher than the training accuracy, and the loss function
exhibits smoother fluctuations during the test phase. The blind
accuracy of the single-detector OAM-encoded D?NN for the
MNIST data set was found to be 85.49% [as shown in Fig. 2(e)].
The accuracy of D*NN using OAM encoding is essentially the
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same as that of D’NN with wavelength encoding when com-
pared to spectrally encoded single-pixel machine vision using
diffractive networks that do not reconstruct images." It should
be noted that the single detector of OAM-encoded D>NN is not
a single-pixel detector, but rather a single interferometer-like
detector (see Sec. 4.3). This shows that this single-detector
OAM-encoded D*NN design can efficiently perform a single-
digit recognition task.

2.3 Single-detector OAM-Encoded D*>NN for Multitask
Classification

Following our demonstration of single image classification
using OAM-encoded D*NN, we present a more challenging ap-
plication of the same framework: single-detector OAM-encoded
D?NN for multitask classification. In Fig. 3(b), by simultane-
ously irradiating two different digits, “7” and “0,” with indepen-
dent spatial distributions as an array to the input layer, OAM
beams are generated at the center of the output layer, multiplex-
ing the OAM modes with m = 3 and m = +1 corresponding to
each of the two digits. The OAM-encoded D*NN multiplexes
the spatial information of both digits into the same OAM beams,
effectively utilizing the orthogonality of the OAM modes.
However, if the two input digits have the same label, using
the highest normalized intensity measure may lead to indistin-
guishable outcomes. For example, whether we input two digits
“2” as an array or one digit “2” combining an array of other
digits, a single-detector OAM-encoded D>NN cannot accurately
determine how many digits “2” are present at the input because
only the highest intensity is considered as the judgment cri-
terion, which can lead to a large error in the network. To address
this issue, we utilize a modified MNIST array data set that pre-
vents the inclusion of digits with the same label in a single array
(see Sec. 4.4). In Fig. 3(a), the two input digits are modulated by
the diffractive layers to produce the optical field in the output
plane with the expected OAM modes. By detecting the OAM
spectra of the OAM beams at the output, the two OAM modes
with the highest normalized intensity represent the classes of
the presumed digits [see Fig. 3(c)]. Among them, the normal-
ized intensity of the OAM mode with m = 3 corresponding to
the digit “7” is 38.97%, and the normalized intensity of the
OAM mode with m = 41 corresponding to the digit “0” is
35.57%, which far exceeds the other modes. Although OAM
modes with the same proportional intensity distribution should
theoretically be obtained at the output, the problem of different
intensities between the two OAM modes is inevitable due to the
limitations of the diffractive network modulation capability.
However, this uneven distribution of intensities only slightly
affects the accuracy of the inference (after testing, the accuracy
error caused by this distribution does not exceed 1%).

After iterative training convergence, our single-detector
OAM-encoded D>NN for multitask classification can achieve
a blind measurement accuracy of 64.13% [see Fig. 3(d)]. The
test results obtained indicate that the accuracy of the single-de-
tector OAM-encoded D?>NN, which performs parallel recogni-
tion of multiple digits, is lower compared to the previously
reported D?NNs. In terms of accuracy requirements, the
OAM-encoded D’NN must correctly recognize all digits in
the input array. As can be seen from the confusion matrix, there
are actually 45 categories to be recognized in the MNIST array
data set, which is significantly larger than the 10 categories in
the MNIST data set [see Fig. 3(e)]. It is the substantial increase
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Fig.2 (a) The amplitude and phase distributions of the OAM beams are shown for the input plane,
the diffractive layers, and the output plane. The input image is a handwritten digit “1” encoded as
an OAM beam with +2 mode. (b) Schematic of the modulation of the light field by the single-
detector OAM-encoded D?NN. (c) The OAM spectrum of the output OAM beams. The red plot
corresponding to the OAM mode with the highest normalized intensity indicates the inferred
category of the input digit. (d) The loss and accuracy functions for both the training and test sets.
Three simulations were conducted for each set, and the corresponding results are represented by
the three dashed lines. The solid lines represent the average results of the three function curves
depicted by the dashed lines. (e) A confusion matrix summarizes the numerical classification
results in the test set. The matrix provides a comprehensive overview of the performance of
the single-detector OAM-encoded D?NN in recognizing the handwritten digits from the MNIST

data set.

in task complexity that causes the plummeting of our blind test
accuracy for multitask classification compared to that for single-
task classification.

2.4 Multidetector OAM-Encoded D>*NN for Repeatable
Multitask Classification

Next, when considering the ability of OAM-encoded D>NN to
perform parallel recognition of large batches of images, it is nec-
essary to load the sequence of digits into the light field. In ad-
dition, the reason we use multiple detectors is to simultaneously
measure the OAM spectrum of multiplexed OAM beams at the
output plane, which cannot be realized by using a single detec-
tor. If we separate the OAM beams at the output and utilize
multiple detectors for OAM detection, we can enhance the
capability of the OAM-encoded D>NN to process multiple im-
ages and introduce multiple digits at the input for multitask clas-
sification. In addition, we can use the positional information
between different detectors to encode the sequential information
of the same digits in an array and achieve parallel recognition of
repeatable digit tasks.
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Therefore, we propose a multidetector OAM-encoded D2NN
for repeatable multitask classification that can encode repeatable
numerical order using spatial information to enhance the parallel
ability of the diffractive network to process more complex in-
formation. Unlike the first two schemes that generate a single
multiplexed OAM beam at the central location, multiple OAM
beams are generated at discrete spatial locations in the output
plane. The number of generated OAM beams is equal to the
number of digits in the input array, facilitating the use of multi-
ple detectors for identification and classification. Figure 4(b)
shows a schematic demonstration of the four-detector OAM-
encoded D*NN. When the four digits are modulated by the
diffractive layers, they will produce OAM beams with the cor-
responding OAM modes at the specified spatial locations in the
output layer. Figure 4(a) shows the amplitude and phase of the
input two, three, and four digits at different positions in the input
layer, diffractive layers, and output layer, respectively. It can be
seen that the intensities of different output OAM beams are not
uniformly distributed, which is similar to the problem encoun-
tered in single-detector OAM-encoded D*NN for single-task
classification, and is caused by the limitation of the diffractive
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Fig. 3 (a) The amplitude and phase distribution of the OAM beams in the input plane, diffractive
layers, and output plane. The input handwritten digits are “7” and “0,” which correspond to the
multiplexed OAM beams that produce “-3” and “+1” OAM modes. (b) Schematic of the light field
modulation by single-detector OAM-encoded D?NN for multitask classification. The OAM beam
encodes two handwritten digits as the input. After undergoing OAM-encoded D>NN modulation,
it produces a new OAM beam corresponding to two modes at the same spatial location. (c) The
OAM spectrum of the output OAM beams. The two OAM modes detected by the detector with
the highest normalized intensity represent the assumed categories of the input digits, and their
classes are indicated by the red bars. (d) Loss function and accuracy during training and testing.
Solid lines indicate the average result of the three-function curve represented by the dashed line.

(e) The confusion matrix summarizes the numerical classification result in the test set.

network’s own modulation capability. In addition, it is shown in
Fig. 4(a) that there is only a logical correspondence between our
input and output layers for digital recognition, and no direct cor-
respondence in the optical path propagation. When the digits
“6” and “0” are entered, the intensity of the generated OAM
mode m = —2 and +1 corresponding to their digit classification
accounts for 46.55% and 69.77% of the OAM beam, respec-
tively. When the arrays “6,” “1,” and “3” with repeatable digits
are input, the normalized intensities of the corresponding OAM
modes m = —2, +2, and +4 are 51.78%, 40.98%, and 45.20%
of the output, respectively. And the OAM modes m = +3, 42,
—3, and —4 corresponding to the array containing repeatable
digits “2,” “1,” 7, and “3” account for 46.77%, 42.27%,
38.84%, and 34.73% of the total intensity, respectively. These
proportions exceed the intensity accounted for by the other
OAM modes [see Fig. 4(c)]. It can be seen that the multidetector
OAM-encoded D?NN can handle the parallel recognition task
excellently when spatially separated OAM beams are generated
at the output and jointly detected by the same number of
detectors.
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The accuracy curves obtained from successive iterative tests
show that the multidetector OAM-encoded D>NN achieves
blind test accuracies of 70.94%, 52.41%, and 40.13% for two-
digit, three-digit, and four-digit MNIST repeatable array data
sets [see Fig. 5(a)]. Facing the same challenge as the single-
detector OAM-encoded D?NN for multitask classification, the
rapid increase in the number of labels in the repeatable array
data set further degrades the blind testing accuracy of the net-
work. The two-digit, three-digit, and four-digit data sets have
100, 1000, and 10,000 labels, respectively. The difficulty is
much higher than that of the original MNIST data set because
it requires correctly classifying every digit in the array. In three-
detector and four-detector OAM-encoded D?NNss, there are too
many labels consisting of different digits, and it is not feasible
to display a pixel map of this size within the limited space for
the inserted image. However, if we only capture a portion of
the confusion matrix, we would sacrifice the comprehensive-
ness of all the data. Therefore, we choose a scaled-down
version of the confusion matrix for the inserted image while
employing a localized zoom approach [Fig. 5(b)]. In addition,
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Fig. 4 (a) From top to bottom, the multidetector OAM-encoded D?NN provides recognition for two
digits, three digits, and four-digits, respectively. The amplitude and phase distribution of the OAM
beams in the input plane, diffractive layers, and output plane. (b) Schematic of the light field modu-
lation by four-detector OAM-encoded D?NN for multitask classification. Each input OAM beam at
different positions encodes only one digit and generates the corresponding OAM mode of that digit
at the output, which is detected by a detector at a fixed position. (c) The OAM spectrum of the
output OAM beams. The two blue OAM spectra correspond to the OAM beams generated by the
two-detector OAM-encoded D?NN, from top to bottom, respectively. The green OAM spectrum in
the first row corresponds to the separate OAM beam in the first row of the three-detector OAM-
encoded D2NN, and the green OAM spectra in the second and third rows correspond to the two
OAM beams from left to right in the second row, respectively. The four red OAM spectra are
arranged in a sequential relationship from left to right and from top to bottom.

the results of the multidetector OAM-encoded D?NN for OAM-encoded D*NN to handle more digits can be improved
repeatable multitask classification show that using more digits by adopting certain approaches, such as increasing the size of
for parallel classification within the same array leads to a fur- the diffractive layer and expanding the number of neurons used
ther decrease in classification accuracy. The ability of the for recognition.
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Fig. 5 (a) The loss function and accuracy function of the two-detector, three-detector, and four-
detector OAM-encoded D?NNs in training and testing are arranged from left to right. The solid
line represents the average result of the function curves for the three simulations, which is rep-
resented by the dashed line. Their average accuracy in the test set is 70.94%, 52.41%, and
40.13%, respectively. (b) Confusion matrices of the three multidetector OAM-encoded D?NNs,
summarizing the numerical classification results of the test set. Due to the large number of pixel
points in the confusion matrices of the three-detector and four-detector OAM-encoded D?NNs,
the confusion matrices are reduced and localized zoomed-in images are inserted.

3 Discussion and Conclusions

Experimental implementation of D’NN typically uses a spatial
light modulator to modulate the light source and 3D printing to
fabricate metasurfaces designed by an electronic computer.
Limited by the precision size of 3D printing, this fabrication
method is typically only available for terahertz bands. There
are two main challenges in building OAM encoded D*NNs
experimentally: sample fabrication and experimental measure-
ment. Here, the OAM-encoded D?NN operates at the wave-
length of 1550 nm, which corresponds to pixel sizes of
~800 nm. The diffractive layer of the OAM-encoded D?NN
can be fabricated by micro/nanoprocessing technology compat-
ible with CMOS technology, as the current state-of-the-art
e-beam lithography technology has a fabrication resolution of
only a few nanometers. However, there are still certain chal-
lenges left to be considered in the fabrication process due to
the on-chip multilayer structures. These challenges may include
issues related to overlay, alignment, and other aspects®®® that
need to be solved with improved technology.

When detecting the spectrum of the output OAM beam, it can
be analyzed using interferometric methods, diffractive methods,
and other detection methods.®™*"" In terms of measuring the dif-
fractive network, here we take the interferometric method as an
example. This method can detect the OAM spectra of multi-
plexed OAM beams, not only the single OAM mode. The mea-
surement details of the detector are outlined in Sec. 4.3. For the
MNIST data set and the MNIST array data set, a single detector
at the output plane of the diffractive network is sufficient for
OAM spectrum analysis. However, for the MNIST repeatable
array data set, we need to use multiple detectors to achieve
simultaneous detection of different OAM modes corresponding
to different categorized digits.

At the same time, the OAM-encoded D2NNs require an inter-
ferometer detector with a high signal-to-noise ratio and high
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sensitivity, considering reflections, material absorptions, scatter-
ing, and other loss issues; we can attempt to decrease the sensi-
tivity and robustness requirements of the detector. One approach is
to increase the intensity of the optical signal received by the
detector, which can be achieved by reducing the number of layers
to minimize absorption and reflection losses. Note that there is
always a trade-off between classification accuracy and output
efficiency. As we are dealing with an optical classification net-
work, we only need the detected effective optical signal to meet
the minimal requirements for classification. Despite the difficul-
ties, we believe that there is great potential for realizing this
scheme of OAM-encoded D>NN as technology develops.

In summary, we have proposed and investigated an all-
optical parallel classification using OAM mode-encoded dif-
fractive networks, which can encode the spatial information
of multiple objects as OAM modes of the VB. And then we
utilize OAM spectra to analyze the OAM mode normalized
intensity distribution for multitask optical classification. If
the inference accuracy of the existing OAM-encoded D’NN
can be further improved, it can be extended from target
recognition to other deep-learning tasks, such as multilabel clas-
sification and dynamic image recognition. We also envision
introducing more OAM modes (this may require the use of a
more advanced multimode OAM comb as a light source®) to
solve more complex tasks. Finally, we expect that the OAM-
encoded D>NN can provide a new feasible pathway for all-
optical parallel classification and OAM-based machine vision.

4 Appendix: Materials and Methods

4.1 Forward Propagation Model of the OAM-Encoded
D’NN

Traditional deep neural networks rely on forward propagation,
backward propagation, and gradient descent algorithms for
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brain-like electronic computation by continuously adjusting the
weights of electronic neurons. The diffraction of light that oc-
curs during propagation is very similar to the way neurons are
connected in deep neural networks. Based on the Rayleigh—
Sommerfeld diffraction,” each diffractive unit/neuron can be
regarded as a coherent superposition of light propagating from
every diffractive unit/neuron in the preceding diffractive layer.
It can also be seen as the source of a secondary wave that is
fully connected to the subsequent layer. The equation of light
propagation between diffraction layers is given as

I 2=z R J2rr )
=558 (4 D) (22, .

where w!(x,y,z) is the complex-valued field propagated to
each diffractive unit located at (x,y,z) in layer [+ 1’th
by using the i’th diffractive unit located at (x;,y;,z;) in
layer I’th with a wavelength of 1 as the wave source,
r=+(x—x)2+ (y—y:)? + (z—z)? and j> = —1. The light
field function of the i’th neuron of the /’th layer u! can be con-
sidered as

ub(x;, v, 2;) = Z”ﬁ'_l(xj»yja z;) - ! yinzi) - Wi (i 24),s
=

3

where N denotes all the pixels on the previous diffractive layer.
t'(x;,v;,7;) is the complex-valued modulation of the optical
field by the [’th diffractive layer, which has the functional ex-
pression #!(x;, y;, z;) = @' (x;, y;, z;) - expljd (x;,y:, 2;)], where
a and ¢ denote the amplitude and phase coefficients, respec-
tively, and both of which are trainable parameters in the diffrac-
tive networks, where a and ¢ are allowed in the range from O to
1 and O to 2z, respectively.

Due to the significant computational burden associated with
solving the conventional D?NN model using the Rayleigh—
Sommerfeld formula, the use of Fresnel scalar diffraction theory
can effectively reduce the computational effort. This theory can
replace the Rayleigh—Sommerfeld formula in the results under
the conditions of the layer spacing we use. Here, we use the
Fresnel scalar diffraction theory to construct the forward propa-
gation model of OAM-encoded diffractive neural networks.
The complex amplitude of the OAM beam of the i’th neuron of
the I’th layer u! can be considered as

wi(xpy;) = F-H{F ™ (xi,yi) - 07 (o y)] - H(f f))} @)

H(f+. fy) =expljk(z—z;)]-exp[—jin(z—z) ([ + /)], (5)

where F and F~' denote the fast Fourier transform and reverse
fast Fourier transform, respectively, which are functions that
represent the transformation of the optical field between the spa-
tial and frequency domains, where H(f,. f,) is the transforma-
tion function in the frequency, which represents the propagation
of the OAM beam in free space. k = 2/1—” represents the wave-
number.
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4.2 Error Analysis of OAM-encoded D*NN

In the main text, the OAM-encoded D*NN is based entirely on
the ideal case with fixed parameters. When considering the
experiments, different factors such as fabrication size errors,
optical alignment errors, and material absorption may affect the
performance of the diffractive network. Here, we present a sys-
tematic analysis of the various types of error problems that may
be encountered by OAM-encoded D>NN.

4.2.1 Deviation analysis of the pixel size and the layer
spacing

According to the Fresnel scalar diffraction theory, the spacing
between layers of the diffractive network should be at least 10
times larger than the size of entire layer. Therefore, we grouped
the pixel size and optical full-sized errors together for analysis.
We assumed a deviation of £20% in the manufacturing dimen-
sions, which is much larger than the fabrication error of the
CMOS machining process.®* We considered an error range
of 0.8 times the pixel size and the corresponding layer spacing,
as well as a range of 1.2 times the pixel size and the correspond-
ing layer spacing. As shown in Fig. 6(a), the accuracy of the
OAM-encoded D?>NN varies within 1% of this error range.
Therefore, we believe that the errors in pixel size and layer spac-
ing caused by processing and manufacturing do not affect the
OAM-encoded D?>NN.

4.2.2 Deviation analysis of the object misalignment

First, we consider the possible object misalignment error be-
tween the incident OAM beam and the digital mask. We intro-
duced deviations of 2%, 4%, 6%, 8%, and 10% in both the
horizontal and vertical directions of the object. For each of these
object misalignment errors, we tested all five types of diffractive
networks mentioned in our main text. As shown in Fig. 6(b),
when the deviation of object misalignment is within 5% in both
the horizontal and vertical directions, the accuracy of all OAM-
encoded D>NNs, except for S-OAM-encoded D*NN-M (see
Table 2 for the nomenclature), fluctuates within 1%. There-
fore, our diffractive networks could ensure that the deviation
of the incident beam from the digital mask does not exceed
5%, which is smaller than the range of fabrication error.®®

In addition, we also observed an interesting phenomenon
regarding the three-detector and four-detector OAM-encoded
D’NN. Surprisingly, their accuracy seems to increase when
the object misalignment error is around 5%. We hypothesize
that this effect may be caused by misidentification of certain
numbers when the incident beam deviates (e.g., when the OAM
beam shifts horizontally to the right, it can cause the light in-
tensity distribution of the number “8” to resemble that of the
number “3” due to the nonuniform distribution of the light in-
tensity of multiplexed OAM beams).

4.2.3 Deviation analysis of layer misalignment

Here, we selected two values for the misalignment error: 5% and
10%. This indicates that the layers would experience disloca-
tions of 5% or 10% in random directions. As shown in Fig. 6(c),
the horizontal coordinates represent the number of diffractive
layers where the corresponding misalignment error occurred.
It has been proven that the OAM-encoded D?’NN is highly
robust against layer alignment errors, with minimal impact on
accuracy. In addition, to explore the limit of the OAM-encoded
D?NN’s sensitivity to layer alignment errors, we conducted
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Fig. 6 The different colored curves represent different diffractive networks, as illustrated in the
square diagram located in the lower left corner. (a) The deviation of the pixel size and the layer
spacing. The horizontal coordinate represents the error range from 0.8 times the pixel size and
the corresponding layer spacing to 1.2 times the pixel size and the corresponding layer spacing.
(b) The analysis of the deviation of the object misalignment in horizontal and vertical directions.
(c) The analysis of the deviation of the misalignment layer. The left image represents a random
misalignment error of 5% for each layer, while the right image represents a random misalignment

error of 10% for each layer.

Table 2 Various indices for single-detector OAM-encoded D?NN for single-task classification (S-OAM-encoded D?NN-S), single-de-
tector OAM-encoded D?NN for multi-task classification (S-OAM-encoded D?NN-M), multidetector OAM-encoded D?NN for repeatable

multitask classification (M-OAM-encoded D2NN-M).

Training time (h) Training loss Training accuracy (%) Test loss Test accuracy (%)
S-OAM-encoded D?NN-S 12.74 0.402 84.30 0.343 85.43
S-OAM-encoded D2NN-M 5.69 0.708 57.42 0.667 64.13
M-OAM-encoded D?NN-M(2) 6.04 0.820 67.69 0.772 70.94
M-OAM-encoded D?NN-M(3) 4.09 1.345 48.94 1.238 52.41
M-OAM-encoded D?NN-M(4) 3.19 1.970 36.25 1.932 40.13

additional tests on the single-detector OAM-encoded D*NN for
single-task classification with a 20% misalignment error (see
Fig. 6). The accuracy of the OAM-encoded D?NN starts to
exhibit a slight decline of 1% under these conditions.
Consequently, we conclude that the performance of diffractive
network can be reliably maintained as long as the alignment
bit error between layers remains within 20% during sample
processing and experimental testing.

4.2.4 Absorption error analysis of materials

As for the absorption effect, the material we used for the dif-
fractive layer is silicon nitride, which corresponds to an extinc-
tion coefficient k = 0 in the wavelength of 1550 nm and does
not have an absorption effect in the simulation. Considering that
the fabricated silicon nitride material may have a small extinc-
tion coefficient during the experimental test, we assumed k to be
0.05 and incorporated it into the updated diffractive network for
testing. After testing, the loss of D’NN is <1%. This may be due
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to the thickness of the diffractive network is about 1 ym, which
almost fails to produce any absorption.

4.2.5 Reflection error analysis of diffractive layers

The loss of the whole OAM-encoded D?>NN system is mainly
due to the reflection from the diffractive layers. When we
assume that the beam enters the diffractive layer with positive
incidence, the transmittance 7 can be calculated as

(ny — n1)2

T=1- :
(ny +ny)?

(©6)

where n; and n, are the refractive indices of the two media,
respectively. In the wavelength range of 1550 nm, the refractive
index of silicon nitride is approximated to be 2, while the
refractive index of air is 1. Therefore, it can be calculated that
the transmission of each diffractive layer is ~89%. So, the trans-
mission efficiency of the entire diffractive network is estimated to
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be around 56%. During the experimental test, the loss of the net-
work will be higher than the theoretically calculated value. While
we can attempt to reduce losses in the system, such as by reducing
the number of layers in the diffractive network, thus minimizing
absorption and reflection losses. Note that there is always a trade-
off between classification accuracy and output efficiency. As we
are dealing with an optical classification network, we only need to
detect the effective optical signal against noise to meet the min-
imal requirements for classification. Despite the difficulties, we
believe that there is great potential to realize this scheme of
OAM-encoded D?NN as technology develops.

4.3 OAM Spectrum Analysis

Multiple OAM states can appear in the same beam and are not
limited to a single OAM mode. Similar to the spectrum that
represents the intensity weights of different frequencies or
wavelengths, the intensity weights of different OAM channels
on the same beam are called the OAM spectrum. The spiral
harmonic exp(jm¢) is the eigenwave function of OAM, and
the beam E(r, ¢, z) can be represented by the spiral harmonic
exp(jm¢) in the column coordinates as

+00
Erndd) =—— 3 alr.2)exp(jms). ™)

V2% m=—oo

with the complex coefficient a,,

1 2
an(r.2) = = A E(r.$.2) exp(—jm)dg. ®)

where r represents the beam waist radius of the OAM beam,
z represents the radial distance of the beam propagation, and
m is the topological charge of the OAM. Thus, the intensity
of the m’th order helical harmonic is

+o0
C,= / |la,,(r,2)|*rdr. 9)
0

Since the value C,, is independent of the parameter z, the
relative intensity of such a helical harmonic is

C
R,=——"—, (10)
TN G,
which is the OAM spectrum of E(r, ¢, z). Among these consid-
erations, detecting complex amplitude information in the output
optical field is crucial. In simulations, acquiring the complex
amplitude information of the output OAM beam is straightfor-
ward. However, in experimental detection, obtaining the com-
plex amplitude information of the output OAM beam is not
direct. Taking the interferometric method as an example, the
phase information in the output optical field is obtained from
the interference field between the beam to be measured and
the probing Gaussian beam. Subsequently, when combined with
the amplitude information detected by the CCD camera, we can

output OAM light in the simulation to obtain its corresponding
OAM spectrum.

4.4 Preparation of Data Sets

The MNIST array data set and the MNIST repeatable array data
set are used in the study to evaluate the discriminative criteria for
multi-object classification in the proposed OAM-encoded D>NN.

MNIST array data set: The digits in the MNIST data set are
divided into 10 classes according to different labels, and the num-
ber of digits in each class is recorded. The labels of two random
classes are arbitrarily selected using the shuffle function and com-
bined into a label group containing two labels in no distinguish-
able order. Then, the data corresponding to the labels is selected
separately from the data set, and the two selected data are stitched
together into a new array. The generation of new arrays and label
groups is performed in an iterative process until all digits in a
given category have been selected. In addition, it is worth noting
that the order of the digits also carries additional information. For
example, the digits “0” and “1” result in a different light field dis-
tribution than the digits “1”” and “0.” The resulting MNIST array
data set contains ~27,000 to 28,000 training sets and 4400 to 4500
test sets. The distribution of digits within each category in the
MNIST data set is not uniform, which impacts the number of
training and test sets. The MNIST array data set is regenerated
after each round of the iterative process, and discarded data
may be selected in subsequent rounds. As the number of training
sessions increases, the probability of each digit appearing in the
MNIST array data set gradually tends toward equality.

MNIST repeatable array data set: it builds on the MNIST
array data set. Unlike the MNIST array data set, identical digits
can be entered in the process of forming an array using random
digits. The introduction of identical digits also requires encoding
the order of combinations in the array. Due to the repeatability of
the digits in the array within this data set, the MNIST repeatable
array data set does not require rounding of digits.

4.5 Loss Function of OAM-Encoded D*NN

We define the classical mean square error (MSE) loss function
Ly to calculate the difference between the predicted output £
and the ground truth target G, which can be expressed as

| &
Lyise :NZ\Ei—Gi

1

%, QY

where N is the number of diffractive units in the output layer,
which is set to 200 x 200 in the OAM-encoded D?NNs.

In traditional D’NN training, the softmax cross-entropy
(SCE) loss function is often used in addition to the MSE loss
function. The SCE loss function quantifies the degree of differ-
ence between two different probability distributions of the same
random variable, which in diffractive networks is expressed as
the difference between the true and predicted probability distri-
butions. The smaller the value of the cross-entropy, the better
the model prediction. The function Lgcg can be expressed as

obtain the complex amplitude information of the output beam. E = i , (12)
As long as the complex amplitude information of the output VB T

is obtained, we can further determine the corresponding OAM

spectrum using the equations mentioned above. Therefore, we Lscg = —ZGi log E;, (13)
only need to obtain information on the complex amplitude of the i
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Fig. 7 (a) The left figure shows the geometrical model of the five layer D>NN with the pixel size of
50 x 50, and the right figure shows the mask model of the number “9” illuminated by the OAM
beam. (b) The simulation of the incident OAM beam. (c) The simulation of the output plane by
a one-layer D2NN with the pixel size of 30 x 30. (b), (c) The figures from left to right are amplitude
distribution simulated with Python, amplitude distribution simulated with COMSOL Multiphysics
software, phase distribution simulated with Python, and phase distribution simulated with

COMSOL Multiphysics software.

where it is assumed that there is an array Y with a total of
J numbers and y; denotes the i’th element in ¥ with a softmax
value of E;. G represents the ground-truth target. The SCE loss
function reduces the contrast of the output light in different
spatial distributions, thereby effectively enhancing the inference
accuracy of the classification. However, this performance im-
provement comes at the expense of the expected power effi-
ciency of the network’s output. In the case of OAM-encoded
D?NNs, the output purity of the OAM beam is also a critical
factor to consider. Therefore, pursuing higher accuracy at the
expense of generating a loss function that compromises output
purity is not a viable option. While the SCE loss function is
useful in certain scenarios, it is not the optimal choice for
OAM-encoded D’NNs, where both accuracy and output purity
are important factors.

Table 2 shows the relevant performance parameters for our
different network models. Our models were performed on a
server [GeForce RTX 3080 Ti graphical processing unit (GPU,
Nvidia Inc.), Intel(R) Core(TM) i9-10900K @3.70 GHz central
processing unit (CPU, Intel Inc.) and 64 GB of RAM, running the
Windows 10 operating system (Microsoft)] with Python (v3.9.13)
and PyTorch (1.11.0+cul13) for simulation computations. All the
models were trained with 50 epochs. All the models were opti-
mized using the built-in Adam optimizer. The learning rate was
set to 0.01.

4.6 Optical Demonstration of OAM-Encoded D>NN

The demonstration of optically simulating the entire model of
the OAM-encoded D>NN is challenging to realize. Taking
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COMSOL Multiphysics software as an example, the size of
the diffractive layer of OAM-encoded D>NN is (200 x 0.53x
1.55) = 164.3 um, and the total length of the model is
(1000 x 1.55 x 6) = 9300 pum. The limit of the mesh delinea-
tion in COMSOL calculations ranges from one-quarter of
a wavelength to one-sixth of a wavelength (i.e., between
0.2583 and 0.3875 pum). To simulate the full OAM-encoded
D?NN, the required computer memory would be astronomical
and unattainable. In order to show the consistency of our
theoretical results in Python with the COMSOL Multiphysics
software, we used COMSOL Multiphysics software to build a
five-layer structure with 50 pixels x 50 pixels for model dem-
onstration, as well as a single-layer structure with 30 pixels x
30 pixels for simulation. Figure 7(b) shows the light field dis-
tribution in the input side of the digit “9” when irradiated by a
multiplexed OAM beam. Figure 7(c) shows the light-field dis-
tribution modulated by the diffractive layer at the output plane.
It can be seen that the simulation results from the COMSOL
Multiphysics software are highly consistent with the theo-
retical results obtained from Python. We believe that the
simulation results can provide support and guidance for the
experiments.
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