Open Access
29 April 2021 Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies
Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, Roel G. Baets
Author Affiliations +
Abstract

Optical links are moving to higher and higher transmission speeds while shrinking to shorter and shorter ranges where optical links are envisaged even at the chip scale. The scaling in data speed and span of the optical links demands modulators to be concurrently performant and cost-effective. Silicon photonics (SiPh), a photonic integrated circuit technology that leverages the fabrication sophistication of complementary metal-oxide-semiconductor technology, is well-positioned to deliver the performance, price, and manufacturing volume for the high-speed modulators of future optical communication links. SiPh has relied on the plasma dispersion effect, either in injection, depletion, or accumulation mode, to demonstrate efficient high-speed modulators. The high-speed plasma dispersion silicon modulators have been commercially deployed and have demonstrated excellent performance. Recent years have seen a paradigm shift where the integration of various electro-refractive and electro-absorptive materials has opened up additional routes toward performant SiPh modulators. These modulators are in the early years of their development. They promise to extend the performance beyond the limits set by the physical properties of silicon. The focus of our study is to provide a comprehensive review of contemporary (i.e., plasma dispersion modulators) and new modulator implementations that involve the integration of novel materials with SiPh.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, and Roel G. Baets "Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies," Advanced Photonics 3(2), 024003 (29 April 2021). https://doi.org/10.1117/1.AP.3.2.024003
Received: 24 September 2020; Accepted: 10 March 2021; Published: 29 April 2021
Lens.org Logo
CITATIONS
Cited by 167 scholarly publications and 5 patents.
Advertisement
Advertisement
KEYWORDS
Modulators

Modulation

Silicon

Phase shift keying

Graphene

Waveguides

Plasma

Back to Top