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Abstract. Metal halide perovskite materials have rapidly advanced in the perovskite solar cells and light-
emitting diodes due to their superior optoelectronic properties. The structure of perovskite optoelectronic
devices includes the perovskite active layer, electron transport layer, and hole transport layer. This indicates
that the optimization process unfolds as a complex interplay between intricate chemical crystallization
processes and sophisticated physical mechanisms. Traditional research in perovskite optoelectronics has
mainly depended on trial-and-error experimentation, a less efficient approach. Recently, the emergence of
machine learning (ML) has drastically streamlined the optimization process. Due to its powerful data
processing capabilities, ML has significant advantages in uncovering potential patterns and making predictions.
More importantly, ML can reveal underlying patterns in data and elucidate complex device mechanisms,
playing a pivotal role in enhancing device performance. We present the latest advancements in applying
ML to perovskite optoelectronic devices, covering perovskite active layers, transport layers, interface
engineering, and mechanisms. In addition, it offers a prospective outlook on future developments. We
believe that the deep integration of ML will significantly expedite the comprehensive enhancement of
perovskite optoelectronic device performance.
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1 Introduction
Metal halide perovskite materials are considered one of the most
promising materials for the next generation of optoelectronic
devices, attributed to their high light absorption coefficient,
large carrier mobility, and simplicity in synthesis methods.1–5

These characteristics have significantly increased the focus
on perovskite materials within the scientific community, mark-
ing them a subject of growing research and development inter-
est. Over the past few years, perovskite optoelectronic devices
have witnessed remarkable advancements and widespread appli-
cation across various fields.6–10 Notably, perovskite solar cells
(PSCs) have attained power conversion efficiencies exceeding

25%,9,11–14 and perovskite light-emitting diodes (PeLEDs) have
broken through the 20% external quantum efficiency (EQE)
barrier.15–26 Furthermore, significant progress has been made
in the development of perovskite detectors and lasers.27–32

However, traditional approaches to material design and device
fabrication often rely on trial-and-error processes. These meth-
ods are time-consuming and inefficient, hindering further per-
formance enhancements in these devices.

Machine learning (ML) is a subfield of artificial intelligence
that utilizes computer science, statistics, and mathematics to de-
velop models and algorithms capable of automatically learning
from data and making predictions based on acquired knowl-
edge. Its data analysis capabilities, automatic decision-making
processes, and adaptive model adaptation make it a powerful
tool for optimizing research processes and minimizing experi-
mental waste.33 In the perovskite materials, researchers are
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increasingly leveraging ML techniques to streamline the re-
search process, notably by reducing the consumption of exper-
imental materials and saving time.

Metal halide perovskites can generally be classified into
three-dimensional (3D) and low-dimensional structures. 3D per-
ovskites are described by the general chemical formula ABX3,
where A signifies organic or inorganic cations, such as cesium
(Csþ), formamidinium (FAþ), and methylammonium (MAþ),
B denotes divalent metal cations, such as lead (Pb2þ) and tin
(Sn2þ), and X represents halide ions including iodide (I−), bro-
mide (Br−), and chloride (Cl−). When A is a large organic cation
that exceeds the size restrictions imposed by the tolerance factor
for 3D perovskites, such as phenylethylammonium (PEAþ) or
1-naphthylmethylammonium (NMAþ), the perovskite structure
changes, resulting in the formation of a low-dimensional perov-
skite and subsequently altering its optoelectronic properties.34,35

ML has been utilized to explore perovskite materials and predict
their bandgap and optical properties, offering crucial technical
support for the development of perovskite materials.36 In addi-
tion, ML has played a pivotal role in investigating the stability of
lead halide perovskites. This has enhanced our understanding of
the various factors influencing the stability of perovskite mate-
rials, thereby facilitating the development of stable devices.37

Furthermore, ML has been employed to optimize the crystalli-
zation process of perovskites. By fine-tuning synthesis param-
eters, it enables faster and more controlled crystallization, which
is vital for the fabrication of high-quality perovskite crystals.38

Over the last 2 years, ML has significantly influenced the
development of perovskite optoelectronics, showcasing a trend
toward multifaceted collaborations.39–44 ML is being strategically

leveraged to tackle the practical challenges within perovskite
optoelectronic devices, including the optimization of perovskite
active layers, the selection of transport layers, and the elucida-
tion of underlying functional mechanisms. Interpretable ML
methodologies, such as SHapley Additive exPlanations (SHAP)
values, are increasingly being applied to analyze and compre-
hend the factors affecting the performance of perovskite devices.
The reliability of ML insights is often validated by harmonizing
them with empirical device data and corroborative density func-
tional theory (DFT) calculations. This review highlights the
critical role of ML in boosting the efficiency of perovskite
optoelectronic devices, encompassing developments, current
challenges, and future prospects. It succinctly outlines the essen-
tial contribution of ML to the progression of perovskite technol-
ogies, with a special focus on solar cells and LEDs. The aim is to
encourage interdisciplinary collaboration between perovskite
optoelectronics and artificial intelligence, highlighting the sig-
nificant potential for revolutionary advancements in optoelec-
tronic technologies through this synergistic partnership.

2 Fundamentals of Machine Learning

2.1 Machine Learning Workflows

MLworkflows usually include data collection, feature engineer-
ing, model selection, and performance evaluation (Fig. 1).42,45,46

Data collection is the foundation of ML, where the key lies in
selecting appropriate data sources and ensuring the accuracy of
the data. In the perovskite optoelectronic devices, data typically
originate from laboratory measurements, as well as results from

Fig. 1 Flowchart of ML-assisted preparation of perovskite optoelectronic devices. This includes
the fabrication of devices, data acquisition, feature engineering, selection of appropriate models,
and performance evaluation. The models encompass a range of learning algorithms: supervised,
unsupervised, and semi-supervised.
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computational simulations. In addition, it is necessary to label
data samples according to the type of algorithm selected for
the task.

Following data collection, feature engineering is undertaken
with the objective of converting raw material data into a
format that ML algorithms can interpret and utilize effectively.
This process is crucial for uncovering underlying correlations
and physicochemical properties of the materials in question.
Feature engineering encompasses several key parts, including
feature extraction, feature selection, and feature construction.
Feature extraction is the process of distilling valuable features
from the raw data. Feature selection focuses on identifying the
most relevant or representative features, which helps in reducing
the dimensionality of the data and enhancing the model’s gen-
eralization capability. The Pearson correlation coefficient and
variance threshold are commonly used methods. The Pearson
correlation coefficient measures the linear relationship between
pairs of features, filtering out highly correlated ones.47 The vari-
ance threshold method sets a threshold value, retaining only fea-
tures with variance exceeding this threshold.48 Lastly, feature
construction is about generating novel features through the com-
bination, transformation, or derivation of existing ones, thereby
bolstering the model’s ability to capture and express complex
patterns and relationships.

Subsequently, the selection of ML models is contingent upon
factors, such as the complexity of the task at hand and the spe-
cific characteristics of the dataset. Tasks are generally classified
as either classification or regression types, with data often en-
compassing a range of formats including numerical values, text,
and images. The most suitable ML model is selected tailored to
the particular requirements of the task and the data’s attributes.
Popular models frequently employed in such scenarios include
random forests (RFs),49 support vector machines (SVMs),50 and
diverse variants of neural networks.51

Performance evaluation is the process of assessing an ML
model’s predictive capability and accuracy. By evaluating the
performance of different models on a given dataset, the most
suitable model can be selected for subsequent training and pre-
diction. The evaluation methods for models vary depending on
the task. Common evaluation metrics in classification tasks in-
clude precision and accuracy, while in regression tasks, metrics,
such as mean squared error (MSE) and mean absolute error
(MAE), are frequently used. MSE is the average of the squared
differences between predicted and actual values. A smaller MSE
indicates lower error and thus more accurate predictions. MAE
is the average of the absolute differences between predicted and
actual values. Similarly, a smaller MAE signifies lower error,
reflecting more accurate predictions.

With the advancement of ML applications, there is a height-
ened emphasis on deciphering the reasoning behind model de-
cisions. This trend is highlighted by the increasing adoption of
SHAP values, a sophisticated method for interpreting MLmodel
predictions.52 At the heart of SHAP is the concept of each fea-
ture’s marginal contribution to the model’s prediction, where
“marginal contribution” signifies the impact of an individual
feature on the predictive result of the model. SHAP endows
the capability for both overarching (global) and specific (local)
explanations of model behaviors. Global explanations shed light
on the significance of each feature across the entire model,
whereas local explanations delve into the rationale behind the
model’s specific predictions for individual instances. In practi-
cal scenarios, the explanatory insights of SHAP are graphically

represented, predominantly through SHAP plots. These plots
intuitively exhibit the positive or negative influence of each fea-
ture on a particular instance. By analyzing SHAP plots, one can
gain insights into which features are pivotal in driving specific
predictive outcomes.

2.2 Machine Learning Algorithms

ML algorithms cover a spectrum of approaches including super-
vised, unsupervised, and semi-supervised learning techniques
(Fig. 1). Supervised learning is an ML method that involves
training a model using labeled data sample.53–55 The objective
of this approach is for the model to learn the mapping between
input features and output labels, enabling it to predict or classify
new input features. In classification tasks, the model’s output
is categorical, effectively segregating the data into defined
groups.56–59 Conversely, in regression tasks, the output is con-
tinuous, yielding a numerical prediction for the input data.60

Interestingly, classification and regression can be amalgamated
to tackle certain types of problems.61 Among the common
algorithms employed in supervised learning is the decision tree
algorithm. This algorithm creates a tree-like model by system-
atically dividing the data based on its features, with each termi-
nal node (or leaf) representing a specific category or value.62

Another notable algorithm is the SVM, which strives to maxi-
mize the margin between different categories. It achieves this by
locating an optimal hyperplane within the feature space. Lastly,
gradient boosting stands out as an ensemble learning method.
It enhances the performance of a model by iteratively develop-
ing a “weak” classifier and continuously refining its predictive
accuracy. This refinement process involves minimizing the gra-
dient of the loss function, thereby progressively building a more
robust classifier.63

Unlike supervised learning, unsupervised learning is an ML
method that focuses on uncovering patterns, structures, or rela-
tionships in unlabeled data.64–67 This method operates without
predefined labels or output values, focusing solely on the input
data. Unsupervised learning in the field of material science
mainly performs tasks, such as data clustering, dimensionality
reduction, or using natural language processing to retrieve ma-
terials from literature by discovering the internal structure and
pattern of data.68,69 Prominent algorithms in unsupervised learn-
ing include Gaussian mixture models (GMMs).70 These models
are used for data clustering and modeling, based on the premise
that the data consist of multiple Gaussian distributions. GMMs
work by estimating parameters to find the most accurate fit to
these distributions. Another notable algorithm is self-organizing
maps (SOMs), a type of neural network algorithm.71 SOMs
organize similar input samples into adjacent neurons in a self-
regulating manner, proving useful for data visualization and
clustering. This approach is particularly effective for mapping
high-dimensional data into a more manageable, low-dimen-
sional space.

Semi-supervised learning is an ML method that combines
supervised learning and unsupervised learning. It leverages a
combination of labeled and unlabeled data during the training
process.72–75 By utilizing unlabeled data alongside labeled data,
semi-supervised learning aims to enhance the generalization
ability and performance of the model.75 A notable example
of semi-supervised learning is the self-training method.76 This
technique begins by training an initial model using labeled data.
Once trained, this model is then applied to make predictions on
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unlabeled data. Samples for which the model has high predic-
tion confidence are added to the labeled dataset. The model is
then retrained with this augmented data, and this iterative pro-
cess continues until the model reaches a point of convergence.
Another approach within semi-supervised learning is co-train-
ing.77 This method involves training multiple classifiers simul-
taneously, with each classifier based on the assumption that
different perspectives or feature sets exist within the data,
and each provides independent and valuable information. In
co-training, each classifier is trained using features from one
specific view. The classifiers then use the predictions from
one view to aid in the filtering and labeling of the unlabeled
data from another view.

3 Machine Learning in Perovskite
Optoelectronic Devices

Fabrication of high-efficiency perovskite optoelectronic devices
relies on various factors, including the composition and struc-
ture of the perovskite materials, device architecture, and fabri-
cation methodologies. Conventional empirical (trial-and-error)
methods have demonstrated limited efficacy in optimizing these
dimensions. In recent years, ML has emerged as a powerful tool
for leveraging existing data to uncover intrinsic patterns, thereby
facilitating the realization of high-performance perovskite opto-
electronics. In this context, we primarily focus on the applica-
tion-centric research of ML within perovskite photovoltaics and
PeLEDs.

3.1 Perovskite Solar Cells

PSCs represent a promising photovoltaic technology due to their
superior optical absorption properties and charge transport capa-
bilities. These PSCs feature distinct layers, including a light-
absorbing layer, electron transport layer (ETL), hole transport
layer (HTL), anode, and cathode. The light-absorbing perov-
skite material plays a pivotal role in efficiently converting light
energy into electrical energy. To enhance the stability and power
conversion efficiency (PCE) of PSCs, ML has already been ap-
plied to various aspects, such as the device structure, perovskite
layer, transport layer, and interface engineering. This innovative
application offers critical insights, expedites the optimization
processes, and broadens the comprehension of PSC mecha-
nisms. It holds substantial potential for further enhancing both
the stability and efficiency of PSCs, marking a significant ad-
vancement in renewable energy technologies.

3.1.1 Optimizing surface capping layer

The degradation of perovskite films directly impacts the lifetime
of perovskite photovoltaic devices. As a result, surface treatment
of perovskites to form a low-dimensional perovskite capping
layer has emerged as an effective strategy to enhance the
stability of these photovoltaic devices. Nevertheless, a signifi-
cant challenge persists in identifying appropriate materials for
surface modification. Recently, ML has garnered significant
attention in the development of passivation materials for perov-
skite photovoltaics.78–81 The primary emphasis has been on the
prediction and design of materials for passivation. This involves
compiling a database of passivation materials from literature
and then employing ML for predictions, with the use of
SHAP to interpret the importance of features. In addition, there
is a significant trend in comparing the results of ML predictions
with actual experimental outcomes in devices, as well as with

insights from DFT calculations. This comparison serves to
further substantiate the reliability of ML applications.

Hartono et al. developed an ML method to select overlay ma-
terials to suppress perovskite degradation.78 They collected 21
organic salts from the PubChem database as overlay materials,
using the structure and chemical characteristics of organic mol-
ecules as well as device fabrication conditions as model inputs,
while using the initial degradation values and degradation rates
of perovskites as model outputs [Fig. 2(a)]. Regression models
[Fig. 2(b)] and SHAP value analysis [Fig. 2(c)] were employed
to analyze the relationship between features and stability. It was
found that a smaller number of hydrogen bond donors and a
smaller topological polar surface area in organic molecules are
associated with increased stability of the MAPbI3 films. The
best-performing organic halide, phenethyltriethylammonium
iodide (PTEAI), successfully extended the stability lifetime
of MAPbI3 by 4� 2 times compared to control MAPbI3.
Moreover, characterization techniques (X-ray photoelectron
spectroscopy and Fourier-transform infrared spectroscopy) have
also revealed that PTEAI effectively forms a capping layer by
modifying the surface structure and chemistry. This alteration
correlates with the suppression of methylammonium loss and
the formation of both PbI2 and oxygen-containing compounds
at the surface of the perovskite, ultimately achieving the goal of
protecting the perovskite from degradation.82

Recently, Zhi et al. collected a dataset of 46 experimental
data points documenting the improvement in power conversion
efficiency after interface passivation with 19 different ammo-
nium salts at various concentrations.79 These ammonium salts
encompassed 14 from the initial dataset and five additional data
selected via Latin hypercube sampling (LHS). LHS achieves di-
versity and uniformity sampling by dividing the range of values
for each parameter into equally spaced subintervals and ensur-
ing that there is only one sample point within each subinterval.
The model inputs were 12 molecular descriptor features and the
concentration of the ammonium salt precursor solution. The
model output was the rate of improvement in device PCE. It is
noteworthy that, to enhance precision, they employed an ensem-
ble learning method that integrates five distinct ML regression
models with various architectures to train and make predictions
on the dataset. Similar to the previous work, SHAP analysis was
also utilized to investigate the impact of molecular features on
device efficiency, identifying hydrogen bond donors, hydrogen
atoms, and the molecular lipid−water partition coefficient
(molecular LogP or MolLogP) as the three most critical molecu-
lar features for the passivating ammonium salts. Ultimately, they
employed the trained MLmodel to screen 10 suitable ammonium
salts from 112 candidates in the PubChem database and exper-
imentally validated six different ammonium salts. Among them,
2-phenylprop-1-ammonium iodide achieved PCEs of 22.36% and
24.47% for FAMACs and FAMA-based PSCs, respectively.

3.1.2 Degradation mechanism

Despite numerous strategies having been employed to enhance
the stability and power conversion efficiency of perovskite
photovoltaics, the factors affecting stability and PCE remain
elusive. Hu et al. constructed an ML regression model to inves-
tigate the key factors influencing the efficiency and stability of
PSCs (Fig. 3).83 They selected 102 sets of PSC device data from
published literature. Through feature engineering, they retained
key parameters: Eg (bandgap), size (the grain size of perovskite
films, inversely representing grain boundary density), Rn (surface
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Fig. 2 (a) Schematic illustration of design rules for capping layer of PSCs. (b) The cross-validated
root mean square error of various machine-learning models. (c) The feature importance ranking
obtained from the RF regression algorithm and SHAP library, showing the chemical properties and
processing conditions in descending order of importance (rank). The yellow and purple color
indicates high and low values of a given feature, respectively. Reproduced with permission from
Ref. 78 (CC-BY).

Fig. 3 Working principle of ML: relevance analysis—experimental verification—one with the best
properties. Complex multivariable analysis by ML. PVK is perovskite. Reproduced with permission
from Ref. 83 © 2022 Wiley‐VCH.
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roughness at the interface between the perovskite film and the
HTL), Trap (trap density), and TRPL (average fluorescence life-
time from time-resolved photoluminescence measurements) as
model inputs. These were utilized with the aim of predicting two
critical outcomes: power conversion efficiency and stability.
Several ML regression models containing support vector regres-
sion (SVR) and ridge regression were employed to discern the
relationships between model inputs and outputs. Among these,
SVR demonstrated the best performance. Moreover, it was
found that the bandgap had the greatest impact on efficiency,
while surface roughness and grain size predominantly influ-
enced stability. Finally, guided by predictive insights, various
annealing temperatures were strategically employed to modify
grain sizes, and three unique organic molecules were utilized to
change surface roughness. This approach yielded PSCs with an
impressive 23.4% efficiency and exceptional long-term stability,
maintaining 97.6% of their initial efficiency after an extended
period of 3288 h under ambient conditions. It is noteworthy that
the results from DFT calculations also show a remarkable cor-
relation with the predictions of the ML model.

3.1.3 Optimizing electron transport layer

An ETL that matches the energy levels of the perovskite layer
and exhibits high electron mobility is fundamental for ensuring

efficient electron injection and extraction. In addition, it can im-
pact the density of defect states at interfaces between the per-
ovskite and the ETL, thereby preventing detrimental interfacial
recombination. As a result, an appropriate ETL is essential for
the performance of perovskite photovoltaic devices. This indi-
cates the need not only to choose suitable ETL materials but also
to perform surface modification or doping of the selected layer,
to ensure efficient electron transport, and to facilitate perovskite
crystal growth.

She et al. utilized a two-step ML approach, involving clas-
sification and regression, to study suitable ETLs (Fig. 4).80

Initially, they extracted 1820 performance data points of
PSCs from 795 articles published between 2013 and 2020,
forming the first dataset. The data were then categorized
based on the materials of the ETLs, dividing them into groups,
such as TiO2-based, SnO2-based, and other ETL-based groups.
In this dataset, the ETLs were undoped. To prevent sample
imbalance, the samples were further classified into three catego-
ries based on their efficiency: category A for efficiency below
9%, category B for efficiency ranging from 9% to 18%, and
category C for efficiency above 18%. By selecting nine features
that influence the power conversion efficiency through feature
engineering, they used these as model inputs with power
conversion efficiency as the output, training different ML

Fig. 4 Flow chart of the two-step ML in this work, which includes two steps, first-step ML (left side)
and second-step ML (right side). Reproduced with permission from Ref. 80 © 2021 Royal Society
of Chemistry.
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classification models on this dataset. Ultimately, they further in-
vestigated feature importance based on the classification model,
finding that TiO2 or SnO2 as ETL materials could lead to high-
performance PSCs.

Subsequently, to further improve the PCE, they focused on
the impact of doping ETLs. A second dataset was created, com-
prising 90 device data points for PSCs based on doped SnO2 and
96 for PSCs based on doped TiO2. The physical and chemical
properties and concentrations of the doping elements were used
as model input features. They calculated the efficiency improve-
ment ratio (EIR), which is the PCE of PSCs with doped ETL
divided by the PCE of corresponding PSCs with undoped
ETL, and used EIR as the model output. Using the RF model
and genetic algorithms (GAs) for data training, they predicted
doped ETLs that might lead to high EIR. Finally, based on pre-
dictions, they achieved PCEs of up to 30.47% and 28.54% for
Cs-doped TiO2 ETL in CsFAMA-based PSCs and S-doped
SnO2 ETL in FAMA-based PSCs, respectively.

3.1.4 Optimizing lead-free perovskite

In order to develop environmentally friendly lead-free PSCs,
ML is utilized to optimize the device architecture and compo-
nents of Sn-based PSCs. Bak et al. initially collected real exper-
imental data from 122 different photovoltaic devices with the
perovskite structure ASnI3 from 49 published journal articles.
The data include information on perovskite chemical structure,
metal electrodes, transparent electrodes, HTL, and ETL as input
features, while the corresponding short-circuit current density
(JSC), open-circuit voltage (VOC), and fill factor (FF) values
are considered as output features. A deep neural network
(DNN) algorithm was then developed, and data augmentation
was performed using K-fold cross-validation to randomly auto-
mate hyperparameter optimization of the DNN model to obtain

the model’s pre-trained weights. The performance of the model
was assessed by comparing the experimental data’s PCE values
with the DNN’s predicted values for each layer (i.e., perovskite
layer, metal electrode, transparent electrode, HTL, and ETL).
Finally, by random combination of a large number of input fea-
tures, predictions were made through the optimized DNN model
(Fig. 5). ML recommended a new Sn-based PSC device struc-
ture FTO∕PEDOT∶PSS∕EDA0.01PEA0.07Cs0.03FA0.51MA0.38
SnI3∕indene-C60 bisadduct (ICBA)/2,9-dimethyl-4,7-diphenyl-
1,10-phenanthrolin (BCP)/Ag. Obviously, the composition of
the perovskite is still extremely complex. Furthermore, experi-
mental verification has confirmed that the PCE of the ML-opti-
mized Sn-based perovskite photovoltaics reached 5.57%, which
is a significant improvement over the traditional testing results
(PCE of 1.72%).84

3.1.5 Vapor-deposited perovskite solar cells

Although the performance of solution-processed perovskite
photovoltaics has rapidly improved in laboratory settings, scal-
ing up to large-scale production remains a significant challenge.
Vapor-deposited PSCs, which need to be compatible with
the existing large-scale electronic industry, have substantially
lagged behind. Wang et al. extracted information on 220 devices
from 150 published papers on thermal evaporation PSCs be-
tween 2015 and 2022. Initially, the data were cleansed, reducing
the sample size to 180 groups, and missing values in the dataset
were filled with the mode of each column. The dataset was then
expanded using Gaussian noise, tripling the sample size. Twenty
features were chosen as input variables, encompassing aspects
such as the material composition of the perovskite layer and de-
vice fabrication methods, with the device’s JSC, VOC, FF, and
PCE as output variables. Training was conducted using 10 dif-
ferent ML models, with the RF model scoring highest on the test

Fig. 5 Schematics of Sn-PSC design ML recommendation. (a) Parameter setting of each feature
for the recommendation process. (b) Schematic of recommended Sn PSCs. (c) Labeled number
and corresponding materials used as other layers in (a). Reproduced with permission from Ref. 84
(CC-BY).
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set. To enhance the generalization ability of the ML model, it
was combined with a GA, increasing the prediction accuracy
of the GA-enhanced RF model on the test set from 60.2% to
67.4%. Subsequently, the importance of features influencing
PCE was analyzed through the mean Gini index of feature con-
tributions in each decision tree of the RF model. The study
found that the five features contributing most to the PCE were
the proportions of MA, FA, Br, annealing temperature, and pres-
sure (Fig. 6). Finally, the optimal device structure proposed
was indium tin oxide ðITOÞ∕SnO2∕BCP∕FA0.25MA0.25Cs0.5
PbðI0.75Br0.25Þ3∕MeO-2PACz∕Ag, achieving the highest PCE
of 26.1% under conditions of 90°C to 105°C and an evaporation
pressure of 3 × 10−5 to 4 × 10−5 mbar. This work not only
identified the optimal conditions for vapor-deposited perovskite
but also, more crucially, delineated the direction for vapor-
deposited perovskite.85

3.1.6 Machine vision for large-area slot-die coated films

In the commercialization of perovskite photovoltaics, the con-
trollable fabrication of large-area homogeneous perovskite films
represents a critical technological challenge. Traditionally, the
assessment of uniformity in large-area films has relied primarily
on visual inspection, which is imprecise. Taherimakhsousi et al.
developed a rapid, reliable, and non-destructive machine vision
approach to quantify the uniformity of large-area perovskite
films, thereby aiding process optimization.86 Initially, white light
photography was employed to sample slot-die coated perovskite
films. Subsequently, a convolutional neural network based on
the VGG16 architecture successfully segmented the original
images into fully covered,87 partially covered, and uncovered

regions without the need for manual intervention. Optimized
for pixel resolution, this approach spatially quantified multiple
attributes of perovskite films (such as substrate coverage, film
thickness, and defect density) from 25 cm2 samples and estab-
lished correlations between slot-die coating process parameters
(wet film thickness and gas knife speed) and film properties
(Fig. 7). This strategy facilitated multi-parameter, multi-objec-
tive optimization of the gas-knife assisted slot-die coating pro-
cess, enabling the identification of optimal process conditions
that simultaneously maximize coating throughput, film quality,
and predicted device current density while reducing the charac-
terization effort required for each process condition. This work
demonstrates the significant potential of machine vision in op-
timizing large-area photovoltaic films.

3.2 Perovskite Light-Emitting Diodes

Perovskite LEDs are semiconductor devices that transform elec-
trical energy into light, featuring an optically active layer con-
stituted by perovskite materials. Their primary performance
indicators include EQE, calculated as the ratio of photons emit-
ted from the LED to the electrons circulating in the external cir-
cuit, and half-life (T50), representing the duration for brightness
(or efficiency) to decrease by half.

3.2.1 Predicting additive molecules

The quality of the perovskite active layer is crucial for the
performance of perovskite LEDs. Currently, enhancing the
quality of perovskite films involves additive engineering, which
includes introducing organic molecules into the perovskite

Fig. 6 ML flowchart for studying the variables that influence the performance of vapor-deposited
PSCs, consisting of four main parts: building the dataset, feature engineering, SHAP interpretation
model, and model prediction. Reproduced with permission from Ref. 85 © 2023 Royal Society of
Chemistry.

Lu et al.: Machine learning for perovskite optoelectronics: a review

Advanced Photonics 054001-8 Sep∕Oct 2024 • Vol. 6(5)



precursor solution. These molecules, while not integrating into
the perovskite lattice, improve film quality by tuning the crys-
tallization pathway. Yet, not every organic molecule is a suitable
additive, and unsuitable choices can impair LED performance.
Traditional additive selection based on trial-and-error is ineffi-
cient and challenged by the small size of perovskite LED
additive databases for conventional ML. To address this, the en-
hanced molecular information model (EMIM) was developed,
incorporating both qualitative molecular fingerprints and quan-
titative descriptors to enhance molecular information and im-
prove predictive accuracy (Fig. 8).39 It is noteworthy that in
this work, the additive molecular database used was validated

through experimental lab device tests. By utilizing EQE as
the output feature and additive molecular descriptors as inputs,
along with a 10.3% EQE threshold for classification, the EMIM
model attained an impressive 98% prediction accuracy, signifi-
cantly outperforming traditional MLmodels. In addition, among
the 12 chosen additives, only one showed inconsistent results
between EMIM predictions and device fabrication outcomes,
demonstrating EMIM’s reliability. One of the additives even
elevated the EQE of perovskite LEDs to 22.7%, making it one
of the most efficient near-infrared LEDs. This work is pioneer-
ing in using ML for analyzing perovskite LEDs, especially for
small data additives.

Fig. 7 Machine vision workflow for quantifying large-area perovskite film morphology from optical
images using the PerovskiteVision tool. Reproduced with permission from Ref. 86 (CC-BY).

Fig. 8 Traditional method versus ML-assisted method. The traditional method is to verify the ef-
fectiveness of the additive for PeLEDs, while the ML-assisted method is to fabricate the device
with the “good” additive predicted by ML. The additive is added into the perovskite precursor
solution to form the perovskite film. Reproduced with permission from Ref. 39 © 2022 Wiley-VCH.
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3.2.2 Half-lifetime prediction

Stability is a key objective in the development of perovskite
LEDs. Stability measurements, unlike EQE measurements,
are time-consuming, necessitating hundreds of hours for the
most stable perovskite LEDs. Therefore, developing strategies
to predict the half-life of perovskite LEDs is crucial. Recently,
we found that traditional exponential fitting methods, such as
monoexponential, biexponential, and stretched exponential
functions, are inadequate for predicting half-life due to complex
degradation mechanisms involving ion migration, Joule heating,
and interfacial effects.40 To address this, an ensemble learning
model was developed to predict the T50 lifetime (time to 50%
of initial performance) based on shorter tests T80 (time to 80%
of initial performance) (Fig. 9). A database of 210 near-infrared
and red perovskite LEDs was initially compiled from experi-
mental data. To augment this dataset, a DNN combined with
the fast gradient sign method was employed, effectively dou-
bling the dataset to 420 samples. Comparative analysis of five
different ML models, such as least absolute shrinkage and
selection operator, SVR, gradient boosting regressor, Gaussian
process regressor, and elastic net (EN), showed improved accu-
racy over the original data. An ensemble learning model
(5EML) based on these five algorithms was then used for better
fitting the degradation curves of perovskite LEDs, achieving a
high score of 0.995. This model also applies to quantum dot
LEDs, demonstrating its universality.

4 Conclusion and Perspectives

4.1 Conclusion

It is evident that the application of ML in the perovskite field has
undergone a significant transformation. Initially focused pri-
marily on predicting new perovskite materials, the emphasis
has now shifted toward perovskite optoelectronic devices,
including device design, crystallization regulation, stability
analysis, and manufacturing processes. More importantly, in
the fields of perovskite photovoltaics and perovskite LEDs,
the focus of ML research differs. Specifically, in perovskite
photovoltaics, ML is primarily used for interface engineering
of the perovskite layer and optimization of the transport layers,
whereas in perovskite LEDs, it mainly focuses on additive
screening and stability prediction. This difference essentially
arises from the distinct optimization strategies for these two
types of devices.88 Perovskite LEDs are extremely sensitive
to defects, so the key is to suppress defects and enhance
photoluminescence quantum efficiency. In contrast, perovskite

photovoltaics are less sensitive to defects, with the primary fo-
cus being on charge carrier transport.

Certainly, the application of ML in perovskite optoelectron-
ics has the following characteristics. First, the primary source of
data for perovskite optoelectronic devices is derived from exper-
imental results, ensuring their authenticity and dependability.
Second, this research area strongly emphasizes the veracity
of ML inferences. ML outcomes are typically corroborated
through actual device fabrication or supplemented with DFT
calculations. Third, the SHAP method is widely employed to
investigate the attributes of passivation materials, offering criti-
cal insights into feature importance. This method serves as a
theoretical compass for material design. Fourth, current algo-
rithmic approaches are largely focused on supervised learning,
including classification and regression models.

4.2 Perspectives and Challenges

Despite the notable progress and significant research potential
demonstrated by ML in perovskite optoelectronics, the overall
volume of research remains limited, and there is a substantial
need for further in-depth exploration. The development of per-
ovskite optoelectronic devices is in a relatively nascent stage,
and a considerable amount of experimental data is yet to be
made publicly available, which poses challenges for the appli-
cation of ML techniques. Moreover, the optimization process of
perovskite optoelectronic devices is exceedingly complex and
involves a multitude of details. Slight variances during the de-
vice fabrication process can lead to significantly divergent ex-
perimental outcomes, making it difficult to assess the reliability
of data samples. Therefore, regarding the intersection of ML and
perovskite optoelectronic devices, we propose the following
outlooks and suggestions.

Increasing the open-sourcing of perovskite data. The open-
sourcing of algorithms has become increasingly common, ena-
bling researchers in the perovskite field to effectively utilize
these models. However, the open-sourcing of perovskite data
remains relatively limited. Therefore, it is recommended to
establish a platform for perovskite data sharing. In addition,
an abundance of data samples can help address concerns about
the reliability of experimental data. It is important to note that
not all collected experimental data are used for ML. Instead,
data samples that have undergone preprocessing and feature en-
gineering are utilized. In other words, the robust data processing
capabilities of ML can mitigate minor biases introduced during
experimental data collection.

To tackle the challenge of limited datasets, researchers are
encouraged to delve into data augmentation methodologies that

Fig. 9 Illustration of lifetime prediction by 5EML. Reproduced with permission from Ref. 40 © 2024
Wiley-VCH.
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utilize the physical and chemical properties of perovskite mol-
ecules as integral feature descriptors in ML models. This strat-
egy facilitates the extraction of enhanced molecular insights
while preserving the intricate structural details. Recent break-
throughs in graph neural networks, specifically in molecular
generation, have demonstrated significant potential in broaden-
ing the scope of datasets and elevating their quality.89

Strengthen the depth of interdisciplinary research between
ML and perovskites. First, the interpretability of ML models
is especially critical, as it reveals the decision criteria used
by the models, thereby guiding the understanding and optimi-
zation strategies for perovskite optoelectronic devices. Second,
enhance the application of machine image processing in analyz-
ing perovskite film morphology. For LEDs, a discrete morphol-
ogy is desirable as it helps improve light extraction efficiency. In
contrast, the photovoltaic often prefers large and dense grains to
enhance carrier transport. Currently, the study of perovskite film
morphology primarily relies on empirical deductions, which fail
to accurately analyze and extract underlying morphological
patterns.

Code and Data Availability
The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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