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Abstract. Phase recovery, calculating the phase of a light wave from its intensity measurements, is essential
for various applications, such as coherent diffraction imaging, adaptive optics, and biomedical imaging.
It enables the reconstruction of an object’s refractive index distribution or topography as well as the
correction of imaging system aberrations. In recent years, deep learning has been proven to be highly
effective in addressing phase recovery problems. The two most direct deep learning phase recovery strategies
are data-driven (DD) with supervised learning mode and physics-driven (PD) with self-supervised learning
mode. DD and PD achieve the same goal in different ways yet there is a lack of necessary research to
reveal similarities and differences. Therefore, we comprehensively compare these two deep learning phase
recovery strategies in terms of time consumption, accuracy, generalization ability, ill-posedness adaptability,
and prior capacity. What is more, we propose a co-driven strategy of combining datasets and physics for
the balance of high- and low-frequency information.
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1 Introduction
Phase recovery refers to a class of methods that recover the
phase of light waves from intensity measurements.1 It is active
in various fields of imaging and detection, such as in bioimaging
for obtaining the refractive index or thickness distribution of
tissues or cells,2 in adaptive optics for characterizing aberrant
wavefronts,3 in coherent diffraction imaging for detecting the
structural information of nanomolecules,4 and in material in-
spection for measuring surface profiles.5

Since optical detectors, such as charge-coupled device sen-
sors, can only record the intensity/amplitude but lose the phase,
one has to recover the phase from the recorded intensity indi-
rectly. And precisely because of the loss of the phase, it is ill-
posed to directly calculate the phase on the object plane from the
only amplitude on the measurement plane through the forward
physical model. On the one hand, the phase can be iteratively
retrieved from intensity measurements with prior knowledge,
i.e., phase retrieval.6 On the other hand, by incorporating
additional information, this problem can be transformed into

a well-posed one and solved directly, such as holography or
interferometry with reference light,7,8 Shack-Hartmann wave-
front sensing with micro-lens arrays,9,10 and the transport of in-
tensity equation with multiple through-focus intensity images.11,12

In recent years, deep learning, with artificial neural networks
as the carrier, has brought new solutions to phase recovery.
One of the most direct ways is to train neural networks to learn
the mapping relationship from intensity measurements to the
light wave phase.1,13,14 On the one hand, the training of neural
networks can be driven by paired input-label datasets as implicit
prior knowledge (“implicit prior”); these are called data-driven
(DD) strategies (see the upper part of Fig. 1).1 On the other hand,
forward physical models can be used as explicit prior knowl-
edge (“explicit prior”) to drive the training of neural networks
with input-only datasets; these are called physics-driven (PD)
strategies (see the lower part of Fig. 1).1 In addition, neural
networks can also indirectly participate in the process of phase
recovery including pre-processing, in-processing (physics-
connect-network, network-in-physics, and physics-in-network),
and post-processing.1 Compared with classic phase recovery
methods that mainly rely on physical models, deep learning
methods additionally introduce prior knowledge from datasets
and neural network structures to improve efficiency.
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Sinha et al.15 first demonstrated DD phase recovery with
paired diffraction-phase datasets, obtained by recording diffrac-
tion images of virtual phase objects loaded on a spatial light
modulator. Subsequently, DD phase recovery was successively
extended to in-line holography,16 coherent diffraction imaging,17

Fourier ptychography,18 off-axis holography,19 Shack-Hartmann
wavefront sensing,20 transport of intensity equation,21 optical
diffraction tomography,22 and electron diffractive imaging.23

In addition, several studies focused on more efficient neural net-
work structures for phase recovery, such as the Bayesian neural
network,24 generative adversarial network,25 Y-Net,26,27 residual
capsule network,28 recurrent neural network,29 Fourier imager
network,30,31 and neural architecture search.32 Some studies also
used DD methods for pre- or post-processing of phase recovery,
such as defocus distance prediction,33 resolution enhancement,34

phase unwrapping,35 and classification.36,37

The idea of PD phase recovery was first introduced by
Boominathan et al.38 in their simulation work on Fourier pty-
chography. Wang et al.39 first experimentally used PD to itera-
tively infer the phase of a phase-only object from its diffraction
image directly on an untrained/initialized neural network.
Afterward, it was subsequently extended to the cases of un-
known defocus distances,40 dual wavelengths,41 and complex-
valued amplitude objects.42,43 In the quest for faster inference
times, PD and a large number of intensity measurements were
used for neural network pre-training.42–46 Further, refinement of
pre-trained neural networks by PD achieved higher accuracy
with lower inference time.47,48 It should be noted that the PD
strategies mentioned here do not include methods that use ran-
dom vectors or matrices as the inputs of neural networks. For the
specific differences, please refer to the italicized part on page 22
of Ref. 1.

DD and PD achieve the same goal in different ways and are
being studied in different contexts to achieve efficient phase re-
covery. Therefore, it is necessary and meaningful to compare
them under the same context. In this paper, we introduce the
principles of DD and PD and comparatively study them in terms
of time consumption, accuracy, generalization ability, ill-posed-
ness adaptability, and prior capacity. We also combine DD and
PD as a co-driven (CD) strategy to train neural networks for
high- and low-frequency information balance. What is more,
to facilitate readers to get started with the deep learning phase

recovery quickly, we release the demonstrations of DD, PD, and
CD which are available in a Github repository at: https://github
.com/kqwang/DLPR

2 Principles and Methods
Here, we consider a classic phase recovery paradigm, recover-
ing the phase or complex-valued amplitude of a light wave from
its in-line hologram (diffraction pattern). For an object illumi-
nated by a coherent plane wave, its hologram can be written as

H ¼ GðA; PÞ; (1)

where H is the hologram, A is the amplitude of the light wave, P
is the phase of the light wave, andGð·Þ is the forward propagation
function. For a phase object, we assumeA ¼ 1. Then, the purpose
of phase recovery is to formulate the inverse mapping of Gð·Þ:

P ¼ G−1ðHÞ: (2)

With a supervised learning mode, DD trains neural networks
with paired hologram-phase datasets SH−P ¼ fðHi; PiÞ;
i ¼ 1;…; Ng as an implicit prior to learn this inverse
mapping:15

fω� ¼ arg min
fω

XN
i¼1

kfωðHiÞ−Pik22; ∀ ðHi;PiÞ∈ SH−P; (3)

where k · k22 denotes the square of the l2-norm (or other distance
functions) and fω is a neural network with trainable parameters
ω, such as weights and biases. When the optimization is com-
plete, the trained neural network fω� is used as an inverse map-
per to infer the corresponding phase P̂x from its hologramHx of
an unseen object that is not in the training dataset:

P̂x ¼ fω� ðHxÞ: (4)

A visual representation of DD is shown in Fig. 2, in which
holograms and phases are used as the input and ground truth
(GT) of the neural network, respectively. The training dataset,
collected through experiments or numerical simulations, typi-
cally contains paired data from thousands to hundreds of thou-
sands. The training stage usually lasts for hours or even days
but only takes one time. After that, the trained neural network
quickly infers the phase of the unseen object after being fed its
hologram.

For physical processes that can be well modeled, such as
phase recovery, PD is another available strategy. With a self-
supervised learning mode, PD uses a numerical propagation
Gð·Þ as an explicit prior to drive the training or inference of neu-
ral networks (Fig. 3). Different from DD, which calculates the
loss function in the phase domain, PD converts the network out-
put from the phase domain to the hologram domain via numeri-
cal propagation Gð·Þ and then calculates the loss function.
This numerical propagation Gð·Þ can be utilized to optimize
the neural network in three ways: untrained PD (uPD),39 trained
PD (tPD),45 and tPD with refinement (tPDr).47

With the driving of the numerical propagation Gð·Þ, uPD
iteratively optimizes an initialized neural network fωð·Þ to
directly infer the phase P̂x of an unseen object from its hologram
Hx [Fig. 3(a)]:

Explicit prior

Forward physical model 

Implicit prior

Dataset

Data-driven (DD) 
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Intensity 
(Input)

Intensity
(Input)

Intensity
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Fig. 1 Phase recovery network training with DD and PD
strategies.
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Fig. 3 Description of PD deep learning phase recovery methods. (a) Network inference for
the uPD. (b) Network training and inference for the tPD. (c) Network training and inference for
the tPDr.
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8<
:

fω� ¼ arg min
fω

kG½fωðHxÞ� −Hxk22

P̂x ¼ fω� ðHxÞ:
(5)

The most significant advantage of uPD is that it does not
require any dataset to pre-process the neural network before
inferences.

In tPD, the numerical propagation Gð·Þ is employed to train
the neural network fωð·Þ with intensity-only training dataset
SH ¼ fðHiÞ; i ¼ 1;…; Ng as input, and then the trained neural
network fω� infers the phase P̂x of an unseen object from its
hologram Hx [Fig. 3(b)]:

8<
:

fω� ¼ arg min
fω

P
N
i¼1 kG½fωðHiÞ� −Hik22; ∀ ðHiÞ ∈ SH

P̂x ¼ fω� ðHxÞ:
(6)

Comparing Eqs. (3) and (6), we can find that the working
modes of tPD and DD are similar. However, due to the use
of numerical propagation Gð·Þ, the training dataset for tPD only
requires a large number of holograms without the corresponding
phase as GT.

As a strategy combining uPD and tPD, tPDr iteratively fine-
tunes the tPD trained neural network fω� ð·Þ on the hologram of
the unseen object [Fig. 3(c)]:

8<
:

fω�� ¼ arg min
f�ω

kG½fω� ðHxÞ� −Hxk22

P̂x ¼ fω�� ðHxÞ:
(7)

In addition, some methods use both forward physical models
and DD neural networks for phase recovery. On the one hand,
some methods first use forward physical models to recover pre-
liminary phases from holograms and then use DD neural net-
works to either remove unwanted components49,50 or perform
resolution enhancement51,52 or convert imaging modalities.53

On the other hand, some methods use DD neural networks to
generate holograms with different propagation distances from a
hologram and then recover the phase using iterative algorithms
based on forward physical models.54 There is also an interesting
way to introduce DD into PD in the form of a generative adver-
sarial network for phase recovery.55

For the sake of clarity, we summarize DD, uPD, tPD, and
tPDr according to their requirements for the physical model,
the training dataset, the number of cycles needed for inference,
and the learning mode in Table 1.

3 Results and Discussion
To avoid unnecessary distraction factors, all datasets used for
comparison are generated through numerical simulation based
on ImageNet, LFW, and MNIST; see Appendix A. ImageNet
represents highly complex dense samples, LFW represents
moderately complex dense samples, and MNIST represents sim-
ple sparse samples. Given its ubiquity in computational imag-
ing, all methods use the same U-Net-based neural network, the
specific structure of which is described in the Supplementary
Material of Ref. 56. The implementation of the neural network
is set uniformly; see Appendix B. The average peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM) are used to quantify the inference accuracy.

3.1 Comparison of Time Consumption and Accuracy

In this section, ImageNet is used for dataset generation. We
summarize the training settings and inference evaluation of
DD, uPD, tPD, and tPDr in Table 2.

In terms of time consumption, DD, tPD, and tPDr all require
pre-training before inference, thus consuming hours or even
more for neural network optimization, whereas uPD performs
inference for the tested sample directly on an initialized neural
network. During the inference stage of DD and tPD, the holo-
gram of the tested sample passes through the trained neural net-
work once in one second, while the inference process for uPD
and tPDr takes several minutes for iteration.

As for the inference accuracy, the PSNR and SSIM of DD
and tPD that do quick inference once after pre-training are
basically the same, and both are significantly lower than uPD
and tPDr, which do inference multiple times. Due to the prior
knowledge introduced in the pre-training stage, the initial infer-
ence of tPDr is closer to the target solution, which makes it
obtain the same accuracy with shorter inference cycles than
uPD. Specifically, with comparable accuracy, the inference time
of tPDr is 1/10th that of uPD.

Table 1 Summary of DD, uPD, tPD, and tPDr.

Strategy Physics requirement Dataset requirement Inference cycles Learning mode

DD No Hologram-phase dataset One time Supervised

uPD Numerical propagation No Multi times Self-supervised

tPD Numerical propagation Hologram-only dataset One time Self-supervised

tPDr Numerical propagation Hologram-only dataset Multi times Self-supervised

Table 2 Training settings and inference evaluation of DD, uPD,
tPD, and tPDr.

Strategy
Training
datasets

Inference
cycles

Inference
time (s)

PSNR
↑

SSIM
↑

DD 10,000 pairs 1 0.02 19.9 0.68

uPD 0 10,000 800 25.6 0.94

tPD 10,000 inputs 1 0.02 18.5 0.69

tPDr 10,000 inputs 1000 80 25.1 0.93
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Although it has the same accuracy index (Table 2), the
inference result of tPD shows better high-frequency detailed
information while that of DD shows better low-frequency
background information (Fig. 4). According to the frequency
principle, deep neural networks are more inclined to learn
low-frequency information in the data.57 DD learns the holo-
gram-phase mapping relationship through the loss function in
the phase domain, while PD uses numerical propagation to
transfer it from the phase domain to the hologram domain.
On the one hand, as shown in the white curve on the left side
of Fig. 4, the high-frequency phase information (steeper curve)
is recorded in the diffraction fringes of the hologram, which
contains a more balanced high- and low-frequency information
(smoother curve). This is more favorable for PD to learn high-
frequency phase information from the loss function in the holo-
gram domain. On the other hand, the low-frequency phase
causes only little contrast in the hologram, making it difficult
for PD to learn low-frequency phase information, especially
the plane background phase.

In order to balance the high- and low-frequency phase infor-
mation learned by the neural network, we propose to use both
the dataset and physics for the neural network training, named
CD. The loss function of CD is derived from the weighted sum
of the DD term and PD term:

8<
:

fω� ¼ arg min
fω

P
N
i¼1 αkfωðHiÞ−Pik22 þkG½fωðHiÞ�−Hik22;

∀ ðHi;PiÞ ∈ SH−P;
(8)

where α is the weight used to control the contribution of the DD
term and PD term, which is set to 0.3. As shown in Fig. 5, com-
pared to the low-frequency-tendency DD and high-frequency-
tendency tPD, CD takes into account both the high-frequency
phase (see the blue box) and low-frequency phase (see the green
box). It should be noted that we only compared CD with DD

and tPD since they all go through the neural network once for
inference.

Interestingly, by comparing the inference results of holo-
grams under different propagation distances (see Fig. S1 in
the Supplementary Material), we find that DD has a higher tol-
erance for defocus distance than tPD. This is most likely due to
the fact that the loss function used by tPD for the neural network
training is calculated in the hologram domain, and thus it is
more sensitive to changes in defocus holograms than DD. In
addition, the CD’s sensitivity to defocus distance is neutralized.

3.2 Comparison of Generalization Ability

To compare the generalization ability of DD and tPD, ImageNet,
LFW, and MNIST are used to generate datasets for neural net-
work training and cross-inference, respectively. ImageNet rep-
resents dense samples, MNIST represents sparse samples, and
LFW is somewhere in between. In Fig. 6, we show the cross-
inference results and their absolute error maps of a sample from
ImageNet, LFW, and MNIST, and attach the average SSIM on
the testing dataset below each result.

Overall, the dataset is the main factor affecting the generali-
zation ability of the trained neural network. Specifically, the
neural networks trained by ImageNet and LFW generally
perform better on all three testing datasets, while the neural
networks trained by MNIST can only infer the overall distribu-
tion of ImageNet and LFW but lack detailed information.
Admittedly, MNIST itself lacks detailed information, so it is
reasonable that neural networks trained with it would not be
able to fully infer detailed information about ImageNet and
LFW. In this extreme case, tPD is significantly better than DD,
both in terms of inference results and SSIM. As can be shown in
Fig. 6, tPD infers more detailed information than DD (marked
by the green arrow). Nonetheless, these results are sufficient to
prove the strong generalization ability of DD and tPD, because
MNIST used for training is very sparse handwritten digits with
monotonous features, but the trained neural network can still do
inference for the complex and feature-rich samples in ImageNet

Input (hologram) DD tPD

GT uPD tPDr 0

1

ra
d

01

01

Fig. 4 Inference results of DD, uPD, tPD, and tPDr.
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and LFW. Another thing worth noting is that for the case of
using neural networks trained by ImageNet and LFW to infer
MNIST, although the inference results of both tPD and DD ap-
pear to be ideal, the SSIM of tPD is much lower than that of DD.
As can be seen from the absolute error maps (marked by the
yellow arrow), the error in the background part of tPD is rela-
tively larger than that of DD, which confirms a conclusion in
Sec. 3.1 that tPD is not good at low-frequency phase informa-
tion, especially the plane background phase.

3.3 Comparison of Ill-Posedness Adaptability

Let us consider a more ill-posed case of using a neural network
to simultaneously infer phase and amplitude from a hologram.
In dataset generation, ImageNet, LFW, and MNIST are used to
get samples containing phase and amplitude, and the corre-
sponding holograms are calculated through numerical propaga-
tion. Given that the neural network needs to output both phase
and amplitude, we modified the original U-Net by paralleling
another up-sampling path to build a Y-Net.26 The way tPD trains
the neural network has not changed, except that there is an am-
plitude term in the loss function:

8<
:

fP;Aω� ¼ arg min
fP;Aω

kG½fP;Aω ðHxÞ� −Hxk22

P̂x; Âx ¼ fP;Aω� ðHxÞ;
(9)

where fP;Aω ð·Þ denotes the Y-Net that outputs phase and ampli-
tude simultaneously. The loss function of DD is derived by
weighted summation of the phase term and amplitude term:

8<
:

fP;Aω� ¼ arg min
fP;Aω

P
N
i¼1 kfPωðHiÞ − Pik22 þ βkfAωðHiÞ − Aik22

P̂x; Âx ¼ fP;Aω� ðHxÞ;
(10)

where fPωð·Þ and fAωð·Þ denote the phase path and amplitude path
of Y-Net, respectively, and β is the weight used to control the
contribution of the phase term and amplitude term, which is
set to 0.1.

The inference results of DD and tPD with single hologram
input are shown in the blue part of Fig. 7. DD can infer the phase
and amplitude at the same time because the implicit mapping
relationship from the holograms to phase and amplitude is com-
pletely included in the paired dataset used for the network train-
ing. As for tPD, obvious artifacts appear in the inference results,
and its SSIM is reduced accordingly. This means that, although
there are many undesirable components in the inference result,
the hologram corresponding to this non-ideal phase and the
amplitude matches the hologram of the sample. That is, the
situation of using a hologram to infer both phase and amplitude
simultaneously is severely ill-posed for tPD.

Input

GT

tuptu
O

D
D

tP
D

C
D

0

1

ra
d

Fig. 5 Results of DD, tPD, and CD. The blue box represents low-frequency information and
the green box represents high-frequency information.
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Here, we show two solutions for this ill-posedness of tPD.
For one thing, we introduce an aperture constraint in the sample
plane to reduce the difficulty of tPD phase recovery:42

8>>><
>>>:

fP;Aω� ¼ arg min
fP;Aω

kG½fP;Aω ðHxÞ� −Hxk22

þ kfAωðHxÞ · ½1 − CðrÞ� − 0N×Nk22
P̂x; Âx ¼ fP;Aω� ðHxÞ;

(11)

where CðrÞ is the aperture constraint with the radius r, which is
set to 80 pixel, and 0N×N denotes the zero matrix of size N × N,
where N is set to 256. After introducing aperture constraints, the
inference results of tPD for the three datasets are improved to
varying degrees (see the red part of Fig. 7). MNIST has the
largest improvement, followed by LFW, and ImageNet has such
limited improvement. This means that the aperture constraint
works well for simple cases with less information but can

hardly deal with more difficult samples. For another thing to
further reduce the ill-posedness of tPD, we introduce more prior
knowledge by using multiple holograms with different defocus
distances as network inputs.45 In this case, the loss function con-
tains three terms corresponding to different defocus distances:

8>>>>>><
>>>>>>:

fP;Aω� ¼ arg min
fP;Aω

kGz1 ½fP;Aω ðHz1
x ; H

z2
x ; H

z3
x Þ� −Hz1

x k22

þ kGz2 ½fP;Aω ðHz1
x ; H

z2
x ; H

z3
x Þ� −Hz2

x k22
þ kGz3 ½fP;Aω ðHz1

x ; H
z2
x ; H

z3
x Þ� −Hz3

x k22
P̂x; Âx ¼ fP;Aω� ðHz1

x ; H
z2
x ; H

z3
x Þ;

(12)

where Gz1ð·Þ; Gz2ð·Þ; andGz3ð·Þ donate the numerical propaga-
tion of different distances, and Hz1

x ; H
z2
x ; andH

z3
x donate the

holograms with different defocus distances, where z1; z2; z3
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Fig. 6 Cross-inference results of DD and tPD for the datasets of ImageNet, LFW, and MNIST.
The metric below each result is the average SSIM for that testing dataset.
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are set to 20, 40, and 60 mm, respectively. Compared to a single
hologram input, two more holograms introduce sufficient prior
knowledge for tPD, resulting in a significant improvement in the
trained neural network, both for the simple MNISTand the com-
plex LFW and ImageNet (see the yellow part of Fig. 7).

3.4 Comparison of Prior Capacity

tPD uses numerical propagation as an explicit prior to train
the neural network, so the neural network learns priors from
numerical propagation. DD trains a neural network with paired
datasets, which means that the neural network learns all implicit
priors contained in the dataset even if it is outside the numerical
propagation. For example, in the presence of imaging aberration,
there will be both sample and aberration information in the holo-
gram. Here, we use ImageNet as the sample phase and a random
phase generated by the random matrix enlargement35,56 as the
aberration phase to generate a dataset for the comparison of
DD and tPD. The process of dataset generation and network
training is shown in Fig. 8, where blue represents the dataset
generation part, green represents the network training part of
DD, and red represents the network training part of tPD.

We illuminate the inference results and absolute error maps
of four samples in Fig. 9. As expected, DD infers the sample

phase while removing the imaging aberration phase, while the
inference result of tPD includes both the sample phase and the
aberration phase. Accordingly, the SSIM of DD is much higher
than that of tPD. In DD, the hologram contains unwanted aber-
ration information, but the GT only contains sample informa-
tion, which means that the dataset implicitly contains both the
prior for phase recovery and the prior for aberration removal.
As for tPD, the prior for the network training is derived from
numerical propagation, which allows both the sample informa-
tion and the aberration information in the hologram to be recov-
ered. It should be noted that the results of uPD also contain the
unwanted aberration phase just like that of tPD.

3.5 Comparison of Experimental Data

We compare DD, tPD, CD, and uPD(tPDr) using experimental
holograms with a defocus distance of 8.78 mm from an open-
source dataset of Ref. 58. To match the defocus distance of the
experimental hologram, we use ImageNet to generate corre-
sponding datasets for the network training. Inference results of
the standard phase object are shown in Fig. 10.

Overall, uPD and tPDr with multiple-cycle inferences have
the best results, as seen from the neatly drawn peaks and valleys.
It should be noted that due to the presence of redundant
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Fig. 7 Ill-posedness adaptability test of DD and tPD. Blue part represents a single hologram as the
network input, red part represents a single hologram with aperture constraints as the network
input, and yellow part represents multiple holograms as the network input.
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diffraction fringes at the edge of the hologram [see the green box
in Fig. 10(a)], unwanted fluctuations appear in the background
of the uPD and tPDr inference results [see the green arrows in
Fig. 10(a)]. Among the remaining one-time inference methods,
the background fluctuations of the tPD results are larger [see the
yellow arrows in Fig. 10(a)], while the detailed information of
the DD results is weaker [see the yellow arrows in Fig. 10(b)].
As a combination of DD and tPD, CD better considers detailed
and background information. It should be noted that as the
training dataset further expands, the neural network’s accuracy

will increase accordingly. In addition, we also test tissue
slices and get similar conclusions, as detailed in Fig. S2 in the
Supplementary Material.

4 Conclusion
We introduced the principles of DD and PD strategies for deep
learning phase recovery in the same context. On this basis, we
compared the time consumption and accuracy of DD, uPD, tPD,
and tPDr and found that uPD and tPDr achieve the highest
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Fig. 8 Dataset generation and network training for the case of imaging aberration.
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accuracy with multiple inferences and tPD prefers the high-
frequency detailed phase while DD favors the low-frequency
background phase. Therefore, we proposed CD to balance high-
and low-frequency information. Furthermore, we found that tPD
generalizes better than DD for the case of inferring dense sam-
ples using neural networks trained on sparse samples. As for the
case of inferring phase and amplitude simultaneously, we re-
vealed the reason why DD is stronger than tPD, that is, the data-
set for DD implicitly contains the mapping relationship from
holograms to phase and amplitude while tPD may encounter
situations where multiple network outputs phases and ampli-
tudes correspond to a same hologram. To alleviate the ill-posed-
ness of tPD, we proposed solutions by aperture constraints or
multiple hologram inputs. In addition, we used the case of im-
aging aberration to demonstrate that DD can learn more about
the prior implicit in the dataset whereas PD can only learn the
prior in numerical propagation. Finally, we verified with exper-
imental data that uPD and tPDr have the highest accuracy and
that CD balances high- and low-frequency information better
than DD and tPD.

We list some related papers with open-source code for read-
ers to make further comparisons.45–47,50

5 Appendix A: Dataset Generation
Three publicly available image datasets (ImageNet, LFW, and
MNIST) are used to generate phases and amplitudes, and then
the corresponding holograms at a certain propagation distance
are computed via numerical propagation. The training and

testing datasets contain 10,000 and 100 data, respectively. The
size of all data is set to 256 × 256. The propagation distance is
set to 20 and 8.78 mm for the simulation comparisons and the
experimental tests, respectively. In the code, we provide a hyper-
parameter “pad” to choose whether to use the way of “padding
and cropping” to eliminate edge diffraction effects (see Fig. S3
in the Supplementary Material).

6 Appendix B: Network Implementation
The Adam optimizer with an initial learning rate of 0.001 is
adopted to update the weights and biases. The Adam weight
decay of uPD and tPDr is set to 0.001. The learning rate de-
creases to 0.95 of its current value every 5 or 10 epochs until
it approaches 0.00001. The batch size of DD, tPD, and CD is set
to 16. The neural network training epoch of DD and PD is set to
100. The inference cycles of uPD and tPDr are set to 10,000
and 1000, respectively. All the neural networks are based on
PyTorch (2.0.0) with Python (3.8.18). All operators run on a
compute server equipped with AMD Ryzen Threadripper PRO
3955WX and NVIDIA GeForce RTX 3090.
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Code and Data Availability
The codes for DD, PD, and CD are publicly available at https://
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