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Abstract. Leveraging an optical system for image encryption is a promising approach to information security
since one can enjoy parallel, high-speed transmission, and low-power consumption encryption features.
However, most existing optical encryption systems involve a critical issue that the dimension of the
ciphertexts is the same as the plaintexts, which may result in a cracking process with identical plaintext-
ciphertext forms. Inspired by recent advances in computational neuromorphic imaging (CNI) and speckle
correlography, a neuromorphic encryption technique is proposed and demonstrated through proof-of-
principle experiments. The original images can be optically encrypted into event-stream ciphertext with a
high-level information conversion form. To the best of our knowledge, the proposed method is the first
implementation for event-driven optical image encryption. Due to the high level of encryption data with the
CNI paradigm and the simple optical setup with a complex inverse scattering process, our solution has
great potential for practical security applications. This method gives impetus to the image encryption of
the visual information and paves the way for the CNI-informed applications of speckle correlography.
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various approaches to enhance encryption security and make
it more resistant to attacks. After the first proposal of double
random phase encryption,* many optical encryption schemes with

1 Introduction
Optical techniques have been widely investigated and imple-

mented in the field of information security, encryption, and
authentication.'” Information security is a crucial challenge to
modern society,” for example, data encryption for the critical
databases of private and commercial information. Much impres-
sive progress with optical techniques has been investigated and
demonstrated in information encryption and authentication. The
main purpose of utilizing optical techniques for information
security is that data waveforms possess multiple dimensions,
including phase, amplitude, spectrum, polarization, orbital an-
gular momentum, etc. These dimensions can be combined in

*Address all correspondence to Edmund Y. Lam, elam@eee.hku.hk; Jing Han,
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optoelectronic setups have been developed. The classical encryp-
tion system based on holography,’® interference,”® ptychogra-
phy,”'? single-pixel imaging'"'* and scattering imaging'*'* are
proposed, which are a further expansion of the application with
the traditional optical system. Recently, to upgrade the security
level and fully exploit the abundant degrees of freedom of
encryption systems, more advanced optical systems have been
designed and demonstrated, for example, nonlinear encryption
engine,” meta-optics cryptography system,'®'” and angular-
momentum holography nested encryption.'®

Utilizing a random scattering media as a coding mask is
a simple yet effective way for image encryption.” Speckle
correlography is a cutting-edge technique that enables the
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construction of high-resolution images of laser-illuminated
objects.'”* Briefly, the backscattered laser speckle intensity pat-
terns are collected and then used to create a detailed visual rep-
resentation of the diffuse object with computational approaches.
The imaging approach is grounded on the principle that the
average energy spectrum of laser-illuminated objects can be as-
certained through the autocorrelation of speckle patterns in the
Fourier domain. In the context of speckle correlography, an
iterative phase retrieval (PR) algorithm is employed to recon-
struct images from the estimated Fourier modulus of the diffuse
object. Therefore, speckle correlography can be employed as
a random phase encoding approach for optical encryption
applications.”’ Despite coherent scattering-based encryption
schemes, the incoherent scattering method based on speckle cor-
relation is also proposed for image encryption.'** The physics-
informed method for a ciphertext-only attack hinges on utilizing
speckle correlography, which establishes that the autocorrela-
tion of the ciphertext is fundamentally indistinguishable from
that of the speckle.”

Recent advances in optical encryption methods mainly focus
on the complexity of experimental setups, which are based on
advanced optoelectronic devices. The photorefractive crystal or
metasurface device encodes information with light signals and
the plaintext-ciphertext form is consistent with a frame-based
camera. The same data form would lead to a high risk of the
system being cracked. Meanwhile, traditional intensity images
are redundant and temporally sparse. Therefore, a different data
dimension between encryption and decryption might be a prom-
ising approach to facing information security.”

Event cameras are representative neuromorphic devices that
are inspired by the architecture of the human brain and have
the potential to revolutionize computing by providing a more
efficient and effective way to process information.” Compared
to conventional frame-based cameras, the event camera with
bionic circuit units has microsecond-level responsiveness and
higher dynamic range, hence showing greater feasibility for
optical encryption under high-speed recordings and poor illumi-
nation conditions. Event cameras offer trade-offs in terms of
power consumption and frame rate, in exchange for sparsely
sampling visual scenes and still achieving remarkable perfor-
mance on computational imaging tasks. Equipped with neuro-
morphic devices and computational algorithms, computational
neuromorphic imaging (CNI) is anticipated to emerge as a
promising and rapidly advancing field in optical imaging.”®
CNI-informed computing modality achieves superior efficiency
with low power consumption and low latency for certain algo-
rithms,”* and information security would greatly benefit from
focusing on well-defined optical encryption.

Encryption process

Plaintext

Encrypted events

An event camera is utilized in the neuromorphic encryption
system to capture per-pixel intensity changes in an asynchro-
nous manner, generating event streams that encode information
on the time, pixel position, and polarity. Consequently, when the
object undergoes motion, the speckle patterns are moved corre-
spondingly, and speckle events are generated and recorded by an
event camera. These speckle events arise due to light scattering,
which produces a distinctive, unpredictable pattern of intensity
fluctuations that can be employed to form a process-prior-
empowered key. Therefore, a neuromorphic encryption system
with different data forms processing can be developed using an
event camera.

In this work, a neuromorphic encryption technique is pro-
posed using event-stream speckles, which has a different data
form of the ciphertext and high encrypted efficiency. The pro-
posed encryption scheme has been demonstrated with simulated
analysis and experimental verification. The inherent random-
ness and unpredictability of speckle events make it extremely
difficult for attackers to replicate the same pattern of events
and produce the correct key. Furthermore, the neuromorphic
encryption method has the potential for high-speed encryption
and decryption processing, which makes it suitable for practical
applications. For image decryption, we propose a physical key
based on a physics-informed neural network, which is trained
with a simulated forward model. In addition, the proposed
encryption method has remarkable noise immunity, showing
impressive robustness in practical noisy scenarios.

2 Principle and Method
2.1 Optical Cryptosystem with Speckle Correlography

Speckle correlography is mainly the coherent scattering process
in that we can use the statistical correlation between speckle pat-
terns to encrypt information. As shown in Fig. 1, the encryption
process is realized by the speckle correlography modulation and
events recorded with the neuromorphic sensors. The detailed
forward processes are depicted in the blue dashed box. That is,
the origin information modulated with a coherent scattering
process and the generation of corresponding event-stream
ciphertext are synchronously realized via the neuromorphic
encryption system.

The generation of the encrypted speckles can be illustrated
based on the imaging correlography.'” The plaintext object is
illuminated with a coherent light source, and the non-imaged
speckle patterns then can be collected by a frame-based camera.
The encrypted object exhibits optical roughness, and its micro-
scale surface height variations are random and comparable in

Decryption process

argmin i { HO),T,.., L(())}
0

Decrypted image

Fig. 1 Schematic illustration of the neuromorphic encryption and decryption processes.

Advanced Photonics Nexus

056002-2

Sep/Oct 2024 e Vol. 3(5)



Zhu et al.: Neuromorphic encryption: combining speckle correlography and event data for enhanced security

size to the light’s wavelength. As a result, the reflected beam
undergoes random and coherent dephasing, resulting in the
detector in the image plane recording the intensity pattern of
speckle grains."™* The fully developed speckles I(u) can be
described as the squared modulus of the Fourier transform of
the object field:

1(u) = [F[fu(v)]

where F denotes a Fourier transform, u denotes a 2D coordinate
in the observation plane, and v is a 2D spatial coordinate vector
in object space. f,(v) = |fo(v)e®(")| stands for the optical
field coded by the diffuse object, fy(v) is the field amplitude
of the encrypted object, and ¢, (v) denotes the stochastic phase
of the nth instance of the encrypted object field that is related
with the height profile of the diffuse object. Therefore, the
autocovariance of the collected speckles can be estimated as

%, 6]

C,(Au, N)

© 1 N _
— /_w P(u+ Au){N;[ln(u + Au) = T|[1,,(u) — I]}du,
(©))
where Au is a vector separation in the image plane, I is the

average intensity of the speckle grains, and P(u) is the circular
pupil function can be defined as

P ={y

While an infinite number of speckle grains is used for esti-
mating statistical autocovariance'

ueprP

u¢pP - ©)

Ci(Au,N) = lim Ci(Au,N) = H(Au) - |T(Au)?

= [P(u)xP(u)] - [T(Au)P?, )

where H is the transfer function of the optical system, I'(Au) =
|F[fo(v)]|? is the 2D Fourier transform amplitude of the object’s
field.* For plaintext image encryption, the power spectrum can
be employed in iterative PR algorithms,*' which is the same pro-
cess for image decryption.

2.2 Neuromorphic Model for Speckle Events

If the object and image planes are laterally displaced or if the
object rotates slightly, it is possible for independent realizations
of the collected speckle intensity to occur. Event cameras have
gained significant attention due to their bio-inspired properties,
which mimic the functioning of neurons to process the infor-
mation on changes in intensity, only respond to per-pixel log-
arithmic intensity changes in an asynchronous fashion.>?%*
The speckle grains move with the moving diffuse object, re-
sulting in the events generated and recorded by neuromorphic
Sensors.

The speckle patterns shift as the object moves, and an event
eké(rk, tr, Dy ), triggered at a pixel ry, = (x;, y;) at time 7, once
the intensity changes reach the threshold,”* is encoded as a
result as follows:
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A
AL (v, ty)=L(Yppys tiyr) — L(ri, 1) = piT, &)

where L(ry, t;) is the log intensity, p, is the event polarity that
represents the sign of the changing, and T denotes the temporal
contrast threshold. Therefore, a 2D intensity pattern can be syn-
thesized by accumulating events within a certain time period At
and can be expressed as™

Tevens = Zka5()C—)Ck,y _yk)» (6)

1 EAL

where 6 is a Kronecker delta function. Therefore, the event-
stream data can be processed by traditional optical methods,
for example, Fourier transforms, image enhancement, and PR
algorithms. The encrypted images can be further reconstructed
with the 2D energy spectrum of speckle autocorrelation,”*' and
the mathematical operations autocorrelation of accumulated
events can be expressed as

l—‘evems = F(Ievcnts)‘ (N

2.3 Inverse Decryption Approach

The optical encryption process with a speckle correlography
system can be simplified as a linear system'® and the distribution
of accumulated patterns is strongly related to the original inten-
sity distribution of the coherent laser speckles. The existing
PR algorithms are not up to the task of properly solving the
ill-posed problem associated with low-SNR speckle correlogra-
phy of accumulated events. Deep neural networks (DNN) with
skip or residual connections excel at learning identity-like
mappings.”® Learning PR algorithms have demonstrated the
effectiveness of the inverse correlography,” which is more
accurate than traditional retrieval methods.”®*® Therefore, a
DNN is employed for image reconstruction of event-stream data
decryption.

To improve the generalization capability without character-
izing the specific scattering process, related physics-priors of the
invariant elements can be used to reduce the errors in the decon-
volution of the different modulations.”* As shown in Fig. 1, the
decryption process with event-stream data contains several steps
for the ciphertext recovery. For the optimization model with
DNN, the final accumulated autocorrelation preprocess based
on the forward physics model is selected as the network input.
Therefore, the decryption strategy with a learning PR method
can be written as*"*

O = arg min W{H(0>» 1—‘evemsv L<0)}’ (8)
o

where O is the encrypted object, O is the decrypted object, H(-)
is the forward operator of the optical system, y is the functional
to minimize, and L(-) is the regularizer acting on O, that is, put-
ting constraints on the solution. In a traditional optimization
process, the regularizer would be arbitrarily selected.

In this work, a physics-informed DNN is chosen to determine
a regularization built for the specific categories of objects.
Benefiting from the forward process of speckle event genera-
tion, the physical model was used as a pre-processor for the
generator that generates a training set.” Although plaintexts
are degraded and formulated as speckle events, learning from
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a simulation scheme is a feasible and powerful tool to fill the gap
of information loss. The well-known U-net architecture is em-
ployed as the PR learning model, which has been applied suc-
cessfully to various inverse problems.* We select the negative
Pearson correlation coefficient (NPCC) as the loss function to
optimize the DNN in the training process. NPCC is an index
used to evaluate the similarity between two variables and has
been extensively used for inverse problem optimization.**

2.4 Experimental Setup and Datasets Preparation

The neuromorphic encryption system is schematically illus-
trated in Fig. 2, which includes an illumination laser
(Thorlabs, HNL100LB, central wavelength: 632.8 nm) and a
corresponding beam expander (Thorlabs, BEIOM-A). A diffuse
reflective object is selected as the plaintext and is mounted on a
motorized translation stage (Winner Optics, WN262TA20). An
event camera (iniVation, DAVIS 346) and a 40x objective lens
(Nikon) are employed to collect the speckle events. Despite the
encryption process involving a complex transformation, the
hardware implementation is relatively simpler than conventional
methods.’ The object is a 10 mm x 10 mm letter with a reflec-
tive diffuse metal surface and the distance between the object
and the event camera is about 300 mm. The movement speed
of the translation stage is 0.2 mm/s in the horizontal direction.

In order to reduce the cost of data collection, a synthetic
framework is proposed to generate the simulated data for DNN
training. The training data are synthesized with the forward
physical model of the speckle correlography" and the v2e pro-
cess for event generation.*® Here, the light source is assumed as a
collimated coherent laser beam with a wavelength of 632.8 nm.
The object is modulated by a random mask as the diffuse object
and is numerically propagated over a far-field distance. The far-
field distance d is also set to 300 mm, resulting in a speckle
pattern I(x, y). v2e toolbox that can generate realistic synthetic
events from conventional frames, which is employed to simulate
and make the training data of speckle events. The speckle field
was shifted with two pixels with three consecutive grounds,
which is used to generate the degraded speckle events. Then,
the same set of speckle patterns of 32 x 32 in size is used

(a) Event camera

Plaintext

for accumulated autocorrelation preprocess in both the simula-
tion and experiment, and 256 pixel x 256 pixel is selected for
autocorrelation calculation.

3 Results

For the neuromorphic encryption system, image encryption with
physical modulation and data form transform are simultane-
ously conducted. In the simulated experiments, the detailed en-
cryption process is analyzed in the method part and the intrinsic
data are also presented for a better understanding of the forward
encrypted process.

First, the characteristics of event-stream data with different
scattering conditions are analyzed. As shown in Fig. 3, the ac-
cumulated speckle and corresponding retrieved autocorrelation
are presented. The statistical characteristics can be obviously
distinguished from the normalized intensity of the white dashed
line. We can draw a similar conclusion with scalable imaging
through unknown scattering media.”® Therefore, the preprocess-
ing step with the retrieved autocorrelation is essential for the
physics-informed learning model, which is suitable for practi-
cal-synthetic environments and can reduce the differences in
the data characteristics. By training on the autocorrelations of
simulated event-stream data and their associated ground truth
images, the proposed PR model reduces the potential for model
mismatch and improves image reconstruction efficiency.

To demonstrate the effectiveness of the neuromorphic
encryption method, detailed experiments are presented and
analyzed. If we use conventional cameras, the frame-based
cyphertext can be recorded as the intensity speckles, which is
presented as the virtual cyphertext. The encrypted event-stream
data can be further synthesized by the moving virtual speckles.
Numerical simulations have been carried out to illustrate the
effectiveness of the neuromorphic encryption method. In the
simulated experiments, the size of all the images is set as
256 pixel x 256 pixel. A total of nine groups of speckle events
are generated, which have distinct degraded processes with
different scattering transport modes.*”** One group of data was
used for test verification of the encryption, and the remaining
eight sets of data were used for training the decryption algorithm

DAVIS 346

Fig. 2 Neuromorphic encryption system. (a) The optical configuration. (b) An encrypted letter “N”
is made with a diffuse metal surface, captured with frame-mode and a focusing lens. (c) An event
camera is employed as the neuromorphic sensor to collect the encrypted data.
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(a) Scattering condition: 1
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Fig. 3 Analysis of encryption-related data. (a) The accumulated speckle and corresponding
retrieved autocorrelation and the final decrypted results in different scattering conditions are
presented. (b) The normalized intensity of the dashed line in the accumulated speckle. (c) The
normalized intensity of the dashed line in the retrieved autocorrelation.

model. According to the simulation results in Fig. 4, the final
encrypted results are event-stream data. Therefore, the optical
encryption scheme based on the CNI paradigm can encrypt im-
ages with different data forms. The original image recovery of
the encrypted event is performed by the proposed physical key.
Using the physics-informed PR algorithm for the encrypted
event-stream data, the autocorrelation is first retrieved and
employed for decrypted image reconstruction. From the final
retrieved results, the decrypted image has been initially vali-
dated based on numerical simulations. Therefore, the effective-
ness of the information security and high dimensional resistance
to ciphertext attacks of the proposed method can be seen from
the encrypted time data and decryption results.

In addition, we investigate the robustness of the proposed
neuromorphic encryption scheme against cropping and noise.
For practical information transport, the original information
might be lost which results in part of the damaged event-stream
data. Therefore, the capability to reconstruct useful information
with damaged data is crucial for image decryption. The results
are respectively presented in Figs. 5 and 6. The four images
on the left side of Fig. 5 show the cropped ciphertexts with
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cropping ratios of 1/16, 1/8, 1/4, and 1/2, respectively. The
autocorrelation of plaintext can be retrieved from the cropped
ciphertext. According to the decryption results, we can see that
the proposed method has resistance to the different cropping ra-
tios. The two images on the left of Fig. 6 present the ciphertexts
added zero-mean, Gaussian white noise with variance of 0.01
and 0.02; the two images on the right side of Fig. 6 present
the ciphertexts added salt and pepper noise with 0.01 and
0.02 noise density. The retrieved autocorrelations of the cor-
rupted ciphertexts and the reconstructed plaintext images are
also presented together. From the final decryption results, the
proposed method has the robustness capability against noise
with different levels and types. Therefore, these results indicate
that the neuromorphic encryption approach has superior robust-
ness against data cropping and noise disturbance.

Further experimental validation is carried out for the effective-
ness and practicality of the neuromorphic encryption scheme.
We implement the practical CNI system as illustrated in Fig. 2
and verify it by the proposed algorithm. As shown in Fig. 7,
the encrypted events, intermediate images, and corresponding
decrypted results of the letters targets (i.e., “N”” and “L”) and

Sep/Oct 2024 e Vol. 3(5)
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Plaintext Virtual Encrypted Accumulated Retrieved Decrypted

ciphertext event data speckle autocorrelation image

Neuromorphic encryption Inverse decryption

T PR T T T
A I

Fig. 4 Simulation results. The virtual cyphertext of speckle patterns from intermediate processes
is used for event-stream data generation. The accumulated speckles with encrypted events and
decrypted images with the learning PR algorithm.
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Fig. 5 Robustness test against cropping. Ciphertext with different cropping ratios are 1/16, 1/8,
1/4, and 1/2, respectively.
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Fig. 6 Robustness test against noise. Ciphertext added zero-mean Gaussian white noise with
variances of 0.01 and 0.02 and added salt and pepper noise with 0.01 and 0.02 noise densities.
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Retrieved
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Fig. 7 Experimental results. (a) Letter target “N.” (b) Letter target “L.” (c) Quick draw target “Tshirt.”
(d) Quick draw target “Apple.” For each subfigure: the first column from the left is the ground truth
plaintext; the first row is the collected encrypted events that have the same time period and differ-
ent time periods; the second and third rows are the accumulated speckle and corresponding
autocorrelation; the last row is the decrypted result via the learning PR algorithm.

quick draw targets (i.e., “Tshirt” and “Apple”) are presented.*’
The event-stream data are selected and preprocessed with accu-
mulation and autocorrelation. From the experimental results, the
accumulated speckle images with different time periods differ
significantly. However, the corresponding autocorrelations have
similar main structural information, and the final decrypted im-
ages are nearly identical to each other, which demonstrates the
proposed method is robust to variable scattering processes. The
known degraded physical process is the key element for the in-
formation decryption. Therefore, neuromorphic encryption is
an innovative bio-inspired method for information security with
a data-form transformation process.
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4 Analysis

Since event cameras only capture motion, they predominantly
record high-frequency information about moving targets, while
low-frequency information with smooth grey-scale changes can
be easily lost. Conventional phase recovery algorithms struggle
to accurately reconstruct power spectra and inverse series with
such incomplete information. By understanding the target’s
encryption process, we can generate corresponding degradation
simulation data and employ learning methods to recover some
lost information during the encryption process. As illustrated in
Fig. 8, we compare the traditional hybrid input-output (HIO) PR
algorithm to our learning method for event data decryption.''

Sep/Oct 2024 e Vol. 3(5)
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Ground truth HIO

Fig. 8 Comparison results of the traditional HIO PR algorithm
with our learning method for event data decryption.

For both simulated and experimental data, the HIO algorithm
fails to produce reliable results, whereas our proposed learning
PR algorithm effectively compensates for information loss in a
simulated dataset containing a final forward encryption model.
In Eq. (6), the length of the time duration At is a predefined
parameter for accumulated images with speckle events. By
selecting different periods within a single continuous event
stream, the accumulated images and the corresponding autocor-
relation are calculated with the same starting point in time. As
shown in Fig. 9, the short time duration (i.e., 0.1Af and 0.2A¥)
can lead to sparse accumulated speckles, whereas the long one
(i.e., SAr and 10Ar) can result in the speckles being overlapped
and blurred. As a result, the wrong time duration selection will
produce the incorrectly retrieved autocorrelation and can not
obtain the proper decrypted images. Therefore, an appropriate
time duration with prior knowledge of the events process is
crucial for accurate decryption. In specific extreme scenarios,
accumulating adequate event information for signal parsing
might be essential. This process can be further improved by
employing warp or refocusing techniques for event stream data
washout, which is one of our upcoming research topics.

. . . r
Time duration selection:
I

Ground truth
Accumulated
speckle

Autocorrelation
Retrieved
autocorrelation

Decrypted
image

Speckle
autocorrelation of ground truth

5 Discussion

According to the experimental results and analysis, several high-
lights are pointed out as follows:

1. The neuromorphic encryption with speckle correlogra-
phy exhibits a high level of encryption complexity, despite
the fast encrypted process and relatively simple optical setup.
A learning PR algorithm using a physics-informed model is pro-
posed for decrypting ciphertexts, which has the generalization
capability for different scenes. Due to the model being trained
with a synthetic dataset based on the physical model and re-
sponses of bio-inspired sensors, the proposed method has a
better physical key for unknown encrypted plaintext.

2. Since event-stream data are only produced by speckle
motion in an otherwise static scene, the output data contain
minimal redundant information about components. The event-
stream data have the advantage of the random scattering process
in that the plaintext information is fully coded into the events.
Even if part of the event-stream data are lost, useful information
can also be retrieved for image decryption. Meanwhile, the data
are susceptible to noise in the dark field, which demonstrates
the proposed method is robustly tested against noise.

3. Neuromorphic encryption using speckle events is in the
nascent stage of development, and there are multiple challenges
that must be addressed before it can be widely adopted. The
information is lost during the conversion process from intensity
to events. Furthermore, the reliability of speckle events in differ-
ent environments needs to be thoroughly tested to ensure that
they can be used in a variety of settings. As the technology con-
tinues to evolve, it is expected to see an increase in practical
applications, and it may even become a preferred strategy of
encryption for sensitive data.

6 Conclusion

In summary, we present a bio-inspired encryption system for
optical information security, which is the first cryptography
scheme using the CNI technique, to the best of our knowledge.
The proposed methodology enhances speckle correlation
through event-stream data, which provides a new paradigm
for optical image encryption. CNI technique and speckle

Fig. 9 Cracking resistance test with wrong time duration selection (in the red dash box). The cor-
rect process with a proper time duration selection is also presented in the green dash box.
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correlography are combined to improve the security and effi- 15
ciency of optical encryption, which shows the proposed meth-
odology surpasses traditional methods in terms of security 16.
and encryption level. The potential benefits of neuromorphic en-
cryption using event-stream data make it a promising research 17
area that could transform the field of information security, which

paves the way to CNI applications and provides a reference for

complex scenarios computing with bio-inspired sensors. 18
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