Zhaojun Wang, Tianyu Zhao, Huiwen Hao, Yanan Cai, Kun Feng, Xue Yun, Yansheng Liang, Shaowei Wang, Yujie Sun, Piero R. Bianco, Kwangsung Oh, Ming Lei
Advanced Photonics, Vol. 4, Issue 02, 026003, (March 2022) https://doi.org/10.1117/1.AP.4.2.026003
TOPICS: Image restoration, Reconstruction algorithms, Microscopy, Optical transfer functions, Super resolution, Image quality, Video, Image processing, Spatial resolution, Signal attenuation
Super-resolution structured illumination microscopy (SR-SIM) is an outstanding method for visualizing the subcellular dynamics in living cells. To date, by using elaborately designed systems and algorithms, SR-SIM can achieve rapid, optically sectioned, SR observation with hundreds to thousands of time points. However, real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden. To address this limitation, an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction. This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM. Critically, the increased processing speed does not come at the expense of spatial resolution or sectioning capability, as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.