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Abstract. Photonic computing has recently become an interesting paradigm for high-speed calculation of
computing processes using light–matter interactions. Here, we propose and study an electromagnetic
wave-based structure with the ability to calculate the solution of partial differential equations (PDEs) in the
form of the Helmholtz wave equation, ∇2f ðx ; yÞ þ k2f ðx ; yÞ ¼ 0, with k as the wavenumber. To do this, we
make use of a network of interconnected waveguides filled with dielectric inserts. In so doing, it is shown how
the proposed network can mimic the response of a network of T-circuit elements formed by two series and
a parallel impedances, i.e., the waveguide network effectively behaves as a metatronic network. An in-depth
theoretical analysis of the proposed metatronic structure is presented, showing how the governing equation for
the currents and impedances of the metatronic network resembles that of the finite difference representation of
the Helmholtz wave equation. Different studies are then discussed including the solution of PDEs for Dirichlet
and open boundary value problems, demonstrating how the proposed metatronic-based structure has the
ability to calculate their solutions.
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1 Introduction
Partial differential equations (PDEs) are fundamental in every
area of mathematics, physics, and engineering. They are used
to describe many physical phenomena, ranging from heat
transfer1 to fluid flow2 and electromagnetic (EM) wave propa-
gation,3 among others. However, aside from some simplified
cases (such as EM planewave propagation3 or the eigenfunc-
tions/values of a two-dimensional harmonic oscillator4), closed-
form solutions of arbitrary PDEs may be challenging or even
impossible to find. Instead, the solution to these equations is
usually calculated using numerical techniques such as the finite
difference5 or finite-element method (FEM).6 Many efforts have
been focused on the optimization of these numerical algorithms,
such as mesh refinement7 and parallelization,8 to reduce calcu-
lation times and power consumption. Even so, the inherent size

and iterative nature9,10 of these calculations make it a computa-
tionally intensive task,11 via conventional computing systems.

In addition to numerical techniques to solve PDEs using
computer algorithms (software), recently, computing with mat-
ter, i.e., EM wave-based analogue computing, has been sug-
gested as an alternative paradigm for high-speed computing.12

As solutions to computing tasks are calculated by controlling
the propagation of EM signals through a material-based ana-
logue processor,13–19 fast solutions of mathematical operations
can be achieved as computing processes are carried out at
the speed of light within the materials. In recent works, EM
wave-based analogue processors have been demonstrated to
perform operations such as integration,20,21 differentiation,13,22,23

convolution,21,24 matrix multiplication,25 and ordinary differen-
tial equation26 (ODE) solving. This has been done by carefully
designed structures such that they are able to apply math-
ematical operators directly onto the wavefront of an incident
signal in either space27–29 or time.13,30,31 Various design ap-
proaches have been explored in order to realize these devices
including Bragg gratings,30 diffractive networks,32 Mach–Zehnder
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interferometers,31 and the application of metamaterials12,28,33 that
enable arbitrary control over EM wave propagation in both space
and time.34–39

When considering solving PDEs without using software, one
can use networks of lumped circuit elements (i.e., resistors, in-
ductors, and capacitors) arranged in a grid. In doing so, this grid
can indeed emulate the mesh elements used in the FEM to
approximate solutions to various PDEs.40,41 Interestingly, it
has been recently demonstrated that it is also possible to apply
the same principle to photonic computing42–44 systems by ex-
ploiting the splitting and superposition of EM signals within
an engineered network of dielectric waveguide junctions, called
photonic Kirchhoff nodes.42 At these nodes, a combination of
photonic structures (ring resonators45,46 and X-junctions47,48)
can be exploited to emulate the performance of traditional
lumped elements in circuit theory. In so doing, it is possible
to achieve the splitting of EM waves required to correctly
calculate the solution of a PDE such as the Poisson equation,
∇2fðx; yÞ ¼ 040–42 (where ∇2 ¼ ∂2∕∂x2 þ ∂2∕∂y2 is the two-
dimensional Laplace operator, x; y are independent parameters,
and f is the function to be solved). Another interesting approach
is to exploit metatronic elements49 that consist of subwavelength
metal or dielectric inserts, which can emulate the performance
of lumped circuit elements within the EM domain. Similar to
electronics where circuit elements control the flow of current,
when considering EM waves, metatronic elements manipulate
the flow of displacement current.50 Remarkably, this allows
much of the knowledge gained from the field of electronics
to be effectively transferred to the EM domain. This strategy
has recently been exploited to aid in the design of filters,51,52

antennas,53,54 metasurfaces,55 and analogue processors.21 Indeed,
metatronic elements using an epsilon-near-zero (ENZ)
medium56–58 have also been exploited to solve PDEs.59 It has
been recently shown how indium tin oxide (ITO) working in
the ENZ regime performs an analogous function to a wire in
electronics,49 given that the wavelength inside is, effectively,
almost infinite. Hence, by immersing metatronic elements (di-
electric or metallic inserts) within such ENZ material (host
medium), one can emulate the performance of lumped elements
within a circuit.

Inspired by the interesting features of metatronic elements
emulating circuits with EM waves, here we propose and study
an EM wave-based structure for analogue computing with the
ability to produce solutions of the Helmholtz wave equation of
the form∇2fðx; yÞ þ k2fðx; yÞ ¼ 0, where k is the wavenumber
of the PDE to be solved. Different from previous works,59 we
make use of a network of parallel plate waveguides without the
need of implementing an ENZ host medium. This is achieved by
considering that the waveguides are filled with air and loaded
with carefully designed dielectric slabs. In so doing, the whole
structure acts as metatronic elements that emulate both series
and parallel lumped circuit elements. The metatronic elements
consist of thin dielectric films separated via a distance of λ0∕4
(where λ0 is the operating wavelength of the network in free
space) [see Fig. 1(b)]. As is known, and as it will be further
explained below, this enables an impedance transformation,
allowing for parallel metatronic elements to act as series
components.51,52 A full physical and mathematical analysis of
the designed structure is presented, demonstrating how, by
controlling the effective impedance values of the metatronic
elements, it is possible to tailor the response of the system,
allowing us to calculate the required PDE solution. To validate

the proposed structure working at microwave frequencies, full-
wave numerical simulations (from now on referred to as numeri-
cal solutions) are carried out providing solutions to a range of
Dirichlet boundary value problems. Examples include radiation
from a dipole, standing waves in a cavity, and focusing/lensing.
To fully compare our results, all the numerical solutions
are compared with analytical (calculated using computer soft-
ware-based solution on a traditional FEM technique or using
the Huygens–Fresnel principle60,61) and theoretical (by solving
the equations that govern a perfect metatronic grid) results.
We envision that these devices may see the application as a com-
putational accelerator in order to produce a fast approximation
of a solution to a given PDE. Furthermore, this research may
enable the design of additional processors capable of solving
higher-order PDEs based on the finite difference method.

2 Results

2.1 Solving PDEs via Circuit Models: Theory

In previous works, it has been shown how the solution of PDEs
(such as the Poisson equation ∇2g ¼ 0, where g is the function
to be solved for) can be computed by exploiting a network of
lumped circuit elements40,42,44,59,62 connected in a grid-like lattice.
In those works,40,59 the structure consisted of a unit cell made of
periodic junctions of lumped elements (see also Supplementary
Material). Each junction can be formed by four lumped ele-
ments having an impedance ZL, which are, each of them,
connected to adjacent junctions, in this way forming a grid. The
governing equation for the voltage distribution of such a lumped
element-based network can be found by considering the division
of current at the junctions according to Kirchhoff’s current law,
as follows (see Supplementary Material for further details)

1

ZL
ðV1 þ V2 þ V3 þ V4 − 4V0Þ ¼ 0; (1)

where V0 is the voltage at a junction and V1, V2, V3 and V4 are
the voltages at the adjacent junctions (top, right, bottom, and
left junctions, respectively). To better understand how such a
lumped circuit network can be exploited for PDE solving,
one can compare Eq. (1) with the well-known finite difference
approximation of the two-dimensional (2D) Laplacian,5,63 which
is defined as

∇2g ≈
1

h2
½gðxþ h; yÞ þ gðx − h; yÞ þ gðx; yþ hÞ þ gðx; y − hÞ

− 4gðx; yÞ� ¼ 0; (2)

where x and y are the independent variables of the function g
(such as spatial coordinates) and h is the separation between the
sampling points of g. It can be seen how Eqs. (1) and (2) are
indeed similar provided that the impedance, ZL, of the lumped
element for the network is selected such that ZL ¼ h2. This
means that the network of lumped circuit elements can be con-
sidered as a simulation space in which the junctions between
elements are the sampling points while the impedances of
the elements between them control the scaling of the system,
i.e., how far apart each point is from one another within the sim-
ulation space. With this in mind, by substituting ZL ¼ h2 into
Eq. (1), the voltage distribution of the impedance network,
sampled at the junctions of lumped elements, will satisfy
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Eq. (2). Thus, it may be exploited to calculate a solution to
physical problems that are defined via Poisson equation
(∇2g ¼ 0), subject to the boundary conditions placed upon
the system at the outermost junctions of the grid. The particular
example of the PDE ∇2g ¼ 0 has multiple uses in modeling
problems such as heat transfer54 or electro/magnetostatics,3,63

as demonstrated in Ref. 59. Another PDE with interesting
applications is the Helmholtz equation, which has the form
∇2gþ k2g ¼ 0, with k2 as the coefficient of the zeroth-order
term of the PDE. This equation can describe EM systems in
steady state3 (where k plays the role of wavenumber).
Conceptually, the above method for solving PDEs [described
in Eq. (1)] may be extended to solve the Helmholtz wave equa-
tion by altering the equivalent circuit of the network to include
the additional k2g term. Based on this, the finite difference
representation of the Helmholtz wave equation can be written
by expanding the ∇2g term using Eq. (2):

1

h2
½gðxþ h; yÞ þ gðx − h; yÞ þ gðx; yþ hÞ þ gðx; y − hÞ
− 4gðx; yÞ� þ k2g ¼ 0: (3)

Now, what would be an equivalent circuit model that could
emulate Eq. (3)? To answer this, in this work we propose the
circuit shown in Fig. 1(a). It consists of a square lattice of

T-circuits connected in a series configuration to form a junction.
As observed, and in line with other works using lumped
elements,40,59,62 the proposed circuit is periodic. However, the
junctions are now changed from four interconnected lumped
elements to four interconnected T-circuits. As will be discussed
below, the impedances forming the T-circuits can be physically
emulated using transmission lines (parallel plate waveguides in
our case) loaded with dielectric slabs, as shown in Fig. 1(b). It is
important to note that here we implement series junctions of
T-circuits emulated by parallel plate waveguides as transmission
lines. However, it is also possible to use Π-circuits emulated by
transmission lines connected in a parallel64–66 configuration, as
explained in the Supplementary Material. The selection of
T-circuits is to enable the implementation of the metatronic
elements used to emulate the electronic circuits, while maintain-
ing a small junction cross section (compared to the operating
wavelength of the structure), a requirement to ensure equal
splitting of the incident signals at the junction according to
Kirchhoff’s laws.23,47,67 Now, as the T-circuits from Fig. 1(a)
[and their equivalent waveguide-based model from Fig. 1(b)]
are connected to a junction in a series configuration, the flow
of current through each of the connected T-circuits will form
a rotation around the center of the junction [see Fig. 1(a)].
Consider a junction in Fig. 1(a) where there is a rotating current
I0. By looking into one of the connected T-circuits at this

Fig. 1 Transmission line schematic representation of metatronic loaded network to solve PDEs.
(a) Equivalent circuit representation of a single node of the proposed analogue processor. Each
node is connected to four adjacent nodes via a T-circuit. In this representation, the out-of-plane
Hz -field at the center of each junction (Ha , where a indicates the junction number) is represented
by the current flowing around that junction counterclockwise (Ia). (b) (top) Waveguide-based
metatronic structure that can emulate a T-circuit from (a). It consists of three thin dielectric slabs
separated by a distance λ0∕4. (bottom) Equivalent T-circuit model. (c) Full-wave numerical sim-
ulation results of a 3 × 3 network of waveguide-based metatronic structures emulating T-circuits
with Zp ¼ 2.1522iZ 0 and Zs ¼ −0.9311iZ 0 corresponding to h ¼ 0.4646 and k ¼ 2.8313. (left)
Nodal representation of the simulation setup with a single monochromatic (10 GHz) incident signal
excited from the top-left waveguide junction (labeled 1). (middle) Simulation results of the out-of-
plane Hz -field (amplitude and phase) extracted at the center of each waveguide junction (labeled
as 1–9). These results are normalized such that the input signal at junction 1 is unity. (right)
Numerical (black crosses) and theoretical (red hollow circles) results of the phasor values of
Hz -field recorded at junctions 2, 4, 5, 6, and 8.
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junction, for example the top T-circuit, one can calculate the
voltage V1 across the circuit (at the input of the junction, see
Fig. 1) by considering the difference between the rotating
current at the central junction I0 and the top junction I1 as
V1 ¼ ZpðI1 − I0Þ − ZsI0, where Zp and Zs are the parallel and
series impedance values of the T-circuit, as shown in Figs. 1(a)
and 1(b) (full details of this calculation can be found in the
Supplementary Material). The magnitude and direction (clock-
wise/counterclockwise) of the rotating current at the junction
can be found by solving Kirchoff’s voltage law (

P
aVa ¼ 0)

at the junction using the associated voltages from each T-circuit,
with a representing the T-circuit from which the voltage is ob-
tained (a ¼ 1; 2; 3; 4, each representing the top, right, bottom,
and left T-circuit, respectively). After accounting for the division
of current at the T-circuits, one can arrive at the following ex-
pression relating the rotating current at a junction to the rotating
currents at each of the adjacent junctions in the network (see
Supplementary Material for the full calculation):

ZpðI1 þ I2 þ I3 þ I4 − 4I0Þ − 4ZsI0 ¼ 0; (4)

where I1, I2, I3, I4, and I0 are the rotating currents at the top,
right, bottom, left, and center junctions, respectively. Now, it can
be seen how Eqs. (3) and (4) are analogous if the impedance
values for the elements forming the T-circuit are chosen such
that Zp ¼ 1∕h2 and −4Zs ¼ k2. Hence, as the first term of
Eq. (4) is analogous to the Laplacian, similar to Eq. (1), as ex-
plained above, while the second term is analogous to the zeroth-
order term of the PDE, the proposed structure could indeed be
used to calculate the solution of the Helmholtz equation.
Importantly, while the addition of Zp and Zs to the network
can enable us to establish an analogy between Eqs. (3) and
(4), they require a further transformation to be strictly valid
as Zp in Eq. (4) is generally complex-valued while h in Eq. (3)
is strictly real. This can be tackled through a transformation of
the calculated currents such that I0a ¼ Ia∕Z�

p, where Z�
p is the

complex conjugate of the parallel impedance and I0a is the
transformed current value around the connected junction a.
By substituting this into Eq. (4), the equation governing the
transformed current distribution can be written as

ZpZ�
pðI01 þ I02 þ I03 þ I04 − 4I00Þ − 4ZsZ�

pI00 ¼ 0; (5)

where I01, I
0
2, I

0
3, I

0
4, and I00 are the transformed currents at the

top, right, bottom, left, and center junctions, respectively.
Equation (5) is analogous to Eq. (3) if Zp and Zs are now
selected such that ZpZ�

p ¼ jZpj2 ¼ 1∕h2 and −4ZsZ�
p ¼ k2,

which are different from the impedances defined to emulate
Eq. (3) using Eq. (4) due to the transformation of the currents
described above. It should also be noted that since this technique
uses central finite difference, the associated order of accuracy is
Oðh2Þ5 meaning that the theoretical accuracy (which we can
associate as a potential source of error) of the PDE solving
structure will be Oð1∕jZpj2Þ. Another source of error can come
from potential fabrication tolerances. A study of this aspect is
shown in the Supplementary Material.

2.2 Emulating T-Circuit Lumped Elements via
Metatronic Circuit Elements

In the previous section, it was described how periodic T-circuits
formed by lumped circuit elements within a network may be

used to calculate the solution of PDEs when arranged in a grid.
To implement these lumped elements at high frequencies
(microwaves in our case), here we opted for the alternative
of exploiting metatronic elements: thin dielectric, or metallic
inserts, that may be engineered to emulate the performance of
lumped circuit elements at different frequency ranges (from
microwaves up to visible).49–52,68 To mimic the series and parallel
impedances of the T-circuit from Fig. 1 (i.e., Zs and Zp, respec-
tively) we consider a metatronic circuit formed by three thin
films (either dielectric or metallic) embedded within a host
medium (vacuum in our case, εr ¼ 1, μr ¼ 1), as shown in
Fig. 1(b). When considering a transverse EM signal (TEM,
as it is in the case of the proposed parallel plate waveguides)
impinging onto a single one of these dielectric or metallic slabs
under normal incidence, the slab can be defined by a parallel
impedance with a value52

Zp ¼ i
ωε0εrðωÞw

; (6)

where ω is the angular frequency of the incident wave, εr is the
relative permittivity of the thin material emulating a metatronic
element, w is the thickness along the propagation axis, and i is
the imaginary number. In Eq. (6) and all other calculations the
time convention expð−iωtÞ is used. From this expression, a slab
with a positive real permittivity value [ReðεrÞ > 0] (a dielectric
slab) will behave as a capacitive lumped element. However, if a
dispersive material with a negative real permittivity is imple-
mented [ReðεrÞ < 0], it will instead behave as an inductive
lumped element. Based on this, to emulate the series impedance
Zs from Fig. 1(a), we made use of a thin layer of a material
embedded in between two λ0∕4 free-space regions. While the
thin layer alone will be able to emulate a metatronic element
in parallel (i.e., a parallel impedance Zp), placing it in between
the two λ0∕4 free space regions enables us to apply an imped-
ance transformation69 such that the isolated parallel impedance
Zp of the metatronic element is transformed into an effective
series impedance Zs ¼ Z2

0∕Zp, (where Z0 is the impedance
of free-space Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ε0

p
). By combining this expression of

Zs with Eq. (6), one can arrive at the final value for the effective
series impedance52

Zs ¼ −iωε0εrwZ2
0: (7)

From Eq. (7), it can be seen how, due to the impedance trans-
formation, materials with ReðεrÞ > 0 and ReðεrÞ < 0 are now
expressed as series inductors and capacitors, respectively. Based
on this, we can emulate the required T-circuit to solve the PDE
described in the previous section [see Fig. 1(a) and Eq. (5)] by
designing the metatronic elements using Eqs. (6) and (7). The
proposed metatronic element-based structure that can emulate a
lumped-element based T-circuit is shown in Fig. 1(b). The meta-
tronic circuit consists of a parallel plate waveguide having two
thin slabs (yellow slabs) placed in between two λ0∕4 regions
filled with air, in so doing, the series impedances of the T-circuit
are emulated. For the parallel impedance, a thin slab is also
used (brown slab), as shown in Fig. 1(b). This structure is then
arranged in a network configuration forming junctions as ex-
plained above [schematically shown in Fig. 1(a)]. Importantly,
as the dielectric slabs are embedded within parallel plate wave-
guides [see Fig. 1(b)], Eqs. (6) and (7) for the calculation of
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metatronic elements are valid in our case, as we are also working
with an incident TEM signal. Now, when selecting the dimen-
sions of the waveguides in which the dielectric slabs are em-
bedded, one must ensure that the separation between plates is
small compared to the incident wavelength in order to limit the
impact of fringing fields at the edges of the waveguide (small
cross sections are also required when working with waveguides
connected in a parallel configuration,64,65,70 as is the case shown
in the Supplementary Material). Finally, in this work, we con-
sider that all waveguides have the same filling materials (vac-
uum εr ¼ 1, μr ¼ 1) and cross section (i.e., equal impedance).

With this configuration, the numerical results of the out-of-
plane Hz-field distribution, calculated at the junctions for a
3 × 3 waveguide network are shown in Fig. 1(c). A monochro-
matic (10 GHz, λ0 ¼ 30 mm) incident signal is excited from the
left waveguide of the top-left junction, here labeled as junction 1
in Fig. 1(c). Using Eqs. (6) and (7), the metatronic elements
were designed to emulate the parallel and series impedance val-
ues of Zp ¼ 2.5iZ0 and Zs ¼ −0.9iZ0, respectively. These
impedances correspond to h and k values of 0.4 and 3 (arbitrary
units), respectively. It should be noted that the units of h and k
are informed by the physics of the equation being solved. For
example, in an EM problem, h and k have units of meters (m)
and m−1, respectively. However, here we first consider both of
them as unitless in order to calculate a general solution of a
PDE. With these considerations, the metatronic elements have
a thickness of 0.2 mm (λ0∕150) each, with permittivity values of
εr ¼ 9.54 and εr ¼ 21.44 for the slabs emulating parallel and
series impedances, respectively. To corroborate the T-circuit
design, a full ABCD matrix analysis3 of the structure presented
in Fig. 1(b) (upper panel) was performed (see models in the
Supplementary Material). Based on these calculations, the re-
flection and transmission coefficients varied slightly from the
ideal design using the T-circuit model, as expected due to the
nonzero thickness of the dielectric slabs for the structure in
Fig. 1(b). To overcome this difference, one can simply optimize
the geometrical or EM parameters of the structure shown in
Fig. 1(b) by, for instance, slightly changing the distance λ0∕4
between the slabs, by changing w of the slabs, or by modifying
εr of the slabs. However, in this first example, the structure from
Fig. 1(b) is kept unchanged with the same dimensions as
described above, but now we can retrieve the equivalent Zp and
Zs values from the ideal T-circuit model that match the reflec-
tion and transmission coefficients from the ABCD method of
Fig. 1(b) (details on this calculation can be found in the
Supplementary Material). The calculated impedances are Zp ¼
2.1522iZ0 and Zs ¼ −0.9311iZ0, respectively (corresponding
to h ¼ 0.4646, k ¼ 2.8313, i.e. a small variation of the PDE
parameters). In this example, these new values of Zp and Zs
are then used to calculate the theoretical values for the Hz-field
based on the ideal circuit model and these results are compared
to the numerically calculated results using simulations, as will
be shown below.

The numericalHz-field values (amplitude and phase) at junc-
tions 1 through 9 are presented in the middle panel of Fig. 1(c).
These simulations were obtained using the full-wave simulation
software CST Studio Suite® (see the methods section for details
of the simulation setup). As shown in Fig. 1(a) and discussed
above, the solution of a PDE can be obtained by looking at
the Hz-field (and hence the circulating current) at the center
of a waveguide junction. However, as Eq. (2) requires four
terms from neighboring junctions ½gðx; yþ hÞ, gðxþ h; yÞ,

gðx; y − hÞ, and gðx − h; yÞ from the top, right, bottom, and left
junctions, respectively], only a junction that is fully surrounded
by four other junctions will be able to produce a solution to the
PDE. By looking at the structure from Fig. 1(c) (left panel) only
junction 5 of the 3 × 3 network will satisfy Eq. (5). The phasor
representation of the numerically calculated values for the Hz-
field at junction 5 and its neighboring junctions are presented in
the rightmost panel of Fig. 1(c) as “×” symbols, alongside the
theoretical values for an ideal grid of metatronic elements cal-
culated using the T-circuit model with the impedance values
obtained via the ABCD matrix method (i.e., Zp ¼ 2.1522iZ0

and Zs ¼ −0.9311iZ0), represented as “○” symbols (see
Supplementary Material, as mentioned above). As observed,
an excellent agreement between the numerical and theoretical
results is obtained. Finally, the numerical results of the Hz-field
for the adjacent junctions can also be used to calculate what
would be the ideal value for the Hz-field at junction 5 that will
satisfy Eq. (3). This can be calculated as H5 ¼ ðH2 þH4þ
H6 þH8Þ∕ð4 − h2k2Þ, where the subscripts indicate the junc-
tion number [see Fig. 1(c)]. By doing this, the error between
the numerical solution and the ideal solution of the Helmholtz
equation can be calculated as the difference between the numeri-
cal results for Hz-field at junction 5 and the ideal value of H5

that satisfies Eq. (3) (as described before). The difference be-
tween these results is ∼7.23%, demonstrating how a small error
is achieved and the proposed structure is capable of calculating
a solution to the Helmholtz equation at junction 5.

2.3 Scaling of the Calculated PDE Solutions

As discussed in Fig. 1(c), the proposed structure can be used to
calculate the solution of a PDE at the junction of waveguides as
long as the junction is interconnected to an adjacent junction in
all directions [for instance junction 5 in Fig. 1(c)]. Hence,
if one wants to calculate a more detailed solution to the PDE
(Helmholtz equation in this study, for instance), it is necessary
to increase the size of the network by introducing more junc-
tions that are interconnected by waveguides filled with slabs
(to emulate T-circuits) at their top, bottom, left, and right direc-
tions. In other words, if a sampling point of the solution of the
PDE is represented by a junction, it is possible to increase the
resolution of the calculated solution by increasing the number
of junctions. To address this, here we consider networks of
waveguide-based metatronic T-circuits consisting of N ×M
junctions along the horizonal and vertical directions, respec-
tively [see Fig. 2(a)]. A three-dimensional (3D) representation
(top view) of a central section of a larger network of junctions is
included in Fig. 2(b), showing how there are now more junc-
tions fully interconnected to adjacent junctions in all directions
compared to the scenario discussed in Fig. 1(c). As explained
before in Eq. (5), the scaling and spatial sampling of the
calculated solution are determined by the chosen h value of the
structure. This means that it is possible to obtain the solution of
a PDE with an increased resolution by increasing the physical
size of the network (number of junctions) while keeping the
same simulation space. This will effectively represent a smaller
separation between sampling points in the simulation space h.
Alternatively, a higher resolution of the solution for a PDE could
be achieved without altering the size of the network but instead
reducing h. This will mean that the simulation space will be-
come smaller, as will be discussed below.
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Fig. 2 Scaling of PDE results. (a) Nodal representation of an arbitrarily sized network of intercon-
nectedmetatronic elements. (b) (Top view) 3 × 3 sections of a larger waveguide network extending
in all directions. The perfect electric conductor (PEC) regions for the waveguides are represented
as gray blocks. The red and yellow slabs represent the elements that enable us to emulate the
parallel and series metatronic elements, respectively. (c)–(e) Full-wave numerical results of the
Hz -field distribution of a 25 × 25 waveguide network. As in Fig. 1(c), a 10 GHz monochromatic
input signal is excited from the left waveguide of the top-left junction. These results have been
normalized so that the out-of-plane Hz -field seen at the top left junction is unity. Here, λ1 is
the wavelength of the PDE in the simulation space, while λ0 is the wavelength of the incident signal
in free space. (c) Numerical results for the case where there are no dielectric slabs present within
the connecting waveguides; see inset. (d), (e) Analytical (left), theoretical (middle), and numerical
(right) results of the same setup from (c) (same color scale applies here) but now when the wave-
guides are loaded with the dielectric slabs emulating metatronic elements with effective imped-
ances Zp ¼ 2.498iZ 0, Zs ¼ −0.9003iZ 0 and Zp ¼ 5.001iZ 0, Zs ¼ −0.4501iZ 0, respectively.
These values correspond to PDEs with parameters h ¼ 0.4003, k ¼ 2.999 ðλ1 ¼ 2.095Þ, and
h ≈ 0.2, k ¼ 3.001 ðλ1 ¼ 2.094Þ, respectively. The EM and geometrical parameters after optimi-
zation are L1 ¼ L4 ¼ 7.394 mm (∼0.2465λ0), L2 ¼ L3 ¼ 7.307 mm (∼0.2436λ0), ws ¼ 0.2111 mm
(∼7.0366 × 10−3λ0), wp ¼ 0.1741 mm (∼5.8033 × 10−3λ0), εs ¼ 21.5, and εp ¼ 12 for the results
presented in panel (d), where L1, L2, L3, and L4 are the lengths of the impedance transforming
waveguides from left to right, as shown in Fig. 1(b). ws , wp , εs , and εp are the widths and per-
mittivity values of the slabs representing the series and parallel elements, respectively. These
parameters are L1 ¼ L4 ¼ 7.390 mm (∼0.2463λ0), L2 ¼ L3 ¼ 7.294 mm (∼0.2431λ0), ws ¼
0.2201 mm (∼7.3367 × 10−3λ0), wp ¼ 0.1911 mm (∼6.37 × 10−3λ0), εs ¼ 10.80, and εp ¼ 6.000
for the results presented in panel (e). The line plots in the rightmost panels of (d), (e) show
the numerical (green triangles), analytical (red squares), and theoretical (gray circles) results of
the magnitude of the Hz -field taken along a straight line from the top-left to bottom-right corners
of the simulation space, respectively.
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Consider for example, an N ¼ M ¼ 25 network of junctions
where 96 out of the total 625 junctions are placed at the edges
and used as boundary junctions; i.e., as they are not surrounded
by junctions in all directions, they cannot be used as part of
the solution of the PDE. The analytical (calculated using the
Huygens–Fresnel principle), theoretical (calculated by solving
the governing equations of an ideal T-circuit-based network),
and numerical (CST Studio Suite) results of the out-of-plane
Hz-field distribution at the junction of waveguides emulating
the T-circuits are shown in Fig. 2(d). Here we consider the in-
cident signal as in Fig. 1(c) (10 GHz monochromatic incident
signal excited at the left waveguide of the top left junction). The
metatronic elements were designed using Eqs. (6) and (7) to
emulate the parallel and series impedance values Zp ¼ 2.5iZ0

and Zs ¼ −0.9iZ0 (impedances corresponding to h ¼ 0.4,
k ¼ 3). After optimizing the geometric (distance between slabs,
ws and wp) and EM parameters (permittivity values of the slabs
εr) of the design, the emulated impedance values calculated
from the ABCD matrix method where Zp ¼ 2.498iZ0 and Zs ¼−0.9003iZ0 (h ¼ 0.4003, k ¼ 2.999), respectively (see dimen-
sions and EM parameters in the caption of Fig. 2). As is shown
in Fig. 2(d), there is an excellent agreement between all the re-
sults with the solution of the PDE resembling the radiation of a
dipole. Note that this is an expected result due to a monochro-
matic signal being applied only from the top-left junction. As a
result, the analytical calculations using the Huygens–Fresnel
principle will only have a single point as the radiating source,
as observed in Fig. 2(d). The results presented in Fig. 2(d)
are the calculated Hy-field values once the structure has been
allowed to settle into a steady state. A study of the time taken
to reach this state (≈30 ns) is shown in the Supplementary
Material.

For completeness, and in order to demonstrate the impact of
the chosen h value as a scaling parameter, the metatronic ele-
ments were also modified so that the calculated solution of
the PDE would resemble a zoom-in image of the top-left quad-
rant of the solution calculated in Fig 2(d). To do this, the meta-
tronic elements were designed to emulate the impedance values
Zp ¼ 5iZ0 and Zs ¼ −0.45iZ0 (h ¼ 0.2, k ¼ 3). As observed,
now Zp and Zs have been doubled and halved [compared to the
values for Fig. 2(d)], respectively. This in turn can enable a sol-
ution to the same PDE as Fig. 2(d) (same k value) but now with
the separation between sampling points h being halved. As a
result, the simulation space is reduced to a quarter, effectively
zooming into the top-left quadrant of Fig. 2(d) (dashed white
square). The emulated impedance values after optimization
(see dimensions, EM parameters in the caption of Fig. 2) are
Zp ¼ 5.001iZ0 and Zs ¼ −0.4501iZ0 (h ≈ 0.2, k ¼ 3.001);
the results are shown in Fig. 2(e). Observing the number of os-
cillations present in Fig. 2(e) and comparing it to the top-left
quadrant of Fig. 2(d), it can be qualitatively confirmed that
the results presented in Fig. 2(e) indeed represent a zoomed-
in solution to the same PDE as Fig. 2(d). Furthermore, as the
same number of sampling points (junctions) are used to display
a smaller area in the simulation space [one-quarter of Fig. 2(d)],
the resolution of the calculated solution is quadrupled. For com-
pleteness, line plots showing the analytical, theoretical, and
numerical magnitude of the Hz-field along a line from the
top-left to bottom-right of each simulation space are shown
in the last column of Figs. 2(d) and 2(e). In these figures, all
three plots show the characteristic 1/distance decay associated
with a radiating dipole in 2D. However, in the numerical and

theoretical plots, there are oscillations. As will be discussed
in more detail later, this is due to the impact of reflections pro-
duced at the boundary junctions. Finally, to demonstrate that the
waveguides along with the loaded dielectric slabs are indeed
emulating the T-circuits from Fig. 1(a) and are responsible
for the PDE-solving performance of the proposed network,
the case when the waveguides are not loaded with the dielectric
slabs is also shown in Fig. 2(c). This is done by replacing the
dielectric slabs with air so that the physical length of the con-
nection between junctions is the same as in Figs. 2(d) and 2(e).
As observed, the solution does not resemble the solutions to the
Helmholtz equation shown in Figs. 2(d) and 2(e), indicating that
it is indeed the dielectric slabs and the waveguides (as a whole)
that are responsible for the PDE-solving behavior of the
structure.

2.4 Calculating Solutions to Dirichlet Boundary Value
Problems

The examples presented in the previous sections have consid-
ered only a single input signal applied from a waveguide con-
nected at one boundary junction (top-left junction from Figs. 1
and 2). Here, it is shown how the proposed structure for PDE
solving can also be used to calculate the solutions to Dirichlet
boundary value problems.71 This is done by implementing si-
multaneous excitations from the different outer waveguides con-
nected to the boundary junctions (from now on called boundary
waveguides) around the network. For this, the left waveguide
from the top-left junction is used as a reference. In this way,
Dirichlet boundary conditions, such as g ¼ 1 or g ¼ 0, can
be considered at each of the boundary junctions. These boun-
dary conditions are physically implemented in the structure
from Fig. 1 by designing the inputs from the boundary wave-
guides such that the Hz-field at the center of each of the boun-
dary junctions is 1 or 0, respectively. To implement a specific
boundary condition at a boundary junction, it is important to
carefully engineer the amplitude ratios and phase differences
of the incident signals applied from the different boundary
waveguides. This means that the boundary value at a given
boundary junction (calculated by the Hz-field at the junction
center) is determined by the superposition of the input signal
applied from the connected boundary waveguide and those
signals coming from the other boundary junctions from the
network.

The required incident signals from the boundary waveguides
can be directly calculated from the scattering matrix of the struc-
ture A.3,64,66,70 As an example, consider a vector of incident
signals defined by their E-field (the same process could be done
considering voltages) x ¼ ½x1; x2…; x2ðMþNÞ�T , where T indi-
cates the transpose operation. These signals are used to excite
the boundary waveguides connected to the boundary junctions.
Due to the interaction of these incident signals with the PDE
solving structure, a vector of output signals defined by the
E-fields y ¼ Ax64,66,70 is created (observed at the same boundary
waveguides), with y ¼ ½y1; y2;…; y2ðNþMÞ�T . The vector con-
taining the complex values of the instantaneous Hz-field (which
relates to the current rotating around the junction, as explained
above) at each of these boundary junctions can be written as3

Hb ¼ ðx − yÞ∕Z0, where Z0 is the characteristic impedance
of the boundary waveguides (as before, all the waveguides in
the network have the same dimensions and filling materials,
i.e., they have the same characteristic impedance) and
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b ¼ ½1,2;…2ðN þMÞ� represents each of the boundary wave-
guides connected to the boundary junctions. Combining this
expression for Hb with the scattering equation for y allows
us to define a relation between the desired boundary values at
the boundary junctions and the vector of incident signals from
the boundary waveguides required to produce them:

x ¼ Z1ðI − AÞ−1Hb; (8)

where I is the identity matrix with size 2ðN þMÞ, i.e., the total
number of input waveguides at the boundary junctions.

With this configuration, two examples of Dirichlet boundary
value problems that can be solved by our proposed structure
using EM waves are presented in Fig. 3. For both cases, we

exploit the same 25 × 25 network of waveguide-based meta-
tronic structures as in Fig. 2(e) (right panel). In the first example
[Figs. 3(a) and 3(b)], the incident signals from the boundary
waveguides have been selected using Eq. (8) to produce a
Dirichlet boundary value of g ¼ 1 at the left boundary, while
a value of g ¼ 0 is implemented for the top, right, and bottom
boundaries junctions, represented by the red and gray-scale lines
in Fig. 3(a), respectively. These boundary values mean that the
calculated solution to the PDE will resemble a standing wave
produced when a wave propagates from left to right and is re-
flected by the right boundary. For the analytical calculations in
Fig. 3, the solution of the PDEs is calculated using the FEM
from the build PDE toolbox of a commercial software72,73

(MATLAB in our case; see the Appendix for more details about

Fig. 3 Solving Dirichlet boundary value problems. (a), (c) Schematic representations of a 25 × 25
network of junctions of waveguide-based metatronic circuits excited with different Dirichlet
boundary conditions. The metatronic elements are chosen considering Zp ¼ 5.001iZ 0 and
Zs ¼ −0.4501iZ 0 (see Fig. 2 caption for EM and geometrical parameters), corresponding to
h ≈ 0.2 and k ¼ 3.001 (λ1 ¼ 2.094). (a) The left-hand boundary is set to g ¼ 1 while the top, right,
and bottom boundaries are g ¼ 0. (c) The boundary conditions are such that the magnitude at
each boundary junction is 1 but the phase along the boundary spatially varies from 0 to 2π,
counterclockwise. (b), (d) Analytical, theoretical, and numerical results of the scenarios from
(a) and (c), respectively. The top panels from (b) and (d) represent the normalized instantaneous
Hz -field values calculated at each of the junctions inside the network. The bottom panels from
(b) and (d) represent the magnitude of the calculated analytical (red squares), theoretical (gray
circles), and numerical (green triangles) Hz -field values along the dashed lines from the top
panels.
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this calculation). To further compare the results shown in
Fig. 3(b), theHz-field values were extracted along the horizontal
and vertical lines (at 13 junctions down from the top boundary
and 12 junctions along from the left boundary, respectively) as
shown in the top panels from Fig. 3(b); the results are shown
in the bottom-left and bottom-right panels respectively, demon-
strating an agreement among the analytical, theoretical, and
numerical results. The second example of a Dirichlet boundary
value problem is presented in Fig. 3(c), in which the incident sig-
nals are selected such that the magnitude of theHz-field at each of
the boundary junctions is the same. However, the phase is varied
such that, along a closed path around the entire boundary, theHz-
field completes a full 2π phase loop. The analytical, theoretical,
and numerical results of the Hz-field are shown in the top panels
from Fig. 3(d). For completeness, the magnitude of the Hz field
was recorded along the diagonal lines from these panels; the
results are shown on the bottom panels from Fig. 3(d), again,

showing an agreement between the results and demonstrating
the potential of the proposed structure for PDE solving.

2.5 Open Boundary Value Problems

As a final study, here we show that it is also possible to use the
proposed technique to solve open boundary value problems,
such as the two examples presented in Fig. 4. As could be ex-
pected, the signals will need to be absorbed by the boundary
waveguides mimicking an open boundary, similar to the
well-known perfectly matching layers, PMLs.74 In attempting
to do this using the proposed metatronic-based network, using
waveguide ports connected to the boundary waveguides, un-
wanted large reflections can be obtained in the calculated
solution. This is due to the impedance mismatch between the
boundary junctions and the rest of the junctions given that they
are connected to three and four adjacent junctions, respectively.

Fig. 4 Lensing and particle scattering. (a), (d) Schematic representations of a 50 × 50 subnetwork
of waveguide-based metatronic circuits used to solve open boundary value problems. The 50 × 50
grid is constructed with Zp ¼ 5.001iZ 0 and Zs ¼ −0.4501iZ 0, corresponding to h ≈ 0.2 and
k ¼ 3.001 (λ1 ¼ 2.094, where λ1 is the wavelength seen inside the simulation space; see Fig. 2
caption for EM and geometrical parameters). (a) A 10 GHzmonochromatic wave is excited at each
of the boundary waveguides connecting to the left-hand boundary junctions of the subnetwork.
The amplitude and phase of these signals is selected such that the Hz values at the boundary
junctions resemble the output signal from a lens designed to produce a focus at x ¼ 1.432λ1 and
y ¼ 2.387λ1 (15 and 25 junctions in the x and y directions, respectively), represented by a gray
spot. (d) As in panel (a), a 10 GHz monochromatic signal is excited at the left-hand boundary
waveguides, now with amplitude and phase selected such that the Hz values at the boundary
junctions resemble a planewave. A 0.9549 × 0.9549λ1 (10 × 10 junctions) g ¼ 0 insert is placed
at the center of the simulation space, represented by a white block. (b), (e) Theoretical (left) and
analytical (right), power distribution for the scenarios presented in panels (a) and (b), respectively.
In panels (b) and (e), results are normalized with respect to the power distribution at the focus and
the maximum standing wave, respectively. (c), (f) Theoretical (gray circles) and analytical (red
squares) values of power distribution along the vertical (top) and horizontal (bottom) lines drawn
in panels (b) and (e), respectively.
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To tackle this, a solution is to extend the simulation space by
including more junctions into the waveguide network and then
extracting the PDE solution from a smaller portion of the sim-
ulation space, rather than the entire area. This allows for the
signals within the network to decay as they propagate through
the extended network, reducing the impact of reflections on
the overall solution. With this configuration, we provide in
Fig. 4 examples of open boundary value problems. Here we
use a 150 × 100 metatronic network (with the same Zp and
Zs values as the examples presented in Fig. 2(e) and Fig. 3,
Zp ¼ 5.001iZ0, Zs ¼ −0.4501iZ0, h ¼ 0.2 and k ¼ 3). The
simulation space used to produce the results in Fig. 4 is a
50 × 50 subnetwork of the total 150 × 100 network. The posi-
tion of the subnetwork is selected such that the network extends
for 50 junctions from the top, right, and bottom boundaries of
the subnetwork, respectively, effectively emulating the behavior
of a PML at these boundaries. No extra junctions are connected
to the left-hand boundary of the subnetwork, allowing for inci-
dent signals to be excited at the boundary waveguides connected
to these junctions.

The theoretical and analytical results of the normalized
power distribution calculated at the center of the junctions
for the two scenarios from Figs. 4(a) and 4(d) are shown in
Figs. 4(b) and 4(e), respectively (numerical simulations are
not shown due to the large size of the whole structure). The ana-
lytical results from Figs. 4(b) and 4(e) are calculated using the
Huygens–Fresnel principle, considering each boundary junction
as a radiating dipole and using the FEM from the PDE toolbox
of commercial software (MATLAB,72,73 as in Fig. 3), respec-
tively. Let us first focus on the results from Figs. 4(a)–4(c),
which show an example of focusing/lensing. In this case, the
boundary waveguides connected to the boundary junctions
on the left-hand side of the network are excited such that the
Hz-field distribution along the boundary junctions resembles
an output signal traveling away from a lens (designed to
produce a focus at a position x ¼ 1.432λ1, y ¼ 2.387λ1, where
λ1 ¼ 2.094 is the wavelength of the PDE. In the simulation
space, the focus would appear 15 and 25 junctions along the
x and y axes of the network, respectively; see Figs. 4(a) and
4(b). As shown in Fig. 4(b), a clear focus is produced at the
positions x ¼ 1.623λ1, y ¼ 2.387λ1 (17 and 25 junctions along
the x and y, respectively), and x ¼ 1.432λ1, y ¼ 2.387λ1 for the
theoretical and analytical calculations, respectively, demonstrat-
ing a good agreement. Note that from the theoretical results,
there are some slight spatial ripples. This can be attributed to
the reflections produced at the boundary junctions of the entire
network, as mentioned above. As one would expect, the signal
inside the network would asymptotically decay to zero if the
network was infinitely long. However, as the network is finite
(extended by 50 junctions from the top, right and bottom of the
50 × 50 subnetwork), reflections, while small, are still present.
For completeness, the theoretical and analytical results extracted
along horizontal and vertical lines from Fig. 4(b) are shown in
Fig. 4(c). As is shown, despite the presence of small reflections
in the PDE solution, the focus is still well defined, with both
results in good agreement.

A second and final example of an open value problem in
shown in Figs. 4(d)–4(f), where the simulation space has
been divided into two regions. Here, an insert is considered
to be placed within a background medium [with the latter being
the same as the one used for Figs. 4(a)–4(c)]. The insert is mod-
eled by removing the waveguide-based metatronic T-circuits

(i.e., effectively removing any junctions within that region).
By doing this, any incident signal upon this region will be re-
flected, enabling the junctions at the boundary to that region to
act as boundary junctions with g ¼ 0. Physically, this could be
implemented by using a perfect magnetic conductor such as
doped ENZ materials,75 or by replacing the metatronic T-circuits
connecting to this region with PEC-ended stubs of length λ0∕4.
The insert, shown in Figs. 4(d) and 4(e), is a 0.9549λ1×
0.9549λ1 square centered at the middle of the simulation space,
i.e., a 10 × 10 grid in the center of the 50 × 50 subnetwork. The
theoretical and analytical results of the power distribution for
this scenario are shown in Fig. 4(e) when considering a plane-
wave excitation (boundary waveguides are excited such that the
boundary junctions on the left-hand side of the network fulfill
a boundary condition of g ¼ 1). As observed, there is a clear
agreement between the results, demonstrating how the incident
wave is reflected and scattered by the insert. For completeness,
the power distribution along the vertical and horizontal lines
from Fig. 4(e) are shown in Fig. 4(f). The small differences
between the analytical and theoretical results are due to the finer
mesh used in the FEM method for the analytical results com-
pared to the number of junctions to discretize the simulation
region using the network of waveguides. This is an expected
result, which may be reduced by increasing the resolution of
the calculated PDE solution in the metatronic network using
the methods discussed in the previous sections. However, the
results from Figs. 4(e) and 4(f) can be considered as a good
approximation of the analytical solution. The proposed tech-
nique can be translated to different frequency ranges such as
the optical regime via the emulation of metatronic elements
within waveguides with the ability to split the incident signal
in all directions,48 allowing its potential experimental implemen-
tation in integrated photonic circuits.

3 Conclusions
In this work, an EM wave-based structure for analogue comput-
ing has been proposed. It consisted of a network of parallel plate
waveguides loaded with carefully designed dielectric slabs such
that the whole structure emulates a network of interconnected
T-circuits, i.e., interconnected metatronic elements. It has been
shown how the proposed structure has the ability to calculate
the solution of PDEs in the form of the Helmholtz equation.
Different scenarios have been demonstrated such as the calcu-
lation of Dirichlet (for example, wave propagation within a
cavity) and open boundary value problems (including the
solution for a focusing lens). The theoretical results have been
compared with both analytical and numerical results demon-
strating good agreement between them. We envision that this
method of PDE solving could be implemented using known
microwave technologies.3 Additionally, the proposed technique
can be translated to other spectral regimes by implementing
specific waveguide-based structures for the desired frequency
range (such as dielectric slab waveguides at optical frequencies);
the results presented here could open new opportunities for
high-speed analogue computing and processors with light.

4 Appendix A: Methods
The numerical results presented in Figs. 1–3 were obtained
using the frequency domain solver of the commercial software
CST Studio Suite. Vacuum (εr ¼ 1, μr ¼ 1) was used as the
filling material of the waveguides from the network. The
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waveguides had a width of 0.1 mm (λ0∕300) and their length
(separation between waveguide junctions) was determined by
the parameters of the metatronic T-circuit, as discussed in the
main text above. Boundary conditions were set as open along
the x and y axes (at the top, bottom, left, and right boundaries),
while the z boundaries were both set to magnetic (Ht ¼ 0).
The metatronic T-circuits were implemented using three thin
dielectric slabs immersed within the waveguides. Waveguide
ports were placed at the ends of the boundary waveguides to
excite the structure. The cross section and filling materials of
these boundary waveguides were the same as the waveguides
described above. The boundary waveguides had a length of
3.75 mm (λ0∕8) between the ports and the boundary junctions.
The out-of-plane magnetic field Hz at the center of the wave-
guide junctions is extracted from the simulation using H-field
probes placed at the center of each junction. The analytical re-
sults shown in Figs. 3 and 4(e) were obtained using the built-in
PDE toolbox from MATLAB by defining an elliptical PDE of
the form −∇½c∇gðx; yÞ� þ agðx; yÞ ¼ f, with c ¼ −1, a ¼ k2,
and f ¼ 0. The simulation space in all cases was a square region
with size ðNh ×MhÞ, with h and k as defined in the main text.

5 Appendix B: Index of Supplementary
Movies

SupplementaryMovie 1:Animation of Fig. 2(d) from the main
text (Video 1, MP4, 28 MB [URL: https://doi.org/10.1117/1.
APN.3.5.056007.s1]).
Supplementary Movie 2: Animation of Fig. 2(e) from the main
text (Video 2, MP4, 22 MB [URL: https://doi.org/10.1117/1.
APN.3.5.056007.s2]).
SupplementaryMovie 3:Animation of Fig. 3(b) from the main
text (Video 3, MP4, 20 MB [URL: https://doi.org/10.1117/1.
APN.3.5.056007.s3]).
SupplementaryMovie 4:Animation of Fig. 3(d) from the main
text (Video 4, MP4, 10.8 MB [URL: https://doi.org/10.1117/1.
APN.3.5.056007.s4]).
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